

Lecture Notes in Computer Science 4523
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Yann-Hang Lee Heung-Nam Kim
Jong Kim Yongwan Park
Laurence T. Yang Sung Won Kim (Eds.)

Embedded Software
and Systems

Third International Conference, ICESS 2007
Daegu, Korea, May 14-16, 2007
Proceedings

13

Volume Editors

Yann-Hang Lee
Arizona State University, Department of Computer Science and Engineering
699 S. Mill Av., Tempe, AZ 85287, USA
E-mail: yhlee@asu.edu

Heung-Nam Kim
Embedded S/W Research Division 161
Gajeong-Dong, Yuseong-Gu, Daejeon, 305-700, Korea
E-mail: hnkim@etri.re.kr

Jong Kim
Pohang University of Science and Technology
Department of Computer Science and Engineering (POSTECH)
San 31, Hyoja-dong, Nam-gu, Pohang 790-784, Korea
E-mail: jkim@postech.ac.kr

Yongwan Park
Sung Won Kim
Yeungnam University, School of Electrical Engineering and Computer Science
214-1 Dae-Dong, Gyeongsan City, Gyeongbuk, 712-749, Korea
E-mail: {ywpark, swon}@yu.ac.kr

Laurence T. Yang
St. Francis Xavier University, Department of Computer Science
Antigonish, NS, B2G 2W5, Canada
E-mail: lyang@stfx.ca

Library of Congress Control Number: 2007926910

CR Subject Classification (1998): C.3, C.2, C.5.3, D.2, D.4, H.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-72684-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72684-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12068289 06/3180 5 4 3 2 1 0

Preface

Embedded systems, i.e., computers inside products, have been adopted widely in
many domains, including traditional control systems, medical instruments, wired
and wireless communication devices, aerospace equipment, human-computer in-
terfaces, and sensor networks. Two significant trends have recently been ob-
served due to the increasing computation power and communication bandwidth.
The first is that embedded systems are getting connected and are cooperating
as distributed systems. The other is the extensive software in middleware and
embedded applications. These trends are apparent in academic and industrial
research and in the papers submitted to the International Conference on Em-
bedded Software and Systems.

The 3rd International Conference on Embedded Software and Systems (ICESS
2007), to be held in Daegu, Republic of Korea, on May 14-16, aims to advance
embedded software and systems research, development, and design competence,
and to enhance international communication and collaboration. It consists of
the traditional core area of embedded systems infrastructure in architecture,
software, hardware, real-time computing, and testing and verification, as well as
additional areas of special emphasis: pervasive/ubiquitous computing and sensor
networks, HW/SW co-design and SoC, wireless communications, power-aware
computing, security and dependability, and multimedia and HCI. In addition,
tutorial sessions on the broad fields of embedded computing, a panel discussion
session and keynote addresses are included in the conference. Based on the 387
submitted manuscripts and the 77 accepted papers, we expect that the forum
will be full of high quality presentations and productive discussions.

ICESS 2007 has been made possible by the hard work of a number of people,
to whom we are very grateful. They include the members of the organization
committees and the vice chairs of the technical tracks in the technical program
committee. Recognition is warranted for the commendable job of all members
of the technical program committee, who, in the short paper reviewing period,
have accomplished the significant workload of evaluating, on average, 9 papers
and providing constructive comments.

We are particularly thankful to Laurence T. Yang for his guidance and effort
in continuing the ICESS series. In addition, we thank all authors who submit-
ted their outstanding work; without them the conference would not have been
possible. Finally, we gratefully acknowledge the support from our sponsors.

April 2007 Yann-Hang Lee and Heung Nam Kim

Organization

Organizers

ICESS-07 was organized by the Institute of Embedded Engineering of
Korea (IEMEK).

Sponsors

Daegu GyeoungBuk Institute of Science & Technology (DGIST), Korea
Embedded Technology Education Center (EmTEC), New University for

Regional Innovation (NURI), Korea
ETNEWS, Korea
Daegu Digital Industry Promotion agency (DIP), Korea
R&DB Center for Embedded System Industry, Korea
The Federation of Korea Information Industries, Korea
SK Telecom, Korea
SAMSUNG, Korea
DAEGU Convention & Visitors Bureau, Korea
Gyeongsangbuk-Do, Korea
Lecture Notes in Computer Science (LNCS), Springer

Executive Committee

General Chairs Kyu-Suk Chung, President of IEMEK and DGIST,
Korea

Peter Marwedel, University of Dortmund and ICD,
Germany

Program Chairs Yann-Hang Lee, Arizona State University, USA
Heung Nam Kim, ETRI, Korea

Steering Chairs Zhaohui Wu, Zhejiang University, China
Laurence T. Yang, St. Francis Xavier University,

Canada
Program Vice-Chairs Zonghua Gu, Hong Kong University of Science and

Technology,Hong Kong, China
Kenneth Ricks, The University of Alabama, USA
Chanik Park, Pohang University of Science and

Technology, Korea
Byoungchul Ahn, YeungNam University, Korea
Seong-dong Kim, ETRI, Korea
Karam Chatha, Arizona State University, USA

VIII Organization

Mohamed Younis, University of Maryland
Baltimore County, USA

Christian W. Probst, Technical University of
Denmark, Denmark

Farn Wong, National Taiwan University, Taiwan
Liudong Xing, University of

Massachusetts - Dartmouth, USA
Sangwook Kim, Kyungpook National University,

Korea
Publicity Chairs Young Jin Nam, Daegu University, Korea

Wei Zhang, Southern Illinois University, USA
Yu Hua, HuaZhong University of Science and

Technology, China
Yongxin Zhu, Shanghai Jiaotong University, China

Publication Chair Sung Won Kim, YeungNam University, Korea
Tony Li Xu, St. Francis Xavier University, Canada

Finance Chair Yongwan Park, Yeungnam University, Korea
Local Chair Dong Ha Lee, DGIST, Korea
Organization Chair Jong Kim, Pohang University of Science and

Technology, Korea

Program/Technical Committee

Ayman Abdel-Hamid Arab Academy for Science and Technology,
Egypt

Kemal Akkaya Southern Illinois University, USA
Fatih Alagoz Bogazici University, Turkey
Suprasad Amari Relex Software Corporation, USA
Kwang-Seon Ahn Kyungpook National University, Korea
Beongku An Hongik University, Korea
Adel Youssef Google, USA
Li Bai Temple University, USA
Iain Bate University of York, UK
Jalel Ben-Othman Université de Versailles, France
Elaheh Bozorgzadeh University of California, Irvine, USA
Hasan Cam Arizona State University, USA
Erdal Cayirci University of Stavanger, Norway
Samarjit Chakraborty National University of Singapore, Singapore
Naehyuck Chang Seoul National University, Korea
Changsik Cho ETRI, Korea
Tae-Young Choe Kumoh National Institute of Technology,

Korea
Byung-Jae Choi Daegu University, Korea
Tae Yoon Chung Kangnung National University, Korea
Yuanshun Dai Purdue University, Indianapolis, USA

Organization IX

Susan K. Donohue University of Virginia, USA
Sameh Elsharkawy Catholic University of America, USA
Mohammed Ferdjallah The University of Tennessee, USA
Diana Franklin Cal Poly, San Luis Obispo, USA
Xinwen Fu Dakota State University, USA
Masahiro Fujita University of Tokyo, Japan
Gernot Heiser The University of New South Wales, Sydney,

Australia
Dieter Hogrefe Universität Göttingen, Germany
Jerry Hom Rutgers University, USA
Seongsoo Hong Seoul National University, Korea
Harry Hsieh University of California, Riverside, USA
Pao-Ann Hsiung National Chung Cheng University, Taiwan
Chung-Hsing Hsu Los Alamos National Laboratory, USA
Yu Hua HUST, China
Huadong Ma Beijing University of Post and

Telecommunication, China
Chung-Yang (Ric) Huang National Taiwan University, Taiwan
Dijiang Huang Arizona State University, USA
Jae Doo Huh ETRI, Korea
Claude Jard IRISA, France
Jie-Hong Roland Jiang National Taiwan University, Taiwan
SoonKi Jung Kyungpook National University, Korea
Woo Young Jung Daegu Gyeongbuk Institute of Science and

Technology, Korea
Ibrahim Kamel Sharjah University, UAE
Sooyong Kang Hanyang University, Korea
Kevin Kassner Dynetics Corporation, Huntsville, Alabama,

USA
Srinivas Katkoori University of Southern Florida, USA
Cheon Shik Kim Anyang University, Korea
Daeyoung Kim Information and Communication University,

Korea
Heesun Kim Andong National University, Korea
Jeein Kim Konkuk University, Korea
Jeonggon Kim Hansei University, Korea
Moonzoo Kim KAIST, Korea
Munchurl Kim ICU, Korea
Myungchul Kim Information and Communications University,

Korea
Namchul Kim Kyungpook National University, Korea
Christos Kloukinas City University London, UK
Turgay Korkmaz University of Texas at San Antonio, USA
Ibrahim Korpeoglu Bilkent University, Turkey
Uli Kremer Rutgers University, USA
Kiryong Kwon Pukyong National University, Korea

X Organization

Ben Lee Oregon State University, USA
Bong Gyu Lee Yonsei University, Korea
Gangsoo Lee Hannam University, Korea
Insup Lee University of Pennsylvania, USA
Seunghwan Lee Samsung Electronics, Korea
Seungjoon Lee ATT Research, USA
Xiaolin Li Oklahoma State University, USA
Huan Li Beihang University, China
Xue Liu McGill University, Canada
Sin Ming Loo Boise State University, USA
Roman Lysecky University of Arizona, USA
Pyeongsoo Mah ETRI, Korea
Viswanathan Mahesh University of Illinois at

Urbana-Champaign, USA
Marc St-Hilaire Carleton University, Canada
Nicholas McGuire Lanzhou University, China
Abdelhamid Mellouk University of Paris XII, France
Leila Meshkat Jet Propulsion Laboratory, USA
Ahmed Mostefaoui Laboratoire d’Informatique de

Franche-Comté, France
Tamer Nadeem Siemens Corporate Research, USA
Farid Nait-Abdesselam University of Lille, France
Sang Yep Nam Kyungmoon University, Korea
Alberto Nannarelli Technical University of Denmark, Denmark
Yang Ni Intel, USA
Hoon Oh Ulsan University, Korea
Ossamma Younis University of Arizona, USA
Soo Hyun Park Kookmin University, Korea
Filip Perich Shared Spectrum Company, USA
Daji Qiao Iowa State University, USA
Srivaths Ravi Texas Instruments, India
Binoy Ravindran Virginia Tech, USA
Karim Seada Nokia Research, USA
Szili Shao Hong Kong Polytechnic University, China
Chi-Sheng (Daniel) Shih National Taiwan University, Taiwan
Oliver Sinnen University of Auckland, New Zealand
Sang H. Son University of Virginia, USA
Christian Steger Technical University Graz, Austria
William Stapleton The University of Alabama, USA
Sooyong Kang Hanyang University, Korea
Tarek Bejaoui University of Carthage, Tunisia
Hiroyuki Tomiyama Nagoya University, Japan
Damla Turgut University of Central Florida, USA

Organization XI

Kuang-Ching Wang Clemson University, USA
Shige Wang General Motors, USA
Xiaorui Wang University of Tennessee, USA
Earl Wells The University of Alabama in Huntsville,

USA
Youjip Won Hanyang University, Korea
Woontack Woo GIST, Korea
Haruo Yokoda Tokyo Institute of Technology, Japan
Youngwoo Yoon Yeungnam University, Korea
Adel Youssef Google, USA
Moustafa Youssef University of Maryland College Park, USA
Zhen Yu Iowa State University, USA
Wenhui Zhang Chinese Academy of Sciences, China
Wenbing Zhao Cleveland State University, USA
Lin Zhong Rice University, USA
Dakai Zhu University of Texas at San Antonio, USA
Yongxin Zhu Shanghai Jiaotong University, China
Cliff Zou University of Central Florida, USA
Xukai Zou Purdue University, Indianapolis, USA

Table of Contents

Track 1: Embedded Architecture

Object-Orientation Is Evil to Mobile Game: Experience from Industrial
Mobile RPGs . 1

Weishan Zhang, Dong Han, and Thomas Kunz

Device-Aware Cache Replacement Algorithm for Heterogeneous Mobile
Storage Devices . 13

Young-Jin Kim and Jihong Kim

The Lightweight Runtime Engine of the Wireless Internet Platform for
Mobile Devices . 25

Yong-Duck You, Choong-Bum Park, and Hoon Choi

Product Line Based Reuse Methodology for Developing Generic
ECU . 37

Si Won Choi, Jin Sun Her, Hyun Koo Kang, and Soo Dong Kim

The Object-Oriented Protocol for Data Exchange and Control in
Computational-Diverse Embedded Systems . 46

Bogus�law Cyganek

Track 2: Embedded Hardware

A Link-Load Balanced Low Energy Mapping and Routing for NoC 59
ZhouWenbiao, ZhangYan, and MaoZhigang

Scheduling for Combining Traffic of On-Chip Trace Data in Embedded
Multi-core Processor . 67

Xiao Hu, Pengyong Ma, and Shuming Chen

Memory Offset Assignment for DSPs . 80
Jinpyo Hong and J. Ramanujam

A Subsection Storage Policy in Intelligent RAID-Based Object Storage
Device . 88

Dan Feng, Qiang Zou, Lei Tian, Ling-fang Zeng, and Ling-jun Qin

Joint Source-Channel Decoding ASIP Architecture for Sensor
Networks . 98

Pablo Ituero, Gorka Landaburu, Javier Del Ser,
Marisa López-Vallejo, Pedro M. Crespo, Vicente Atxa, and
Jon Altuna

XIV Table of Contents

Theory and Practice of Probabilistic Timed Game for Embedded
Systems . 109

Satoshi Yamane

A Design Method for Heterogeneous Adders . 121
Jeong-Gun Lee, Jeong-A Lee, Byeong-Seok Lee, and
Milos D. Ercegovac

FPGA Based Implementation of Real-Time Video Watermarking
Chip . 133

Yong-Jae Jeong, Kwang-Seok Moon, and Jong-Nam Kim

A Unified Compressed Cache Hierarchy Using Simple Frequent Pattern
Compression and Partial Cache Line Prefetching . 142

Xinhua Tian and Minxuan Zhang

Track 3: Embedded Software

Function Inlining in Embedded Systems with Code Size Limitation 154
Xinrong Zhou, Lu Yan, and Johan Lilius

Performance Characteristics of Flash Memory: Model and
Implications . 162

Seungjae Baek, Jongmoo Choi, Donghee Lee, and Sam H. Noh

A New Type of Embedded File System Based on SPM 174
Tianzhou Chen, Feng Sha, Wei Hu, and Qingsong Shi

An Efficient Buffer Management Scheme for Implementing a B-Tree on
NAND Flash Memory . 181

Hyun-Seob Lee, Sangwon Park, Ha-Joo Song, and Dong-Ho Lee

A Code Generation Framework for Actor-Oriented Models with Partial
Evaluation . 193

Gang Zhou, Man-Kit Leung, and Edward A. Lee

Power-Aware Software Prefetching . 207
Juan Chen, Yong Dong, Huizhan Yi, and Xuejun Yang

Fast Initialization and Memory Management Techniques for Log-Based
Flash Memory File Systems . 219

Junkil Ryu and Chanik Park

Track 4: HW-SW Co-design and SoC

An Efficient Implementation Method of Arbiter for the ML-AHB
Busmatrix . 229

Soo Yun Hwang, Hyeong Jun Park, and Kyoung Son Jhang

Table of Contents XV

Modeling and Implementation of an Output-Queuing Router for
Networks-on-Chips . 241

Haytham Elmiligi, M. Watheq El-Kharashi, and Fayez Gebali

Handling Control Data Flow Graphs for a Tightly Coupled
Reconfigurable Accelerator . 249

Hamid Noori, Farhad Mehdipour, Morteza Saheb Zamani,
Koji Inoue, and Kazuaki Murakami

Behavioral Synthesis of Double-Precision Floating-Point Adders with
Function-Level Transformations: A Case Study . 261

Yuko Hara, Hiroyuki Tomiyama, Shinya Honda,
Hiroaki Takada, and Katsuya Ishii

NISD: A Framework for Automatic Narrow Instruction Set Design 271
Xianhua Liu, Jiyu Zhang, and Xu Cheng

A Hardware/Software Cosimulator with RTOS Supports for
Multiprocessor Embedded Systems . 283

Takashi Furukawa, Shinya Honda, Hiroyuki Tomiyama, and
Hiroaki Takada

Face Detection on Embedded Systems . 295
Abbas Bigdeli, Colin Sim, Morteza Biglari-Abhari, and
Brian C. Lovell

Track 5: Multimedia and HCI

An Improved Fusion Design of Audio-Gesture for Multi-modal HCI
Based on Web and WPS . 309

Jung-Hyun Kim and Kwang-Seok Hong

User-Customized Interactive System Using Both Speech and Face
Recognition . 317

Sung-Ill Kim

Visualization of GML Map Using 3-Layer POI on Mobile Device 328
Eun-Ha Song, Laurence T. Yang, and Young-Sik Jeong

Speaker Recognition Using Temporal Decomposition of LSF for Mobile
Environment . 338

Sung-Joo Kim, Min-Seok Kim, and Ha-Jin Yu

Voice/Non-Voice Classification Using Reliable Fundamental Frequency
Estimator for Voice Activated Powered Wheelchair Control 347

Soo-Young Suk, Hyun-Yeol Chung, and Hiroaki Kojima

MPEG-4 Scene Description Optimization for Interactive Terrestrial
DMB Content . 358

Kyung-Ae Cha and Kyungdeok Kim

XVI Table of Contents

A Distributed Wearable System Based on Multimodal Fusion 369
Il-Yeon Cho, John Sunwoo, Hyun-Tae Jeong, Yong-Ki Son,
Hee-Joong Ahn, Dong-Woo Lee, Dong-Won Han, and
Cheol-Hoon Lee

Track 6: Pervasive/Ubiquitos Computing and Sensor
Network:

Randomized Approach for Target Coverage Scheduling in Directional
Sensor Network . 379

Jian Wang, Changyong Niu, and Ruimin Shen

Efficient Time Triggered Query Processing in Wireless Sensor
Networks . 391

Bernhard Scholz, Mohamed Medhat Gaber, Tim Dawborn,
Raymes Khoury, and Edmund Tse

Dependable Geographical Routing on Wireless Sensor Networks 403
Yue-Shan Chang, Ming-Tsung Hsu, Hsu-Hang Liu, and
Tong-Ying Juang

Minimization of the Redundant Coverage for Dense Wireless Sensor
Networks . 415

Dingxing Zhang, Ming Xu, Shulin Wang, and Boyun Zhang

Track 7: Power-Aware Computing

Improved Way Prediction Policy for Low-Energy Instruction Caches 425
Zhou Hongwei, Zhang Chengyi, and Zhang Mingxuan

Sleep Nodes Scheduling in Cluster-Based Heterogeneous Sensor
Networks Using AHP . 437

Xiaoling Wu, Jinsung Cho, Brian J. d’Auriol, and Sungyoung Lee

Energy-Efficient Medium Access Control for Wireless Sensor
Networks . 445

Po-Jen Chuang and Chih-Shin Lin

Automatic Power Model Generation for Sensor Network Simulator 453
Jaebok Park, Hyunwoo Joe, and Hyungshin Kim

Track 8: Real-Time Systems

Situation-Aware Based Self-adaptive Architecture for Mission Critical
Systems . 464

Sangsoo Kim, Jiyong Park, Heeseo Chae, and Hoh Peter In

Table of Contents XVII

Micromobility Management Enhancement for Fast Handover in
HMIPv6-Based Real-Time Applications . 476

Sungkuen Lee, Eallae Kim, Taehyung Lim, Seokjong Jeong, and
Jinwoo Park

DVSMT: Dynamic Voltage Scaling for Scheduling Mixed Real-Time
Tasks . 488

Min-Sik Gong, Myoung-Jo Jung, Yong-Hee Kim, Moon-Haeng Cho,
Joo-Man Kim, and Cheol-Hoon Lee

Real-Time Communications on an Integrated Fieldbus Network Based
on a Switched Ethernet in Industrial Environment 498

Dao Manh Cuong and Myung Kyun Kim

On Scheduling Exception Handlers in Dynamic, Embedded Real-Time
Systems . 510

Binoy Ravindran, Edward Curley, and E. Douglas Jensen

PR-MAC: Path-Oriented Real-Time MAC Protocol for Wireless Sensor
Network . 530

Jianrong Chen, Peidong Zhu, and Zhichang Qi

Real-Time Traffic Packet Scheduling Algorithm in HSDPA System
Considering the Maximum Tolerable Delay and Channel Assignment . . . 540

Xiaodong Yu, Sung Won Kim, and Yong Wan Park

L4oprof: A System-Wide Profiler Using Hardware PMU in L4
Environment . 548

Jugwan Eom, Dohun Kim, and Chanik Park

An Adaptive DVS Checkpointing Scheme for Fixed-Priority Tasks with
Reliability Constraints in Dependable Real-Time Embedded Systems . . . 560

Kyong Hoon Kim and Jong Kim

Energy-Efficient Fixed-Priority Scheduling for Periodic Real-Time
Tasks with Multi-priority Subtasks . 572

Zhigang Gao, Zhaohui Wu, and Man Lin

A C-Language Binding for PSL . 584
Ping Hang Cheung and Alessandro Forin

Track 9: Security and Dependability

Cut Sequence Set Generation for Fault Tree Analysis 592
Dong Liu, Weiyan Xing, Chunyuan Zhang, Rui Li, and Haiyan Li

Multilevel Pattern Matching Architecture for Network Intrusion
Detection and Prevention System . 604

Tian Song, Zhizhong Tang, and Dongsheng Wang

XVIII Table of Contents

Smart Actuator-Based Fault-Tolerant Control for Networked
Safety-Critical Embedded Systems . 615

Inseok Yang, Donggil Kim, Kyungmin Kang, Dongik Lee, and
Kyungsik Yoon

KCT-Based Group Key Management Scheme in Clustered Wireless
Sensor Networks . 627

Huifang Chen, Hiroshi Mineno, Yoshitsugu Obashi,
Tomohiro Kokogawa, and Tadanori Mizuno

A Secure Packet Filtering Mechanism for Tunneling over Internet 641
Wan-Jik Lee, Seok-Yeol Heo, Tae-Young Byun,
Young-Ho Sohn, and Ki-Jun Han

Track 10: Wireless Communication

An End-to-End Packet Delay Optimization for QoS in a MANET 653
Sang-Chul Kim

Power Efficient Relaying MAC Protocol for Rate Adaptive Wireless
LANs . 664

Jaeeun Na, Yeonkwon Jeong, and Joongsoo Ma

PHY-MAC Cross-Layer Design of Reliable Wireless Multicast Protocol
with a Case Study of MB-OFDM WPAN . 676

Jaeeun Na, Cheolgi Kim, and Joongsoo Ma

An Adaptive Multi-paths Algorithm for Wireless Sensor Networks 686
Zhendong Wu and Shanping Li

Distributed Self-Pruning(DSP) Algorithm for Bridges in Clustered Ad
Hoc Networks . 699

Seok Yeol Yun and Hoon Oh

Chaotic Communications in MIMO Systems . 708
Karuna Thapaliya, Qinghai Yang, and Kyung Sup Kwak

A QoS Provisioning MAC Protocol for IEEE 802.11 WLANs 718
Hu Zhengbing and Han Xiaomin

A Leader Election Algorithm Within Candidates on Ad Hoc Mobile
Networks . 728

SungSoo Lee, Rahman M. Muhammad, and ChongGun Kim

An Improvement of TCP Downstream Between Heterogeneous
Terminals in an Infrastructure Network . 739

Yong-Hyun Kim, Ji-Hong Kim, Youn-Sik Hong, and Ki-Young Lee

Table of Contents XIX

Intra Routing Protocol with Hierarchical and Distributed Caching in
Nested Mobile Networks . 747

Hyemee Park, Moonseong Kim, and Hyunseung Choo

Performance Analysis of 802.11e Burst Transmissions with FEC Codes
over Wireless Sensor Networks . 757

Jong-Suk Ahn, Jong-Hyuk Yoon, and Young-Im Cho

Efficient Location Management Scheme for Inter-MAP Movement
Using M/G/1 Multi-class Queues in Hierarchical MIPv6 765

Jonghyoun Choi, Teail Shin, and Youngsong Mun

A Scheme to Enhance TEBU Scheme of Fast Handovers for Mobile
IPv6 . 773

Seonggeun Ryu and Youngsong Mun

Network-Adaptive Selection of Transport Error Control (NASTE) for
Video Streaming over Embedded Wireless System . 783

SungTae Moon and JongWon Kim

An Energy-Efficient and Traffic-Aware CSMA/CA Algorithm for
LR-WPAN . 791

JunKeun Song, SangCheol Kim, HaeYong Kim, and PyeongSoo Mah

Packet Interference and Aggregated Throughput of Bluetooth Piconets
in a Ubiquitous Network . 800

Seung-Yeon Kim, Se-Jin Kim, Ki-Jong Lee, Yi-Chul Kang,
Hyong-Woo Lee, and Choong-Ho Cho

Jitter Distribution Evaluation and Suppression Method in UWB
Systems . 810

Weihua Zhang, Hanbing Shen, Zhiquan Bai, and Kyung Sup Kwak

An Analyzer of the User Event for Interactive DMB 818
Hlaing Su Khin and Sangwook Kim

Author Index . 827

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 1–12, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Object-Orientation Is Evil to Mobile Game: Experience
from Industrial Mobile RPGs

Weishan Zhang1, Dong Han2, and Thomas Kunz3

1 School of Software Engineering, Tongji University
No. 1239 Siping Road, Shanghai, 200092, China

zhangws@mail.tongji.edu.cn
2 Department of Computer Science

Anhui Vocational College of Electronics &Information Technology
Bengbu University Park, Anhui Province, 233030, China

handongavceit@gmail.com
3 Department of Systems and Computer Engineering, Carleton University

1125 Colonel By Drive, Ottawa, Canada K1S 5B6
tkunz@sce.carleton.ca

Abstract. Mobile gaming is playing an important role in the entertainment in-
dustry. Good performance is a critical requirement for mobile games in order to
achieve acceptable running speed although mobile devices are limited by scarce
resources. Object-oriented programming is the prevalent programming para-
digm and this is true for mobile game development as well. As the origin of ob-
ject-orientation (OO) is not targeting the embedded software domain, there is
suspicion as to OO’s usability for embedded software, especially with respect to
mobile games. Questions arise like how OO and to what degree OO will affect
the performance, executable file size, and how optimization strategies can im-
prove the qualities of mobile game software. In this paper we investigate these
questions within the mobile Role-Playing-Game (RPG) domain using five in-
dustrial mobile games developed with OO. We re-implemented these five RPGs
with a structural programming style, by reducing the inheritance relationships,
removing excessive classes and interfaces. Some additional optimizations are
also applied during the re-implementation, such as the tackling of performance
bottleneck methods, using more efficient algorithms. New games after optimi-
zations run on average almost 25% faster than the corresponding original
games, with a maximum of 34.62% improvement; the memory usage is de-
creased by more than 10% on average and 17.56% as a maximum; we also
achieved a 59% code reduction and a 71% Jar file decrease after optimization.
Therefore if developers are aiming for mobile game performance, we conclude
that they should use as few OO features as possible. Structural programming
can be a very competitive alternative.

1 Introduction

Mobile games are one of the primary entertainment applications at present. Good
performance is one of the top requirements for mobile games in spite of scarce re-
sources on the mobile devices, such as low battery life, small memory and screen size,
etc [1]. By performance we mean not only arithmetic operation time, but also memory

2 W. Zhang, D. Han, and T. Kunz

consumption of the game, how long it will take for the game to start, and finally the
size of the executable program.

Currently Object-Oriented Programming (OOP) is the mainstream programming
paradigm, and this is true for mobile game development as well. OOP is using ab-
stractions where a collection of objects interact with each other, which is beneficial
for achieving encapsulation and polymorphism. But every object will incur resource
consumption which may lead to poor performance for embedded software [2], al-
though this may not be a problem for desktop applications. And also there are short-
comings to the inheritance-based reuse, for example code redundancy and extra
complexity [3].

Now it naturally comes to the questions of how OO affects the performance of the
mobile games and to what degree, and how to optimize the performance. How and to
what extent should we use the current OO languages for mobile game development?
At present there is scarce published work to answer these questions with comprehen-
sive case studies and convincing figures, especially in the mobile game domain. This
kind of research is vital in order to help make decisions on what strategies should be
used to improve the performance during the development of mobile games.

In this paper, we address these issues within the mobile RPG domain using five in-
dustrial mobile games developed with OO. We re-implemented these five RPGs using
a more structural programming style, by reducing the inheritance relationships, re-
moving excessive classes and interfaces and the tackling of performance bottleneck
methods, using more efficient algorithms. With all these optimization strategies the
performance of new games are improved significantly and the size of the final Jar file
is reduced greatly. We conclude that application developers should use object orienta-
tion sparsely for mobile game development if performance is vital, and if one uses the
OO language in a Structural Programming way, it could help boost the performance!

The rest of the paper is structured as follows: In the next section, we will briefly in-
troduce the five RPGs and explain their implementation; then optimization strategies
and techniques are discussed in Section 3. Section 4 illustrates the usage of these
optimizations by re-implementing and re-structuring these five RPGs, mainly focus-
ing on the shift to using structural programming. In Section 5, we evaluate the per-
formance including the memory usage, loading time, Jar file size and Line of Code
(LOC) metric. This is followed by a section to evaluate the design of these games
using OO metrics. The concluding remarks and future work end the paper.

2 Introduction to the Five Mobile RPGs

2.1 Basic Information of the Five Mobile RPGs

The five mobile games named Dig (a), Climb (b), Hunt (c), Feeding (d) and Kongfu
(e) are shown in Fig. 1 respectively. In Dig Gem, a hero digs around the map to look
for gems. Different scores for different gems are added to the total and displayed in
the upper left corner of the screen as shown in Fig. 1 (a). In Climb (Fig. 1 (b)) the
hero walks and jumps on the floor to avoid falling down to the mountain. In Hunt
(Fig. 1 (c)), the hero shoots animals and monsters with arrows and different scores
will be added to the total for shooting different targets. In Feeding (Fig. 1 (d)), the

 Object-Orientation Is Evil to Mobile Game: Experience from Industrial Mobile RPGs 3

hero tries to pick up as much food as possible, with different scores for eating differ-
ent types of food. In Kongfu (Fig. 1 (e)) we have two heroes and a ‘learner’ learns
Kongfu skills from his ‘master’.

(a) Dig gem (b) Climb (c) Hunt (d) Feeding (e) Kongfu

Fig. 1. Five mobile RPGs

2.2 Design and Implementation of the Mobile RPGs

In order to improve the productivity of game development, a game engine is designed
(Fig. 2) and used with all the five games. The game engine has components to abstract
all common issues of game development. Package ‘engine.view’ is used for game
view management. In ‘engine’ package there is a PlayCanvas class inheriting Game-
Canvas from the J2ME [4] system library, layer management class Nlayer and
NlayerManager, GameScreen etc. Package ‘engine.viewlayer’ realized the basic map
operations where a three dimensional array is used to manage the map. Package ‘en-
gine.event’ is used for event and message handling. All games and the game engine
are developed with MIDP2.0 [4] where a new ‘game’ package is added to the system
library after MIDP1.0 in order to facilitate game development with necessary APIs.

Because all games are based on the MIDP profile, the execution scenario and its
control flow are similar: There is a main class that extends MIDlet (for example Dig
class in Fig. 3), as required by MIDP. In the constructor of the main class, an instance
of the game Canvas (for example DigCanvas) is created. Using a getInitialScreen()
method, this instance creates a game starting screen object (for example DigScreen).
In the starting screen, all initialization data are loaded, including map, sound, etc. The
constructor of the game Canvas (for example DigCanvas) will call its super class
constructor (PlayCanvas in ‘engine’ package), where the game thread is created and
started. The thread then loops to monitor the input of the keyboard, to update the
game screen in order to handle game logic, and to paint the canvas for the game.

 Fig. 2. Package diagram for game engine Fig. 3. Class diagram of Dig Gem

4 W. Zhang, D. Han, and T. Kunz

3 Performance Optimization Strategies and Techniques

3.1 Evaluation of the Game Engine and Original RPGs

In this section we will first evaluate the design qualities of the game engine and all
RPGs and then decide how to optimize them, using typical OO metrics [5]. These
metrics are shown in later sections to facilitate the metrics comparisons between
original games and the final optimized games. We used Together Architect 2006 [6]
to collect the actual figures and used its default threshold for these metrics.

Table 1. OO metrics used for design quality evaluation

OO Basic Metrics OO Coupling Metrics Inheritance based coupling
CIW-Class Interface Width
NAM-Number Of Accessor
Methods
NOA-Number Of Attributes
NOC-Number Of Classes
NOCON-Number Of Con-
structors
NOIS-Number Of Import
Statements
NOM-Number Of Members
NOO-Number Of Operations
PIS-Package Interface Size
PS-Package Size

AOFD-Access Of Foreign Data
CBO-Coupling Between Objects
CM-Changing Methods
DAC-Data Abstraction Coupling
DD-Dependency Dispersion
FO-FanOut
MIC-Method Invocation Coupling
NCC-Number Of Client Classes
NOCP-Number Of Client Packages
NOED-Number Of External Depen-
dicies
PUR-Package Usage Ratio
VOD-Violations Of Demeters Law

DOIH-Depth Of Inheri-
tance Hierarchy
NOCC-Number Of Child
Classes
TRAp-Total Reuse of
Ancestor percentage
TRAu-Total Reuse of
Ancestor unitary
TRDp-Total Reuse in
Descendants percentage
TRDu-Total Reuse in
Descendants unitary

We also measured the polymorphism with Number Of Added Methods (NOAM),
Number Of Overridden Methods (NOOM) and Polymorphism Factor (PF). All of
them are fine except that ‘engine.view.layer.Slantlayer’ has NOOM of 5, which is still
ok but we do think that there is potential to improve this as subclasses should gener-
ally extend the functionality of the parent classes rather than overriding them. And
after the optimizations all NOOM are 1 if there is NOOM. Because the polymorphism
measurements are not significant, we are not showing them in the paper.

The OO metrics measurement shows that the original five games are designed as
normal OO programs, with inheritance-based reuse as main design objective. This
provides us with a good opportunity to simplify the class relationships and
re-implementing these games to check how the usage of object-oriented language in a
structural programming way affects the performance, and to what degree.

3.2 Optimization Strategies and Techniques

Methodological optimization
An object is the basic abstraction building block of OO, but more objects and classes
will result in higher resource consumption. We try to solve this problem by
minimizing the possible generated objects, simplifying class relationships. That is to
say, we design our mobile game based on the traditional structural programing style
and we check how this benefits the performance.

 Object-Orientation Is Evil to Mobile Game: Experience from Industrial Mobile RPGs 5

Some optimizations resulting from this choice are:

a. Remove the constant interface. There are some constant interfaces, one for every
game. But interfaces should be used solely for type definitions [7], therefore we
should remove all constant interfaces for all the five games.

b. Remove redundant inheritance relationships. In some cases, some classes that
had very little in common were related by inheritance. We removed this kind of
inheritance relationship along with unnecessary class members and methods.

c. Remove unnecessary classes. We re-allocated functionalities so that some classes,
especially those with very few methods, could be removed.

d. Remove obsolete class methods. In some cases, we found that we never used
certain class methods. We removed such obsolete methods.

e. Find the performance bottleneck. For example, use WTK to inspect which me-
thod is the one that consumes most of the CPU and memory and then optimize it.

Code optimization
The objective is to minimize memory consumption and prevent memory leaks. Code
optimization may include:

f. Do not initialize all objects in the constructor and initialize it when first used.
g. Change class members to local variables.
h. Declare methods and variables final/static for faster access.
i. Set an object to null if it isn’t used any more which accelerates memory recycle.

Algorithm optimization
j. Iterate loops down to zero as comparing against zero is faster.
k. Move the arithmetic operation in a loop outside the loop body.
l. Use bitwise operators (left shift/right shift) instead of multiplication and division.

Exception handling
m. Return a null object instead of throwing exceptions wherever possible, or use

if/then/else to handle different situation.
n. Reuse an existing exception object rather than generating a new exception object.

Datatype optimization
Datatype optimization is an efficient way for improving performance as different data
types use different resources.

o. Replace resizable Vectors with arrays, if possible.
p. Use primitive data type instead of the object type whenever possible.
q. Minimize the usage of string concatenation and comparison, use StringBuffer

instead.

4 Re-implement the Five Mobile RPGs Using Optimizations

4.1 Optimization on Inheritance, Class and Interface

Our main optimization approach is the shifting from the object-orientation style of
implementation to the structural programming style, where we simplify the class
relationships by reducing inheritance hierarchies, cut the number of classes and
interfaces, and add new responsities to classes where his parent has been removed.

6 W. Zhang, D. Han, and T. Kunz

Remove the constant interface
For Dig gem, there is a DigConst interface. And the game engine package has two
constant interfaces, Configure and Constant. All of them are removed and all the
constants are defined in class DigScreen. The other four games are handled in the
same way.

Remove unnecessary/redundant inheritance
We know PlayCancas inherits GameCanvas and DigCanvas inherits PlayCanvas. And
also from Fig. 8 we know that the DOIH of the original game and engine is 5 which
exceeds the default upper threshold. Therefore our first optimization is to reduce the
DOIH by simplifying the inheritance relationship. The three layer relationship can be
simplified with DigCancas inheriting from GameCanvas directly. Therefore PlayCan-
vas is removed and DigCanvas is extended to take care of the responsibilities of Play-
Canvas. Other usage of PlayCanvas will also be replaced with DigCanvas.

For the same reason and in the say way the GameScreen class in the engine pack-
age can also be removed and DigScreen can assume its responsibilities.

As we intended to remove all packages of the game engine, the inheritance be-
tween the ‘dig.Hero’ class and the ‘engine.role.GameRole’ class can be removed and
replaced with the following new GameRole class (Fig. 4) by inheriting directly from
J2ME system game library class Sprite.

public class GameRole extends Sprite {

 public GameRole(){

super(DigScreen.loadImage

("dig/man.png"),32,30);

setRoleName("Hero");

this.setScrollView(true);

…// set action interval, speed }

public void doAction(int keyStates)

{ …… }

}

 Fig. 4. Redefined GameRole class Fig. 5. Class diagram for Redesigned Dig gem

Remove unnecessary/redundant class and interface

 The ‘engine.media.GameMedia’ only defines some methods, and can be re-
moved. The image related methods are now in the DigScreen class.

 Interface ‘engine.view.layer.GroundMap’ is only used by ‘engine. view.
layer.SlantLayer’ and can be removed. All the contained methods are moved
to SlantLayer.

 Object-Orientation Is Evil to Mobile Game: Experience from Industrial Mobile RPGs 7

 ‘engine.view.GameScene’ and ‘engine.view.GameRole’ form a GameView
and therefore GameScene can be removed, all attributes and methods are
now defined in GameView.

 Class ‘engine.role.Motion’ can be removed, and all attributes and methods
are now defined in GameRole.

Remove obsolete class methods
For example in the GameMedia class, there are two methods for loading data from
file or input stream, remaining from previous implementation, but never used in the
current implementation. We remove such obsolete methods.

Other unnecessary classes include Menu, Color, Action, Event, EventManager,
HotSpot, Message, Trigger, SoundCenter, MapElement; and unnecessary interfaces
ActionExecutor, MessageListenable, MessageListener. All of them are removed. The
class diagram for the redesigned Dig gem is shown in Fig. 5.

4.2 Further Optimizations

Spotting the performance bottleneck
Method Profiler provided by WTK2.2 can be used to find which method(s) dominate
the running time. We found that method paintGround() in ‘dig.SlantLayer’ takes
80.75% of Dig gem running time. Therefore optimization to this method would bring
the biggest benefits. In the same way, other runtime-intensive methods of the other
four games could be handled. For example, paintAll() in ‘hunt.HuntScreen’ which
takes 81.03% of the running time of Hunt and should be optimized.

Take paintGround(Graphics g) as an example. We use the following techniques for
optimization:

 declaring the method to be ‘final’;
 multiplication and division are replaced with bitwise operators;
 control variable in ‘for’ loop is compared with 0;
 arithmetic operations in loop body are moved out;

After these optimizations, the paintGround(Graphics g) method takes 71.38% of
the running time, a decrease of 9.37%.

Change class members to local variables
For example, the following buffer size is defined in class GameMedia:
public final static int BUFFER_SIZE = 1024;
But BUFFER_SIZE is used only in method LoadData() and it should be defined as

a LoadData() local variable.

Declare method and variable as final/static for faster access
For example, in the DigScreen class the following code is used to make the access of
the variable faster: public final static int MOTION_FACE_DOWN = 1; // ↓

Using obfuscator
We use ProGuard2.7 [8] to obfuscate the five games. After obfuscation the Jar file
decreases from 357KB to 326KB.

Other optimizations include setting objects to null if they are not used anymore, us-
ing a string buffer, etc.

8 W. Zhang, D. Han, and T. Kunz

5 Evaluation with Typical OO Metrics

In this section, we will evalue the design of the original games and also the new
games after optimization with typical OO metrics. We will first compare the results
with packages, and then show the situation with Dig gem.

Evaluation with OO basic metrics
The Midlet suite name before optimization is MMMMM, and named MyGame_Final
after optimization. From Fig. 6, we could see that in myGame_Final, NOM, NOO,
NOA and NOCON are larger than the corresponding values in MMMMM. NOC, PS
in MyGame_Final are less than the corresponding values in MMMMM. This is be-
cause we have simplified the class relationships, which leads to an increase in the
number of attributes and therefore results in bigger classes.

(a) OO basic metrics comparisons for packages

(b) OO basic metrics comparisons for Dig gem

Fig. 6. OO basic metrics comparison

OO Coupling Metrics
Fig. 7 shows OO coupling metrics of the game packages and also Dig gem. We can
see that before optimization, package ‘dig’ and ‘hunt’ have high degree of coupling.
The DAC value of package ‘climb’, ‘kongfu’ and ‘feeding’ exceed the default thresh-
old. Although not shown here, the values of DAC and FO of package ‘engine.view’

 Object-Orientation Is Evil to Mobile Game: Experience from Industrial Mobile RPGs 9

also exceed the upper default limit. This means that the original design of the ‘engine’
package was focusing on reuse but was not caring much about coupling.

After optimization we actually lower some of the coupling metrics, and leave the
others at the same level. Big differences happened to package ‘dig’ before and after
optimization, where we lower all metrics except the FO, which is not a problem as
Digscreen deliberately is assigned more responsibilities during our re-implementation.

(a) OO coupling metrics comparison for packages

(a) OO coupling metrics comparison for Dig gem

Fig. 7. OO coupling metrics comparisons

Fig. 8. Inheritance based coupling comparisons

10 W. Zhang, D. Han, and T. Kunz

OO Inheritance Metrics
Fig. 8 shows the OO inheritance-based coupling measurement. Before optimization,
DOIH of games in MMMMM is 5, which is a bit high, exceeding the upper default
bound, which motivates us to simplify the design and reduce the inheritance hierarchy.
The DOIH becomes 2 after re-implementation. It is obvious that the original game design
makes good use of inheritance-based reuse, while we are not using this at all as intended.

6 Experimental Results and Discussion

We compared the performance before and after optimizations shown in Table 2 and
Table 3. The figures were obtained with Wireless Toolkit 2.2 (with memory monitor
and profiler turned on in order to slow the running of these games to facilitate all
measurements) on Windows 2000 Server service pack 3, 256M RAM, x86 Family 6
Model 8 Stepping 1 Authentic AMD 1499Mhz.

Table 2. Maximum memory usage comparison

 1 2 3 Average Improvements

Before 263624 279436 264052 269037
Dig gem

After 220460 220764 224152 221792
17.56%

Before 139296 145278 143662 142745
Hunt

After 118800 120240 119398 119479
16.30%

Before 337612 333864 334523 335333
Climb

After 318975 321827 316958 319253
4.80%

Before 345232 354532 354396 351387
Feeding

After 328791 336948 326743 330827
5.85%

Before 350420 350000 333992 344781
Kongfu

After 31068 327263 318689 318877
7.51%

Table 3. Loading time comparisons

 1 2 3 Average Improvements

Before Before 79.37 79.86 79.28
Dig gem

After After 61.10 61.84 61.36
22.73%

Before Before 6.17 5.68 6.77
Hunt

After After 4.15 3.64 4.39
34.62%

Before Before 4.70 5.19 5.23
Climb

After After 3.89 3.22 4.10
25.79%

Before Before 3.63 3.53 3.55
Feeding

After After 2.80 2.39 2.88
24.65%

Before Before 5.29 5.19 5.32
Kongfu

After After 4.34 4.87 3.96
16.70%

From Table 2 we can see that the new games, after optimizations, have better
memory usage, with a maximum of almost 18% less memory and minimum reduction
of almost 5%. This decrease is due to the fact that we are using less classes and
interfaces and save heap usage during execution. We also improved the loading time

 Object-Orientation Is Evil to Mobile Game: Experience from Industrial Mobile RPGs 11

(Table 3) significantly after optimization, and the loading time of each optimized
game decreases 22.73%, 34.62%, 25.79%, 24.65% and 16.70% respectively.

We also checked the LOC differences before and after optimizations. The LOC has
been reduced from 21597 LOC to 8868, a 59% decrease. The Jar file decreased from
1.12MB to 326KB, and we obtained a 71% reduction after optimization.

These performance improvements are due to applying optimization strategies across
all the games, mainly motivated by the usage of a more structural programming style.

7 Related Work

Mobile games are very popular and there are a number of online resources discussing
the optimization of mobile games, e.g. [9]. They discuss various optimization tech-
niques that could be used and also have been (or can be) incorporated in our work.
Books like [7] also contain valuable suggestions for writing good Java programs that
are not restricted to J2ME. But none of them provides us with convincing figures and
a comprehensive case study to shown the actual impact of such optimizations.

There are company-specific guide-lines for the development of mobile games [10].
While they are very important and if possible, the usage of company-specific libraries
usually is a wise option for improve the performance of the mobile games, we tried to
be company-neutral in our research, which could be universal to all available devices.

Klingauf et al. [11] present a radical shift from the conventional approach to a
native programming language like C to implement the whole system library and a
high-level C-to-Java interface. This is very good in case this strategy is adopted by
companies. We doubt though that this is a practical way for the companies who de-
liver mobile phones and mobile games. We present our optimizations and show how
they affect the performance and all of them are very practical and useful.

There is an automatic J2ME games optimization tool called mBooster [12], de-
signed mainly to minimize JAR file size. It can perform automatic class and interface
merging and other low-level optimizations. But there are obvious limitations for its
usage, for example it cannot perform class merging if the two candidate classes are in
different packages. There is no mention on what criteria it uses to do class merging.
But it does give us some ideas for implementing our own tool for optimizations.

8 Conclusions and Future Work

Mobile gaming is playing a more and more important role in the entertainment indus-
try. Although object-oriented programming is the prevalent programming paradigm
and OO is used widely for mobile game development, it is very doubtful to use object
orientation in the embedded software domain because of its intrinsic problems. There
arise questions like how OO and to what degree OO will affect the performance, ex-
ecutable file size, and how optimization strategies can improve the qualities of mobile
game software. In this paper we investigated these questions using five industrial
mobile games developed with OO.

We re-implemented these five RPGs with the style of structural programming, by
reducing the inheritance relationships, removing excessive classes and interfaces. And
also some other optimizations are used during the re-implementation, such as the

12 W. Zhang, D. Han, and T. Kunz

tackling of performance bottleneck methods, using more efficient algorithms. After
optimization, the loading time is significantly improved, on average almost 25%
faster than loading the corresponding original games, and a maximum of 34.62%
improvement; the memory usage is decreased by more than 10% on average and
17.56% as a maximum; we also achieved a 59% code reduction and a 71% Jar file
decrease after optimization.

Therefore we conclude that if developers are going for mobile game performance,
they should use as few OO features as possible because of the footprint of objects.
Structural programming can be a very competitive alternative. It may seem strange to
advocate using object oriented language with a structural programming style, but we
found that this is a promising way to improve performance.

We will continue our work in two directions, the first is to explore the reuse based
mobile game development using Frame concepts and technologies where we have ex-
pertise [13], the second is to design and implement an automatic tool support for Frame
based and optimized mobile game development which is inspired by mBooster.

Acknowledgements

Thanks to Liu Wei and other authors from Meitong Co. Ltd. who have implemented
the original games. We also owe our great thanks to Prof. Klaus Marius Hansen from
University of Aarhus, and the generous support from the EU HYDRA project.

References

1. Blow J. Game Development: Harder Than You Think. Game DevelopmentVol. 1, No. 10,
February 2004

2. Maarten Boasson. Embedded systems unsuitable for object orientation. 7th Ada-Europe
International Conference on Reliable Software Technologies, Vienna, Austria, June 2002.
pp.1-12

3. Object Oriented Programming Oversold. http://www.geocities.com/tablizer/oopbad.htm.
2007-3-10

4. J2ME homepage. http://java.sun.com/javame/index.jsp. 2007-3-10
5. Marinescu R. An Object Oriented Metrics Suite on Coupling. Master’s thesis, Polytechnic

University of Timisoara, 1998
6. Borland together Architect homepage http://www.borland.com/ downloads/ download_ to-

gether.html. 2007-3-10
7. Michael C. Daconta, et al. More java pitfalls. Wiley, 2003
8. Proguard homepage. http://proguard.sourceforge.net/. 2007-3-10
9. Supremej2me website. http://supremej2me.bambalam.se/. 2007-3-10

10. Nokia. Designing MIDP applications for optimization. http://sw.nokia.com/id/
89527700c7ff/. 2007-3-10

11. W. Klingauf, L. Witte, U. Golze. Performance Optimization of Embedded Java Applica-
tions by a C/Java-hybrid Architecture. Global Signal Processing Conference, Santa Clara,
CA, Sept. 2004

12. mBooster homepage. http://innaworks.com/mBooster.html. 2007-3-10
13. W. Zhang, S. Jarzabek. Reuse without Compromising Performance: Industrial Experience

from RPG Software Product Line for Mobile Devices. Proc. of SPLC2005. Rennes, Sept.
2005, LNCS3714, pp. 57-69

Device-Aware Cache Replacement Algorithm

for Heterogeneous Mobile Storage Devices

Young-Jin Kim and Jihong Kim

School of Computer Science & Engineering, Seoul National University,
San 56-1 Shillim-dong, Kwanak-gu, Seoul, Korea, 151-742

{youngjk,jihong}@davinci.snu.ac.kr

Abstract. Hard disks, most prevalent mass-storage devices, have high
power consumption and high response time for random I/O requests. Re-
cent remarkable technology improvement of flash memory has made it a
rising secondary storage device but flash memory still has high cost per
bit. Usage of heterogeneous storage devices such as a pair of a hard disk
and a flash memory can provide reasonable cost, relatively acceptable
response time, and low-power consumption. In this paper, we propose a
novel buffer cache replacement algorithm which targets a mobile com-
puting system with a heterogeneous storage pair of a hard disk and a
flash memory. The algorithm partitions the cache per each device and
adjusts the size of each partition based on the performance indices of
the devices, and manages each partition according to workload patterns.
Simulations show that the proposed algorithm yields a hit rate up to
two times higher than LRU on the typical mobile traces according to the
cache size and achieves also better system I/O response time and energy
consumption.

Keywords: Heterogeneous storage, mobile systems, device-aware, work-
load-aware, cache replacement.

1 Introduction

As the mobile and ubiquitous computing technology progresses, end-users tend
to want that they can use high-performance and high I/O load applications such
as games and MPEG players. In the last decade, the innovational development
of processors, memories, network devices, and secondary storage devices has en-
abled this. These days mobile computing systems with high-capacity storage
devices are popular, such as PDAs, PMPs, and MP3 players. Since hard disk
drives are widely adopted for mobile computing platforms, the demand for hard
disk drives with a small form-factor (2.5′′ or less), embedded in or connected
to such systems, is also incrementally rising [1]. Concurrently, due to recent re-
markable technology improvement of flash memory, it appears a rising secondary
storage device.

However, despite attractive low cost per bit, hard disks are big power con-
sumers and have poor performance for random I/O requests. Flash memory still

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 13–24, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

14 Y.-J. Kim and J. Kim

has relatively high cost per bit. For example, NAND flash memory is said to
be at least several times more expensive than disk drives with the same capaci-
ties [2]. Therefore, complementary storage architectures or techniques have been
emerging. Several researchers have proposed combined storage techniques with
a flash memory and a hard disk, which can be categorized into two: 1) using
a flash memory as a non-volatile cache [3,4,5,6,7,8,9]; 2) using a flash mem-
ory as a secondary storage device [10]. Specially, [10] studied the potential of
heterogeneous secondary storage by employing these two devices together with
data concentration techniques. The heterogeneous storage solution in this work
is expected to yield more energy saving in that it employs a flash memory as a
secondary storage device directly and can maintain a larger set of energy-hungry
blocks altogether on it compared with other work. However, the authors did not
investigate performance improvement or load balancing problems deeply.

In case of using heterogeneous devices generally, file systems require caching
algorithms that take into account the different miss penalties across file blocks
depending on which devices they belong to. But, the most commonly used cache
replacement algorithm, LRU is not aware of such different cost and treats all
cache blocks as if they have the same replacement costs. In the web cache
communities, there have been abundant research results on cost-aware cache
replacement algorithms, which consider different file size, network latency dur-
ing re-fetch due to a cache miss, file access frequency, etc. Recent web cache
algorithms may be based on or enhance the GreedyDual-Size algorithm [11],
which incorporates locality with miss penalty and file size concerns, generalizing
the LRU algorithm. In disk-based storage systems, [12] studied storage-aware
cache management algorithms using different costs on heterogeneous disks. This
work maintained one partition per each disk and adjusted partition sizes based
on the time spent per each disk (they call this wait time) over a period of
device requests, and controlled the blocks within each partition similarly to the
GreedyDual-Size algorithm. But, the authors did not take into account minutely
the case of there being a number of sequential accesses, which may be problem-
atic in their algorithms. This is because if a considerable number of sequential
accesses are requested to a disk its wait time can be lengthened and the cor-
responding partition size will increase filling this partition with less valuable
blocks. Consequently, in the worst case this algorithm may fail in obtaining
good load balance.

In this paper, we build a novel cache replacement algorithm to overcome such
limit, which targets mobile storage systems exploiting a pair of a hard disk
and a flash memory as secondary storage. Our algorithm intends to enhance
the system performance through both device-aware and workload-aware load
balancing. For the former we use cache miss counts and access time per device
and for the latter we have our algorithm manage the cache in the direction of
exploiting the fast sequential performance feature of a hard disk. To the best of
our knowledge, our work is the first attempt to design and incorporate a cost-
aware cache management algorithm on the heterogeneous combination of a hard
disk and a flash memory.

Device-Aware Cache Replacement Algorithm 15

Our first goal is to investigate how our device-aware cache replacement algo-
rithm can balance the I/O load between two heterogeneous devices on typical
mobile workloads when the target system employs a hard disk and a flash mem-
ory as mass storage, compared with LRU. Second goal is to study how well
our cache algorithm avoids cache pollution incurred by sequential block requests
while balancing the I/O load.

We first tackle the design of a workload-aware cache replacement algorithm
(in short, WAC) by introducing different cost per workload pattern similarly
to the GreedyDual-Size algorithm. Then, we propose our re-partitioning policy
on the total cache based on the cache miss counts at a fixed period and finally
complete to embody our device-aware cache replacement algorithm (in short,
DAC) combining these.

The rest of this paper is organized as follows. In Section 2, we review the
features of a hard disk and a NAND flash memory to compose heterogeneous
storage on mobile platforms and describe requirements for designing a device-
aware cache replacement algorithm briefly. In Section 3, we describe our both
workload-aware and device-aware algorithms in detail. Section 4 presents our
simulation framework and simulation results. Related work is given in Section
5. Finally, we conclude in Section 6.

2 Motivation

2.1 Device Bandwidth and Sequentiality

Since our research targets heterogeneous storage systems with the configuration
of a hard disk and a flash memory, it is necessary to examine the features of
a hard disk and a flash memory. For this purpose, we simply take two typical
devices as shown in Table 1, which are appropriate for mobile storage. Fujitsu
MHT060BH has a 2.5′′ form factor, a 60 GB capacity, and 5,400 RPM while
Samsung K9K1208U is a NAND flash memory and has a 64 MB capacity, a
block size of 16 KB, and a page size of 512 B. The throughputs of the flash
memory were from [13] and those of the hard disk were obtained on our Sony
VAIO laptop computer which embeds this disk using DiskSpd [14], which can
measure disk I/O performance with various configurations including whether
I/Os are sequential or random on Windows XP.

Table 1. Throughputs of a laptop disk and a NAND flash memory

Device
Hard disk Flash memory

MHT2060BH K9K1208U

Throughput
(MB/s)

Sequential
Read 30.47 14.3

Write 30.47 1.78

Random
Read 6.6 14.3

Write 6.6 1.78

16 Y.-J. Kim and J. Kim

In Table 1, the disk shows a pretty good throughput for sequential I/Os and
the value is about 5 times larger than that for random I/Os irrespective of the
I/O type. In contrast to the disk, the flash memory doesn’t concern sequential-
ity of I/Os and exhibits poor performance for write I/Os compared with reads.
Therefore, when we design and use a heterogeneous storage system with such
devices we surely need to meet performance imbalance which is likely to occur
due to distinctly separable characteristics of these devices. This is because real-
istic workloads on mobile platforms often exhibit mixed patterns of sequential
and random I/O operations like the case of concurrent execution of MP3 playing
and program compiling. In addition, the conventional operating systems might
not be designed well for I/O sequentiality coupled with this new and unfamil-
iar configuration of heterogeneous devices. For example, it seems that adequate
management of sequentiality and I/O type for block requests across these het-
erogeneous devices in the viewpoint of performance may beyond the capability
of the LRU algorithm as previously remarked.

2.2 Mobile Workloads and Sequentiality

Recent studies on mobile storage systems collected and utilized traces on applica-
tions typically used in mobile computing environments under feasible execution
scenarios [5,10]. Among these, [10] gathered traces while executing real applica-
tions which can be used for a PDA immediately on an evaluation board similar
to a PDA. The used execution scenario was repetition of file transfer, email,
file search, and sleep (no operation). We examined the behavior of this mobile
workload (hereafter, we will call PDA trace).

Since file transfer gives rise to disk reads (or writes) when files are sent to
(or from) a network, the access pattern will be shown to be long sequential.
The other applications except sleep are likely to exhibit random accesses (in
this paper, a random access type means non-sequential one). Figure 1 shows
the access pattern of the PDA trace, where x axis is virtual time (i.e., index of
arriving requests) and y axis is logical block address. We notice that there are
mixed accesses of a large number of sequential accesses, big and small loop-type
accesses, and a small amount of temporal accesses. Similar access patterns can
be found in the plots of traces gathered under programming and networking
scenarios for mobile computing platforms in [5], though there is a different level
of sequentiality compared with the PDA trace. Such observations drive us to
need to deal with frequent sequential I/O operations together with random I/Os
because if they weren’t coped with adequately at the operating system software
level there might occur critical performance degradation of the overall system.

3 Device-Aware Cache Replacement Algorithm

3.1 Workload-Aware Cache Algorithm

As was described in the previous section, it is requisite to deal with mixed access
patterns which may frequently occur on generic mobile computing platforms

Device-Aware Cache Replacement Algorithm 17

0 1 2 3 4 5 6 7

x 10
5

0

1

2

3

4

5

6

7

8

9

10
x 10

4

Virtual Time

Lo
gi

ca
l B

lo
ck

 A
dd

re
ss

Fig. 1. Plot of the logical block address of each arriving IO request to its virtual time
for the mobile trace used in [10]

as well as in our heterogeneous storage system with a hard disk and a flash
memory. As a first step towards a solution, we first tackle the design of WAC,
our workload-aware cache replacement algorithm using different cost per block
according to workload patterns similarly to the GreedyDual-Size algorithm.

Figure 2 describes the overall algorithm of WAC. WAC combines different
replacement cost and locality based on LRU. At the reference of a block x, when
a cache miss occurs and it should be fetched to the cache WAC sets L to x’s H.
If there is no free block and block eviction is needed the cache block with the
lowest H value is evicted and L is reset to this H value. If a cache hit occurs in
the cache x’s H is restored to L. How WAC updates the H values is shown in
the subroutine H update.

Fig. 2. Proposed workload-aware cache replacement algorithm (WAC). In WAC, se-
quenitial I/O blocks have the most chances to stay in the cache, and random I/O blocks
vice versa.

18 Y.-J. Kim and J. Kim

In designing the WAC algorithm, we tried to reflect the need that frequent
and a large amount of sequential I/O requests which can be found in typical
mobile workloads should be considered. Though there may be various ways in
determining cost of each block in the cache while realizing this need, we simply
divided the attribute, which each block can have in the cache, into 2: sequential
and random. In the algorithm, the attribute is concreted by adding C SEQ or
C RAND to the L value when the accessed block does take on sequentiality or
not. Since when a block is sequential evicting it is more beneficial, we assign
C SEQ to a small positive value (in an actual implementation, we used 1). We
expect more cache hits by keeping random blocks longer than those with sequen-
tiality and thus C RAND is assigned to a larger value than C SEQ. Therefore,
H values of cache blocks will be maintained relatively large if they are accessed
recently or randomly and there will be more chances for such blocks to remain
in the cache rather than blocks with little locality or sequentiality. This can
be thought of a generalized version of LRU. In this paper, since we want to
weight sequentiality for cache block replacement rather than I/O type, we do
not consider more separated attributes like sequential and read accesses, random
and write accesses, etc. Schemes using such more complex attributes will remain
future work.

3.2 Evaluation: WAC and LRU

We evaluated performances of WAC and LRU in terms of cache hit rate using
the PDA trace. For this, we built a trace-based cache simulator which imple-
ments WAC and LRU, and concatenated it and the simulator in [10] (Refer to
subsection 4.1).

Figure 3 shows the hit rates of WAC and LRU, which were simulated for the
PDA trace when the cache size varied from 5 to 60 MB with an incremental step
of 5 MB except 55 MB (since the hit rate is already saturated around this size,
we omitted it). We can notice that WAC outperformed LRU for all the cache
sizes. This results apparently reflects the fact that WAC better maintains valu-
able (that is, causing more cache hits) blocks in the cache, which were not if they
had been evicted early, and efficiently evicts less valuable blocks quickly, com-
pared with LRU. Since we ascertain our workload-ware cache algorithm shows
effectiveness for the mixed I/O request pattern of mobile workloads, our next
task is to augment WAC such that it can be effective under mobile workloads in
heterogeneous storage systems rather than single-device based storage systems
(in this evaluation, a single disk was used).

3.3 Device-Aware Cache Replacement Algorithm

Our device-aware cache replacement algorithm (i.e., DAC) is mainly composed
of 1) adjusting the sizes of partitions for a hard disk and a flash memory dynam-
ically based on the performance index per device; 2) managing each partition
according to the pattern of workloads by applying the WAC policy.

In designing the DAC algorithm, we took required cache management rules
as follows: 1) the size of each partition should be adjusted so that the overall

Device-Aware Cache Replacement Algorithm 19

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 60

cache size (MB)

h
it
 r
a
te
 (
%
)

WAC

LRU

Fig. 3. Hit rates of WAC and LRU for the PDA trace when the cache size varies

load is balanced considering cache miss counts as well as different miss penalties
between a hard disk and a flash memory. 2) sequential I/O requests should be
managed to be evicted earlier by applying WAC to cache blocks within each
partition.

Detailed DAC’s algorithm is shown in Figure 4. DAC has two LRU lists T1
and T2, each of which represents a partition assigned to cache blocks for either
of heterogeneous devices (in this paper, T1 is used for a hard disk and T2 for a
flash memory). T1 req (T2 req) is the target size of the T1 (T2) partition and
c is the total cache size. PR is the access time ratio between a hard disk and
a flash memory. W represents a partition-adjusting period, which is compared
with cumulated reference counts (cumulated ref count) for re-partitioning.

DAC largely consists of 1) a cache replacement algorithm executed at every
block reference; 2) a cache partitioning algorithm executed at W block refer-
ences. At each block access, DAC determines the access pattern and whether the
block is missed or hit. If a hit occurs in T1 (or T2), the block is moved to the
MRU position of T1 (or T2). If there occurs a miss, the subroutine List update
is invoked with miss flag which indicates in which device the missed block re-
sides. Briefly, the mechanism of List update is to control T1 and T2 so that
their sizes follow T1 req and T2 req well, respectively. This is quite important
process because good control of each partition size is based on the harmony of
adjustment issuing and its follow-up. During such operations, we employ the
subroutine H update, which was seen in WAC, for the purpose of setting values
to the cache blocks within each partition. In a period of W block references,
the algorithm re-partitions the cache depending on miss counts of random-type
blocks multiplied by PR. Multiplying PR is needed because two devices have
different miss penalties (i.e., access times).

The strong points of the DAC algorithm come from its being device-aware as
well as workload-aware: it adjusts the partition sizes based on performance skew-
ness and manages cache blocks according to worth in the aspect of performance

20 Y.-J. Kim and J. Kim

Fig. 4. Proposed device-aware cache replacement algorithm (DAC)

by taking into account the access pattern. Thus, we expect that it may improve
the system performance better by dealing with performance imbalance efficiently
in heterogeneous storage systems, compared with LRU. We also expect that DAC
may be more helpful in enhancing the performance by evicting sequential blocks
early.

There are several challenges in the DAC algorithm. First, we found that the
value of PR can vary according to the degree of temporal locality through ex-
periments in the viewpoint of the overall system performance. Therefore, in the
experiments we simply (not optimally) changed the value of PR statically in

Device-Aware Cache Replacement Algorithm 21

order to obtain a better performance. Second, when we calculate delta we also
found that it was sometimes more beneficial to weight the larger value of two
random miss counts of T1 and T2 depending on the degree of temporal local-
ity. We simulated while varying this value statically. Finally, the period of W
affected the overall performance and needs to vary depending on workload pat-
terns. However, building a fully automatically-tunable DAC to maintain optimal
parameters is a problem rather beyond the scope of this paper and will remain
future work.

4 Simulation and Results

4.1 Simulation Environment

We developed a trace-based cache simulator which incorporates LRU, WAC, and
finally DAC. In order to link cache simulation with the operation of a hetero-
geneous storage system, we augmented the multi-device power and performance
simulator in [10]. The hard disk model we used is the MK4004GAH with a 1.8′′

form factor and 4,200 RPM [10] and the flash model is the K9K1208U shown in
Table 1.

We also built a synthetic trace generator, which can generate three types of
traces by controlling sequentiality and temporal locality: SEQUENTIAL, TEM-
PORAL, and COMPOUND. Our synthetic trace generator can also control var-
ious parameters such as control request rate, read/write ratio, file size, and
request size. We ran our trace generator, varying default parameters. Default
parameter setting is as follows: average interval time between I/O requests = 70
(ms), trace time = 80 (min), maximum file size = 5 (MB), total file size = 350
(MB), and write ratio = 0.5. Default I/O access pattern is set to COMPOUND
(i.e., mixed of sequentiality and temporal locality).

For simulation, we used the PDA trace and two synthetic traces (we call trace1
and trace2): trace1 uses the default parameters and trace2 also does except that
the average interval time and the maximum file size are set to 20 ms and 1 MB,
respectively. The PDC trace, trace1, and trace2 have working set sizes of 44, 23,
and 57 MB and trace file sizes of 30, 2.8, and 9.6 MB, respectively. We evaluated
the cache hit rate and average system I/O response time for DAC and LRU as
metrics. We assumed that the overheads of re-partitioning and handling blocks
per partition in DAC are acceptable in comparison with LRU and set W to 200
and PR to 35.

4.2 Simulation Results

In Figure 5, plots (a) and (b) show the hit rates of DAC and LRU and average
system I/O response times and energy consumptions of DAC normalized over
LRU, respectively, for the PDA trace with the cache size varied. In the plot
(a), DAC has higher hit rates than LRU in all cases. The higher hit rates of
DAC affected the average I/O response times and these values of DAC appeared
smaller than those of LRU overall, as shown in the plot (b).

22 Y.-J. Kim and J. Kim

0

10

20

30

40

50

60

70

80

90

100

5 10 20 30 40 50

cache size (MB)

h
it
 r
a
te
 (
%
)

DAC

LRU

(a)

0

0.2

0.4

0.6

0.8

1

1.2

5 10 20 30 40 50

cache size (MB)

r
a
ti
o
 o
f
D
A
C
 o
v
e
r
L
R
U

average I/O response time energy consumption

(b)

Fig. 5. Simulation results of DAC and LRU for the PDA trace when the cache size
varies: (a) Hit rates of DAC and LRU (b) Average system I/O response times and
energy consumptions of DAC, which are normalized over LRU

0

5

10

15

20

25

30

35

1 2 4 8 10 20

cache size (MB)

h
it
 r
a
te
 (
%
)

DAC

LRU

(a)

0

10

20

30

40

50

60

5 10 20 30 40 50

cache size (MB)

h
it
 r
a
te
 (
%
)

DAC

LRU

(b)

Fig. 6. Simulation results of DAC and LRU for synthetic traces when the cache size
varies: (a) Hit rates of DAC and LRU for the trace1 (b) Hit rates of DAC and LRU
for the trace2

Two exceptions are when the cache sizes are 5 and 50 MB. We found that
though there occurred the same device accesses for DAC and LRU the degree of
clustering in the device (exactly, disk) queue was lower for DAC, that is, a little
more non-sequential accesses occurred and they caused more seek time. This
phenomenon rather seems to be related with adjustment of parameters described
in subsection 3.3 for the case of two extremes of the cache sizes. We also notice
that there were more chances for power-down in the devices. Consequently, the
energy consumption of DAC was observed to be smaller than that of LRU almost
always.

Figure 6 shows the hit rates of DAC and LRU for two synthetic traces with the
cache size varied: (a) for the trace1 and (b) for the trace2. We notice that DAC
showed almost equal or better results in hit rates for both traces. Comparing
the hit rates in the plots (a) and (b) depending on working set sizes and varying
cache sizes, we can notice that the trace2 has more temporal I/O accesses. This
means that DAC might be effective regardless of the amount of sequentiality.
To examine this, we evaluated two more synthetic traces with temporal access

Device-Aware Cache Replacement Algorithm 23

patterns, which have the same parameters of trace1 and trace2 except that the
I/O access pattern is set to TEMPORAL (we call these traces trace1 temp and
trace2 temp). For the trace1 temp, we found that the hit rates of DAC and LRU
with a 4 MB cache were 53.0% and 54.1% (actually, with different setting of W
and PR, we could obtain the almost same hit rate). For the trace2 temp, the
hit rates were 97.1% for both DAC and LRU with a 10 MB cache. We omitted
the average system I/O response time and energy consumption due to the space
limit, but we found that DAC has better performance in these two metrics than
LRU similarly to the results of the PDA trace.

5 Related Work

[3,4,5,9] have all proposed using flash memory as a non-volatile cache, maintain-
ing blocks which are likely to be accessed in the near future, and thus allowing a
hard disk to spin down for longer time. [4] focused on the use of a flash memory
as a write buffer cache, while [5] has recently studied a technique of partitioning
a flash memory into a cache, a prefetch buffer, and a write buffer to save energy.
[9] mainly considered reducing the power consumption of a main memory by
using a flash memory as a second-level buffer cache. Hybrid HDD solution co-
developed by Samsung and MS uses a flash memory as an on-board non-volatile
cache in addition to a hard disk, which aims at performance boosting, low power,
and high reliability on mobile computers [6,7].

Our work is distinct from the above research in that it studies performance im-
provement in a heterogeneous storage system which uses a flash memory together
with a hard disk as secondary storage. Our approach suggests an effective buffer
cache management algorithm aiming at performance improvement, depending
on both device-awareness and workload-awareness.

6 Conclusions

We have proposed a novel buffer cache replacement algorithm which targets a
mobile computing system with a heterogeneous storage pair of a hard disk and
a flash memory. The proposed algorithm partitions the cache per each device
and adjusts the size of each partition based on the performance indices of the
devices, and manages each partition according to workload patterns.

Trace-based simulations showed that the proposed technique can lead to up
to a two times higher hit rate than LRU according to the cache size with a
pair of a 1.8′′ hard disk and a NAND flash memory on realistic mobile traces.
In addition, our algorithm reduced the average system I/O response time and
energy consumption by up to 12% and 19%, respectively, compared with LRU.

As future work, we plan to study software techniques including cache algo-
rithms in order to mitigate the write/erase cycles of a flash memory while main-
taining the performance. We also plan to research the performance and energy
consumption using DAC under various data layouts.

24 Y.-J. Kim and J. Kim

Acknowledgments. This research was supported by the MIC (Ministry of
Information and Communication), Korea, under the ITRC (Information Tech-
nology Research Center) support program supervised by the IITA (Institute of
Information Technology Assessment). And the ICT at Seoul National University
provided research facilities for this study.

References

1. L. D. Paulson. Will hard drives finally stop shrinking? IEEE Computer, Vol. 38.,
No. 5. pp.14–16, 2005.

2. G. Lawton. Improved flash memory grows in popularity. IEEE Computer, Vol. 39.,
No. 1. pp.16–18, 2006.

3. B. Marsh, F. Douglis, and P. Krishnan. Flash memory file caching for mobile com-
puters. in Proc. of the 27th Hawaii International Conference on System Sciences,
Hawaii, USA, pp.451–460, Jan. 1994.

4. T. Bisson and S. Brandt. Reducing energy consumption with a non-volatile storage
cache. in Proc. of International Workshop on Software Support for Portable Storage
(IWSSPS), held in conjunction with the IEEE Real-Time and Embedded Systems
and Applications Symposium (RTAS 2005), San Francisco, California, March, 2005.

5. F. Chen, S. Jiang, and X. Zhang. SmartSaver: turning flash drive into a disk energy
saver for mobile computers. in Proc. of the 11th ACM/IEEE International Sym-
posium on Low Power Electronics and Design (ISLPED’06), Tegernsee, Germany,
October 4-6, 2006.

6. Microsoft, ReadyDrive and Hybrid Disk.
http://www.microsoft.com/whdc/device/storage/hybrid.mspx.

7. http://www.samsung.com/Products/HardDiskDrive/news/
HardDiskDrive 20050425 0000117556.htm.

8. R. Panabaker. Hybrid Hard Disk & ReadyDriveTM Technology: Improving Perfor-
mance and Power for Windows Vista Mobile PCs. in Proc. of Microsoft WinHEC
2006, June 2003. http://www.microsoft.com/whdc/winhec/pres06.mspx.

9. T. Kgil and T. Mudge. FlashCache: A NAND flash memory file cache for low power
web servers. in Proc. of 2006 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES ’06), Seoul, Korea, October 22-25
2006.

10. Y.-J. Kim, K.-T. Kwon, and J. Kim. Energy-efficient file placement techniques for
heterogeneous mobile storage systems. in Proc. of the 6th ACM & IEEE Conference
on Embedded Software (EMSOFT), Seoul, Korea, October 22-25 2006.

11. P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. in Proc. of
USENIX Symposium on Internet Technology and Systems, December, 1997.

12. B. Forney, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Storage-aware
caching: revisiting caching for heterogeneous storage systems. in Proc. of the 1st.
USENIX Conference on File and Storage Technologies (FAST), Jan. 2002.

13. H. G. Lee and N. Chang. Low-energy heterogeneous non-volatile memory systems
for mobile systems. Journal of Low Power Electronics, Vol. 1, Number 1, pp. 52–62,
April, 2005.

14. http://research.microsoft.com/BARC/Sequential IO/.

http://www.microsoft.com/whdc/device/storage/hybrid.mspx
http://www.samsung.com/Products/HardDiskDrive/news/HardDiskDrive_20050425_0000117556.htm
http://www.samsung.com/Products/HardDiskDrive/news/HardDiskDrive_20050425_0000117556.htm
http://www.microsoft.com/whdc/winhec/pres06.mspx
http://research.microsoft.com/BARC/Sequential_IO/

The Lightweight Runtime Engine of the Wireless

Internet Platform for Mobile Devices

Yong-Duck You, Choong-Bum Park, and Hoon Choi

Department of Computer Engineering, Chungnam National University, 220
Gung-dong, Yuseong-gu, Daejeon 305-764, Korea

{yyd7724,here4you,hc}@cnu.ac.kr

Abstract. This paper proposes a lightweight runtime engine that is
the core part of the wireless Internet platform of mobiles devices such as
cellular phones or PDAs. The proposed lightweight runtime engine down-
loads and executes mobile applications in the binary form. Its memory
footprint is less than 100 Kbytes and consists of the lightweight scheduler
module, memory management module, dynamic reconfiguration module,
event handler module, and timer module. The lightweight scheduler can
process events 13% faster than a competitive technique which is the
widely used thread-based scheduler. The memory management module
works 6 ∼ 10 times faster than other memory management algorithms,
and the proposed dynamic reconfiguration module also shows a good
performance in reconfiguring the platform software.

1 Introduction

Thanks to the mobile communication technology, wireless Internet access using
a cellular phone or a PDA, is getting popular and users’ demand for wireless
Internet service has become more diversified. Thus, service providers develop
differentiated services with new features to stay competitive in the market. In
order to manage and execute various applications on a hand-held device, a flex-
ible and scalable software platform [1] plays an essential role in coping with
the rapidly changing wireless Internet applications. A wireless Internet platform
is a sort of system software, like an operating system or a middleware of the
computer that executes application programs. Examples of the wireless Internet
platform for cellular phones include GVM (General Virtual Machine), XVM (eX-
tended Virtual Machine), BREW (Binary Runtime Environment Wireless) and
WIPI (Wireless Internet Platform for Interoperability). The currently used wire-
less internet platforms use a java virtual machine to execute java applications,
and a binary runtime environment for executing binary applications. However,
java virtual machines require a large amount of memory and a high processor
execution performance for executing java bytecodes, resulting in a decrease of
performance in execution environments with limited resources such as mobile
devices. In addition, existing binary runtime environments provide a lighter ex-
ecution environment compared to java virtual machines, but because it doesn’t
consider mobile application execution characteristics and doesn’t provide the

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 25–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

26 Y.-D. You, C.-B. Park, and H. Choi

self reconfiguration of middleware, it is not an effective solution for executing
applications in resource-restricted execution environments.

This paper proposes the lightweight runtime engine that is included in wireless
Internet platforms for binary runtime environment and consists of the lightweight
scheduler module, memory management module, dynamic reconfiguration mod-
ule, event handler module, and timer for mobile application’s efficient execution.
To verify the proposed runtime engine, we implemented the WIPI software plat-
form that consists of the proposed runtime engine and WIPI APIs as shown in
Fig. 1 [1, 2].

Fig. 1. WIPI Software Platform

We also implemented an emulation software for the cellular phone environ-
ment. The emulator, the CNU WIPI Emulator, measures the performance of the
proposed runtime engine [3]. The emulator includes the implemented WIPI soft-
ware platform and supports the development and execution of ”C applications”
on a desktop computer. The emulator passed the formal correctness test under
the PCT (Platform Certification Toolkit) from EXEmobile Inc. [4]. From the
experimental results, our scheduler processes events 13% faster than the thread-
based scheduler and the proposed memory management module has worked 6.5
times, 10.5 times and 2.5 times faster than the Linked List algorithm [5], Brent
algorithm [6], Doug. Lea’s algorithm [7, 8], respectively. The proposed dynamic
reconfiguration module shows a good performance in reconfiguring the platform.
It takes 624.8μs for installations, and 65μs for deletions.

The rest of the paper is organized as follows: Section 2 describes the proposed
runtime engine, Section 3 analyzes the performance of the proposed runtime
engine through different tests; Finally, Section 4 presents the conclusion.

2 Proposed Runtime Engine

A mobile device is generally equipped with low performance CPU, small amount
of memory, and system software consisting of basic functions for running an

The Lightweight Runtime Engine of the Wireless Internet Platform 27

application. For example, typical CDMA (Code Division Multiple Access) mo-
bile devices using QUALCOMM’s Mobile Station Modem (MSM) chipsets use
REX Operating Systems. REX operating systems only support essential func-
tionalities such as task management scheduling, interrupt handling, timer, and
signal. Therefore, a mobile device needs software called the runtime engine that
supports the functions which are not supported by the phone’s native system
software to ensure the efficient execution of the application programs. This paper
proposes the lightweight runtime engine that consists of the lightweight scheduler
module, memory management module, dynamic reconfiguration module, event
handler module, and timer.

2.1 Lightweight Scheduler Module

Because applications are developed in various forms depending on the intensions
of the developers, it is difficult to manage these applications and results in a large
management overhead. Therefore, in resource-restricted environments such as
mobile devices, the system should be aware of the applications’ architecture in
order to man-age them efficiently. The application’s life-cycle management APIs
should be defined to solve this problem. In REX, a widely used operating sys-
tem for mobile devices, a multi-thread feature, supporting parallel processing of
applications, is not provided. Therefore, existing wireless internet platforms use
user-level threads to provide these features. To manage user-level threads, cur-
rent thread-based schedulers initially create an application thread, and life-cycle
interfaces are called in the application thread. Because platform threads and ap-
plication threads are executed and access the event handler module concurrently
in thread-based scheduling techniques, a synchronization mechanism is needed,
and there is a large context switching time overhead for processing platform
events. In addition, it is difficult to apply this technique to re-source-restricted
environments such as mobile devices, because of the large amount of resources
it requires.

The lightweight scheduler proposed in this paper calls life-cycle management
APIs to execute an application, rather than creating a thread. In addition, refer-
ence information for life-cycle management APIs are managed within the sched-
uler; when an application is executed, the API of the corresponding application
is called according to the occurring events to execute the application. When
events occur during the execution of the applications, the light-weight scheduler
receives the event that must be process first, from the management module. If
the received event is a platform event the platform itself processes it, and if it
is an application event, the platform calls an event-handler function to execute
the application. As a result, our lightweight scheduler has a small overhead com-
pared to the thread based scheduler because there is no need for synchronizing
threads, and context-switching for processing platform events is not required.
In addition, applications can be executed quickly with small system resources
because threads are not used.

28 Y.-D. You, C.-B. Park, and H. Choi

2.2 Memory Management Module

Performance of the mobile devices greatly depends on the efficient resource man-
agement because they are usually resource-restricted. In particular, the dynamic
storage allocation algorithm is very important part of the mobile device’s oper-
ating system and OS-like software platform. The existing dynamic storage al-
location algorithms did not consider application’s execution style and the type,
life-time, and characteristics of memory objects that the application uses. Those
algorithms, as a result, could not manage memory efficiently [9, 10, 11]. There-
fore, this paper analyzes the mobile application’s execution characteristics and
proposes a new dynamic storage allocation algorithm which saves the memory
space and improves mobile application’s execution speed.

Table 1. Execution characteristics of mobile application

MP3 player Address Book ICQ
Used memory percentage Used memory percentage Used memory percentage

Object type (Byte) (Byte) (Byte)

int 231,000 17% 0 0% 1,248 1%
float 73,000 5% 0 0% 0 0%
char 215,000 16% 1,520 41% 76,000 40%
Byte 780,000 57% 0 0% 128 0%

double 0 0% 0 0% 0 0%
object 23,000 2% 260 7% 21,000 11%
string 16,000 1% 1,512 40% 58,000 31%

AccessControlContext 108 0% 180 5% 0 0%
Hashtable Entry 0 0% 108 3% 24,000 13%

class 23,000 2% 156 4% 8,424 4%
stringbuffer 3,836 0% 0 0% 28 0%

total 1,364,944 100% 3,736 100% 188,828 100%

Table 1 shows the object types and the amount of memory allocated by Java
applications such as MP3 players [12], Address Books [13], and ICQ [14] appli-
cations. The MP3 application in Table 1, is an application that plays music files
for 3-5minutes. In this application, the int object used for decoding, and the char
and byte objects used for generating audio signals, make up 90% of all allocated
objects. The Address Book application records and displays personal informa-
tion, and the char and string type objects for storing each individual’s name,
address, and phone number make up 81% of all allocated objects. Finally, for
the ICQ program, the window object for generating windows for instant messag-
ing, and the string and char objects for messages make up 82% of all allocated
objects.

The proposed memory management module considers this characteristics; the
method divides the total memory provided by mobile systems into two Banks,
and economizes memory use and enhances the execution speed of applications by
apply-ing algorithms that accommodate the lifetime, size, type, and distribution
characteristics of the objects in use [15].

Bank 1: This bank 1 considers the characteristics of mobile applications and ap-
plies a dynamic storage allocation technique for objects that occupy over 60% of
the memory allocation/deallocation when an application is executed. Unlike the

The Lightweight Runtime Engine of the Wireless Internet Platform 29

conventional memory pool allocation techniques, the suggested dynamic memory
allocation method separately manages the linked lists by class according to the
exact size of free memory, and the number of free memory blocks connected to
each linked list varies depending on the applications that are executed.

Fig. 2. Bank 1 memory management

In Fig. 2, the single linked list header values (A ∼ D) represent the size of
the memory block that each class manages. For example, class is determined by
the size appropriate for frequently used objects such as char, int, string, and
object from Table 1. (a) in Fig. 2 is the initialized status of the memory, and the
entire memory consists of a single large memory. When the allocation of memory
begins, the linked list of the class corresponding to the size of the object is first
searched; then, if unused memory blocks are found they are allocated. If unused
memory blocks are unavailable, memory is allocated from the linked list of upper
classes according to the Best-Fit method, and if that is not available, memory is
allocated from the Root list. When memory in use is deallocated, the deallocated
memory block is connected to the corresponding class list, not the Root list ((b)
in Fig. 2). Therefore, if the memory pool is dynamically reconfigured according
to the characteristics of the applications, such as Bank 1, a greater performance
for mobile applications can be expected(O(1)).

Bank 2: The runtime libraries used until now, uses a technique that implements
a linked list to manage memory during the allocation and deallocation of memory
blocks of various sizes. However, the linked list allocation technique has many
problems. This Bank 2 consists of a number of segments to solve those problems.
The size of each segment is logically dependent on the initial configurators set
through the segment boundary, but the size becomes variable depending on the
applications that are executed. A memory block that is allocated near a bound-
ary may let the size of the segment beyond the boundary value. This idea of
flexible boundary size decreases memory fragmentation in boundary areas, and
does not limit the size of the memory block to be allocated in a segment. In
this Bank 2, when there is a request for memory allocation, the average value of
unused memory block size is examined for each segment and the segment with
the largest average value is selected. When a memory block in use is released,
free memory blocks that are adjacent to this released memory block are merged
to form a bigger unused memory block. Memory compression is performed in a

30 Y.-D. You, C.-B. Park, and H. Choi

Fig. 3. Bank 2 memory management

segment. It is carried out by consecutively moving the corresponding segment’s
memory blocks, starting from the start memory block and ending at the memory
block adjacent to the segment boundary as shown in Fig. 3.

2.3 Dynamic Reconfiguration

EJB (Enterprise Java Beans) [16], CCM (CORBA Component Model) [17] and
COM (Component Object Model) [18] are examples of the component-based
software framework that allows dynamic reconfiguration. EJB is a component
based distributed object model that is supported by Sun Microsystems Inc. and
J2EE is executed in the JVM; thus it requires ample computing power and re-
sources. CCM is an expansion of the CORBA object model, which offers a set of
CORBA services that are widely used in standard environments; it has a high
performance in distributed server environments, but is inapplicable for individ-
ual distributed computing in resource restricted environments such as mobile
devices. In addition, it does not offer fault-tolerance in case a component of a
system runs into a problem. This section will describe the proposed component-
based dynamic reconfiguration module which makes up the lightweight runtime
engine. The dynamic reconfiguration module is designed to conserve system re-
sources, and offer extensibility and stability in middleware by providing a dy-
namic reconfiguration feature through the upgrade and addition of new service
components that compose the middleware, and by providing a self-healing fea-
ture through monitoring log messages.

Dynamic Reconfiguration: The component is represented as a single object and
it provides specific services to applications. Each component consists of the Com-
ponent Implementation part and the SAL (System Adaptation Layer) part that
makes the Component Implementation part be independent from the underlying
software. It is necessary to keep records of the numerous services and information
about the various versions of applications and components in order to select and
manage the components which are required and appropriate for the system. This
paper proposes keeping records of component and application installation infor-
mation in the CDF (Component Description File), which can be downloaded to
the system along with the corresponding component through the network. The
Component Controller within the Dynamic Reconfiguration Module manages the
API reference information, which is provided by the component when the com-
ponent is loaded to the memory, using the APIRT (API Reference Table). The
APIRT consists of the names of the APIs within the Component Implementation,

The Lightweight Runtime Engine of the Wireless Internet Platform 31

Fig. 4. Dynamic Reconfiguration Module in the Runtime Engine

and the addresses of the APIs loaded on the memory. When a component is in-
serted/deleted/updated, the APIRT is updated, and the updated information is
sent to the components and applications referencing the APIRT using a message
queue method that uses shared memory.

Self-Healing: The Self-Healing feature is augmented with reconfiguration of
middleware and the re-installation of applications in case of failure. IBM has
implemented an Autonomic Manager that performs automated computing for
server-level computers [19], and they also proposed the autonomic personal
computing that is suited for personal computing environment [20, 21]. How-
ever, autonomous computing technology requires a large amount of resources
and computer power for intelligent reasoning. Therefore, this paper proposes a
simple Self-Healing technique that is suited for resource-restricted environments
such as mobile devices. As shown in Fig. 4, the proposed Dynamic Reconfigu-
ration Module is consisted of the Monitor, Context Repository, Analyzer, Com-
ponent Controller, and the Downloader modules. The Monitor module monitors
component and application executions using a Monitor Queue and stores the
collected information in the Context Repository module, then reports any error
symptom to the Analyzer. The Context Repository module is a storage place
for the Context collected by the Monitor module, as is used as history informa-
tion which is required for system management. The Analyzer module performs
analysis and diagnostics on the error symptoms reported by the Monitor and
decides an appropriate treatment, and the Component Controller module treats
the corresponding component or application according to the instructions sent
by the Analyzer. The Log Messages which are records of the errors occurred
during the execution of components or applications, is a good basis for figuring
out the condition of the targets being observed.

The Log Agent in Fig. 4, 5 is a module that asynchronously sends the Available
Log Message to the Monitor. The Log Agent process is described in the following:
it collects the Log Messages created by components or applications (①), then
using the State Mapping Table in Fig. 6 as a reference, the log code and log
values of the Log Messages are checked to verify whether any status value exist
for the values being mapped; if the status value exists, the Log Message is verified

32 Y.-D. You, C.-B. Park, and H. Choi

Fig. 5. Dynamic Reconfiguration Module in the Runtime Engine

Fig. 6. State Mapping Table

as a valid Log Message(②). The Available Log Messages are then stored in the
Monitor Queue, and the creation of Available Log Messages is reported to the
monitor(③). Depending on the Status Value, the middleware is reconfigured or
the corresponding application is re-installed using the Component Controller.

3 Verification and Performance Analysis

3.1 Verification Using Platform Certification Toolkit

To verify the proposed runtime engine, we implemented an emulator, the CNU
WIPI Emulator, which includes our WIPI software platform. The CNU WIPI
Emulator supports the development and execution of ”WIPI C application” on a
desktop computer. To verify correctness of the WIPI software platform including
the proposed runtime engine, PCT from EXEmobile Inc. was used. Except six
test cases (LED, vibration, etc) that are not applicable to the emulator environ-
ment, all of the tests (328 test cases) passed successfully. The kernel API test is
the test to verify the proposed runtime engine. So, the proposed runtime engine
supports mobile application’s execution.

The Lightweight Runtime Engine of the Wireless Internet Platform 33

3.2 Scheduler Performance

To evaluate the performance of the proposed scheduler, a test application gen-
erating WIPI emulator’s button events and inserting the events into the event-
handler module is used. The events generated and inserted in the test application
are events related to executing WIPI applications. This experiment measures the
speed of processing the events inserted into the event-handler module to ana-
lyze the performance for switching between applications, switching between the
platform and application, and for the continuous execution of applications.

The result of the experiments show that the CNU WIPI Emulator embed-
ded with the proposed scheduler processes events 13% more quickly than the
Emulator embedded with the thread-based scheduler.

3.3 Memory Management Performance

To show the performance of the proposed memory management, experiment has
been performed in an environment with Windows XP, 3.2GHz CPU, and 512MB
of RAM with the heap memory size of the emulator set to 866Kbyte.

In this experiment, we measured allocation and deallocation speed by our
memory management methods (Bank 1: dynamic memory pool, Bank 2: seg-
mented linked list), and by other widely used memory management methods
such as Linked List algorithm [5], Brent algorithm [6], Doug. Lea’s algorithm
[7, 8]. The test application used for the experiment allocates and deallocates
memory blocks of random sizes of between 8 and 512 Bytes; during this pro-
cess, the merging and compression of memory occurs. The results show that
the proposed algorithm works 6.5 times faster than the Linked List algorithm,
10.5 times faster than the Brent algorithm and 2.5 times faster better than the
Doug. Lea’s algorithm as shown in Fig. 7. Therefore, when designing a memory
allocation technique for mobile devices, considering the characteristic of the ap-
plications used for the mobile devices can result in an increase of performance
when executing these applications in mobile devices.

3.4 Dynamic Reconfiguration Performance

Although the dynamic reconfiguration feature provides extensibility and flexi-
bility of the middleware, the overall system performance can be lowered and the
feature nay cause inconvenience to users if the delay is large or the time that
it takes for reconfiguration cannot be predicted. Components were installed and
deleted for this experiment, which was designed to measure the time required for
dynamic reconfiguration, and to figure out the items that cause delays. Because
the downloading time in the network depends on the media type of the network
and traffic situation, therefore it varies each times, we measured the delay caused
inside of the system, i.e., delay when the components already downloaded to the
system. The experimental results and information of the components used in

34 Y.-D. You, C.-B. Park, and H. Choi

Fig. 7. Memory allocation/deallocation speed

Table 2. Execution characteristics of mobile application

Component # of APIs Average Installation Average Deletion
Size(Unit:byte) Time(Unit:μs) Time(Unit:μs)

File system 42,182 15 310.5 45
Utility 16,625 6 151 35

Database 25,313 14 194 24.4
Kernel 86,709 48 624.8 65
Media 34,676 23 410 15
Serial 23,187 8 194 25.4

the experiment is provided in the following table 2; the experiment was repeated
90 times for each component in order to obtain an average value. The average
installation time and average deletion time shown in Table 2 is the average of
the time it takes to load or unload the component on the memory plus the time
it takes to update the API reference information on the APIRT. Experimental
results showed that the proposed dynamic reconfiguration is greatly affected
by the code size of the component and is barely affected by the number of
APIs.

4 Conclusions

In this paper, we proposed the runtime engine for a wireless Internet platform
and implemented the WIPI software platform along with its emulator to verify
the pro-posed runtime engine. The correctness of the implemented platform has
been tested using the CNU WIPI Emulator and the PCT toolkit developed by
EXEmobile Inc.. From the experimental results, the memory management ca-
pability of the developed runtime engine shows better performance compared
with the widely used memory management algorithms. The proposed sched-
uler processes events 13% more quickly than the Emulator embedded with the

The Lightweight Runtime Engine of the Wireless Internet Platform 35

thread-based scheduler. The proposed dynamic reconfiguration module showed a
fast performance of platform reconfiguration, 624.8μs for installations and 65μs
for deletions on the average.

References

1. TTA, Wireless Internet Platform for Interoperability TTAS.KO-06.0036/R3,
2004.6, www.tta.or.kr

2. S.Y. Lee, S.J. Kim and H. N. Kim, ”Standardization status and development
prospect of Korea Wireless Internet Platform for Interoperability,” Korean Infor-
mation Science Soci-ety, Vol. 22 No. 1, pp.16- 23, Jan. 2004.

3. CNU (Chungnam National University) WIPI Emulator, http://strauss.
cnu.ac.kr/research/wipi/research.html, 2006.9.

4. PCT Toolkit: http://www.exemobile.com, Sep. 2006.
5. A.C.K. Lau, N.H.C. Yung, Y.S. Cheung, ”Performance analysis of the doubly-

linked list protocol family for distributed shared memory systems,” Proceedings
of ICAPP 96, IEEE Second International Conference on Algorithms and Architec-
tures for Parallel Processing, pp. 365-372, Jun. 1996.

6. R. P. Brent, ”Efficient Implementation of the First-Fit Strategy for Dynamic Stor-
age Allo-cation,” ACM Transactions on Programming Languages and Systems,
Vol. 11, No. 3, Jul. 1989.

7. Doug. Lea’ Algorithm, http://rtportal.upv.es/rtmalloc/allocators/dlmalloc/
index.shtml, Jul. 2006.

8. M. Masmano, I. Ripoll, A. Crespo, J. Real, ”TLSF: a new dynamic memory allo-
cator for real-time systems,” Proceedings of ECRTS, 16th Euromicro Conference
on Real-Time Sys-tems, pp. 79-88, Jul. 2004.

9. M. S. Johnstone and P. R. Wilson, ”The Memory Fragmentation Problem:
Solved ?,” In Proceedings of the International Symposium on Memory Manage-
ment(ISMM’98), Van-couver, Canada. ACM Press, 1998.

10. Henry Lieberman and Carl Hewitt,”A Real-Time Garbage Collector Based on the
Lifetimes of Objects,” Communications of the ACM, Vol. 26, No. 6, pp. 419-429,
Jun. 1983.

11. R. C. Krapf, G. Spellmeier and L. Carro, ”A Study on a Garbage Collector for
Embedded Applications,” Proceedings of the 15 the Symposium on Integrated
Circuits and Systems Design (SBCCI’02), pp. 127-132, 2002.

12. Javaplayer, Java MP3 Player, http://www.javazoom.net/javalayer/sources.html,
2006

13. Brenneman, Todd R. Java Address Book (ver. 1.1.1). Available at
http://www.geocities.com/SiliconValley/2272/, Jan. 2002.

14. ICQ Inc., ICQ Lite, http://lite.icq.com, Aug. 2006.
15. Y. D. You, S. H. Park, H. Choi, ”Dynamic storage management for mobile platform

based on the characteristics of mobile application,” Korea Information Processing
Society Jour-nal, Vol. 13-1, No. 7, pp. 561-572, Dec. 2006.

16. Sun Microsystems, Enterprise Javabeans, http://java.sun.com/products/ejb/,
2000.

17. S. Landis and S. Maffeis, ”Building Reliable Distributed Systems with CORBA,”
Theory and Practice of Object Systems, John Wiley, New York, Apr. 1997.

36 Y.-D. You, C.-B. Park, and H. Choi

18. Microsoft Company, ”Component Object Model,” http://www.microsoft.com/
com/, 2000.

19. Horn, Paul, ”Autonomic Computing: IBM’s Perspective on the State of
Information Technology”, available form the IBM Corporation at http://
www.research.ibm.com/autonomic/manifesto/autonomiccomputing.pdf

20. Bantz D, Frank D, ”Autonomic personal computing,” available form the IBM
Corpora-tion at http://researchweb.watson.ibm.com/journal/sj/421/bantz.html

21. Sterritt R, Bantz D, ”Personal autonomic computing reflex reactions and self-
healing,” IEEE Transactions on Systems, Man and Cybernetics, Part C, VOL.36,
No. 3, pp. 304-314, May 2006.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 37–45, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Product Line Based Reuse Methodology for
Developing Generic ECU*

Si Won Choi, Jin Sun Her, Hyun Koo Kang, and Soo Dong Kim

Department of Computer Science, Soongsil University
511 Sangdo-dong, Dongjak-Ku, Seoul, Korea 156-734

{swchoi,jsher,h9kang}@otlab.ssu.ac.kr, sdkim@ssu.ac.kr

Abstract. As an important application domain of embedded software, auto-
motive software is playing a more important role within automotive industry.
There are some essential issues to be resolved; managing software complexity,
reducing software cost, and shortening time-to-market. An effective solution to
these issues is to reuse generic Electronic Control Units (ECUs) in building
various ECUs rather than building every piece from scratch. Generic ECU is an
ECU level reuse unit which consists of automotive components and embeds
variability. Among the reuse approaches, Product Line Engineering (PLE) can
be effectively applied in developing generic ECUs. However, current PLE
methodologies do not effectively support developing generic ECUs. Hence, in
this paper, we first define a meta-model of generic ECUs. Then, we define
variability types and variation points for generic ECUs. Based on the meta-
model and variability types, we propose a product line process for developing
ECUs. To assess the applicability of the proposed meta-model and the PLE
process, we present the case study of developing an automotive ECU for
Window Control System (WCS).

1 Introduction

As automotive software is playing a more important role within automotive industry,
the demands on managing software complexity, shortening time-to-market, and
facilitating cost-effective development have increased more in automotive software
engineering area [1][2]. An effective solution to these demands is to maximize reuse
in building automotive software. There have been several efforts to promote reuse in
automotive industry such as applying Model driven development (MDD) and
developing a standard architecture AUTOSAR [3][4]. However, well defined
methodology is not yet provided and the reuse unit is limited to component level. In
this paper, we extend the unit of reusability to the level of ECU which is larger
grained than component. We suggest that ECU is an appropriate unit for reuse since it
is a cohesive control unit that monitors and controls various automobile components.
In addition, we embed variability into ECU so that one ECU can be tailored for
specific needs of the numerous automobile models and we call this generic ECU.

* This work was supported by the Korea Science and Engineering Foundation(KOSEF) grant

funded by the Korea government(MOST) (No. R01-2005-000-11215-0).

38 S.W. Choi et al.

Among the few reuse technologies, we find that PLE is effective for developing
generic ECU in terms of granularity of the reuse unit, applicable technique, and
familiarity. A core asset in PLE can be mapped to generic ECU and techniques in
PLE can be effectively applied in developing a generic ECU.

However, current PLE methodologies need adaptation to effectively support
developing generic ECUs. Hence, in this paper, we first define a meta-model and
variability types for generic ECUs. Based on the meta-model and the variability
model, we propose an effective product line development process for developing
ECUs. To assess the applicability of the proposed PLE process, we present the case
study of developing an automotive ECU for Window Control System (WCS).

2 Related Works

Thiel’s work presents a product line process for developing automotive systems [5].
Commonality and variability (C&V) among automotive components is first captured
by the feature model and then realized by the product line architecture. They apply
their architecture design framework “Quality-Driven Software Architecting”
(QUASAR) and their architectural variability metamodel to Car Periphery
Supervision systems and show how variability is realized in the architecture.

Eklund’s work presents a motivation and a development process for applying
reference architectures in developing automotive electronic systems at Volvo Cars
[6]. This work presents a reference architecture based development process which
consists of five steps; analyzing the design prerequisites, designing, verifying,
disseminating, and maintaining the reference architecture.

Hardung’s work proposes a framework for reusing application software
components in automotive systems [7]. The proposed framework is divided into three
parts; a process for developing modularized components, a definition of the function
repository, and a process for developing ECUs with a standard software core, SSC.

However, these approaches need to be elaborated in terms of reuse unit, activities
and instructions, and types of variation points.

3 Generic ECU

A generic ECU consists of a generic ECU architecture, software components, and a
decision model as shown in Fig. 1. Generic ECU architecture is a generic structure
for a family of ECUs, and it consists of software components and their relationship.
Software Components implement the functionality of ECU specified in pre-defined
Component Interfaces. Logic Component implements the control logic of the ECU,
Sensor Component acquires various signals and data through hardware sensor
elements, and Actuator Component delivers decisions made and controlling
commands to various hardware actuators. Setpoint Generator Component is to acquire
input from hardware setpoint generators.

Decision Model is a specification of variability in generic ECUs and is defined in
terms of variation points, variants, resolution tasks, and post-conditions. Resolution
task specifies activities to perform to resolve a variation point (VP) for a given variant.

 Product Line Based Reuse Methodology for Developing Generic ECU 39

Post-condition specifies a condition that must be true after setting the variant. Affected
decision specifies a range of relationships among VPs and it is represented with
dependencies or conflicts among variability. We also identify seven places where ECU
variability may occur. Each variability place is marked with «V» in Fig. 1.

Fig. 1. Meta Model of Generic ECU with Variability Types

Variability on Generic ECU Architecture: Variability on architecture is classified
into architectural driver variability and architectural component variability which
respectively denotes the occurrence of VPs on the architectural drivers and
architectural components. Architectural component variability includes variability on
logic, sensor, actuator, and setpoint generator component.

Variability on Software Component: As the super class, SW components may have
attribute variability which denotes occurrences of VPs on the set of attributes needed
by components such as different number and/or data types of attributes. For example,
attributes of Antilock Brake System (ABS) components for automobile X can be the
road surface roughness and speed of the car’s wheel. And automobile Y can
additionally include the throttle condition to the two attributes.

Variability on Logic Component: Logic components implement the ECU logic and
workflow. Hence, the variability can occur on logics and workflows. Logic variability
denotes occurrences of VPs on the algorithm or logic of methods in a component. For
example, logics for computeParkingPath() method of Automatic Parking System
(APS) varies according to automobile models such as sedan, SUV, and Van. Workflow
Variability denotes occurrences of VPs on the sequence of method invocations. For
APS, sequences of invoking applyBrake(), applyAccelerator(); setForward();
setBackward(); turnLeft() and turnRight() methods varies depending on the
automobile models.

Variability on Sensor Component: Variability on Sensor components denotes
occurrence of VP on the types of sensors needed. For example, the vehicle can sense
the distance to the obstacle using an infrared sensor or ultrasonic sensor.

Variability on Actuator Component: Variability on Actuator components denotes
occurrence of VP on the types of actuators needed. For example, HID lamp or
halogen lamp can be used in providing light features of automobile.

40 S.W. Choi et al.

Variability on Setpoint Generator Component: Variability on Setpoint Generator
Components denotes occurrence of VP on the types of setpoint generators such as
brake pedal, steering wheel and parking brake.

Variability on Component Interface: Variability on Component Interface denotes
occurrences of VPs on the method signatures of the component interface. For the
same functionality, each ECU may have its own convenient form of API, i.e. method
name, orders and types of parameters, and its return type.

4 Product Line Process for ECUs

In this section, we present a product line process which consists of two engineering
processes; core asset engineering for developing a generic ECU and ECU
engineering for developing a specific ECU based on the generic ECU. Fig. 2 shows
the activities with the input/output of each engineering process. To show the
applicability of the process, we conduct a case study of developing a generic ECU for
Window Control System (WCS).

Fig. 2. PL Process for Developing Generic ECUs

4.1 Core Asset Engineering (CE)

CE-1. Elicit a Set of ECU Requirements: This activity is to elicit a set of ECU
requirements for potential ECUs in a domain. First, we acquire a set of ECU
requirement specifications. Especially for a ECU, we categorize the requirement into
functional requirement, non-functional requirement, and design constraints on the
ECU. Then we normalize the collected requirements since the requirements are all
described in different forms. In our case study, we normalized three requirement
specifications on WCS.

CE-2. Analyze Commonality & Variability: This activity is to analyze common and
variable features among the normalized requirements. The extracted commonality is
further designed into generic architecture and reusable components.

 Product Line Based Reuse Methodology for Developing Generic ECU 41

The first step is to identify common features. We suggest three factors to consider
for determining common features; degree of commonality, market demand, and
potential value. Degree of commonality can be computed as; Number of ECUs
Requiring the Feature / Total Number of ECUs. The remaining two factors, market
demand and potential value, are especially important for ECU software since
development cost is higher than conventional applications. In our case study, we
identified 19 common features among 25 features by applying the three factors.

Table 1. Variability Model of WCS

CF ID VP Type Scope Variants Dependency

CF09
Automatic Lift-up

of FL Window
Behavioral
Variability

Optional
Lift-up FL
Window

Automatically

If variant is not selected, don’t
select the variant of CF11, CF13,

and CF15.

CF16
Automatic Lift-

down of RR
Window

Behavioral
Variability

Optional
Lift-down FL

Window
Automatically

… … … … …

The second step is to identify variability within the common features. Since
concrete design elements are not designed yet, we first identify abstract level
variability; software variability (structural variability and behavioral variability) and
hardware variability. These variability can be further refined in CE-3 and CE-4.
Variability model is specified as Table 1. Dependency here specifies the propagated
constraints to the other VPs or variants caused by the current resolution and the
constraints that have to be satisfied by other VPs or variants to resolve this VP [8].
For example, the VP on CF09 has dependency with VP on CF11, CF13, and CF15. If
the FL window does not use the automatic lift-up feature then the other windows do
not usually use the automatic lift-up features.

CE-3. Design Generic Architecture: This activity is to design an architecture
common to a family of ECUs. Using the commonality & variability model as the

Fig. 3. Generic Architecture of WCS

42 S.W. Choi et al.

input, we produce a generic architecture specification and an architectural decision
model specifying the architectural variability.

The first step is to define a generic architecture by identifying software
components and inter-connection between them. Architecture can be specified using a
component diagram, class diagram, or a block diagram. We suggest using stereotypes,
«logic», «sensor», «actuator», and «setpoint generator», to specify the types of a
component. From the common features of WCSs, we designed a generic architecture
as shown in Fig. 3. Two types of sensor components are to detect if there are
obstacles when closing the window and five setpoint generator components let the
driver to initiate the movement of the four windows and to lock the window. Four
logic components are to manually lift the windows, to automatically lift the windows,
to handle the windows for protecting a child, and to lock the windows.

The second step is to identify architectural variability based on the variability
model. Dependency identified in CE-2 can be clarified with concrete design elements
and new dependency can be identified which are only identifiable at the level of
architectural design.

Table 2. Architectural Decision Model

VP ID VP Type Scope Variant Resolution Task Dependency

VP
03

Component
‘Window_
Locker’

Arch.
Comp.

Opt.
Locking All
Windows

(a) Preserve ‘Window_Locker’.
(b) Preserve relationships related to

‘Window_Locker’.

Select the
variant of

VP04

VP
04

Component
‘Lock_B’

Arch.
Comp.

Opt.

Keeping
Locking
Setpoint

Generator

(a) Preserve ‘Lock_B’.
(b) Preserve relationships related to

‘Lock_B’. (c) Verify if
‘Window_Locker’ is preserved.

…

In Fig. 3, the arrow sign depicts architectural VP and we mark the variability into
the diagram using stereotypes, «option» and «selection». Especially for VP03 and
VP04 from Fig. 3, Table 2 specifies the details. Dependency here is a newly identified
one since the VPs are newly identified in this activity. If the variant is selected for
VP03 then the variant is selected for VP04, that is, the ‘Lock_B’ must be preserved if
the ‘Window_Locker’ is preserved.

Fig. 4. State Transition Diagram of Window Behavior

 Product Line Based Reuse Methodology for Developing Generic ECU 43

CE-4. Design Components: This activity is to design the internal details of each
component in terms of interface, data model, and behavioral model. The first step is to
define the interfaces and operations of the identified components. Interface variability
is also identified in this step by considering the pre-defined naming conventions. We
identified interface variability in Automatic-Lifter component. Some requirements use
the naming convention of Com_XXX and some used Auto_XXX.

The second step is to design a data model which defines the data that is to be
processed by the software component. As identified in Table 1, there is VP on the
automatic lifting features of the four windows, thus there exist variability on the input
signals and output signals of the Automatic_Lifter Component.

The third step is to design a behavioral model in terms of data flow and control
flow. Data flow is represented by control-specific modeling method on the basis of
block diagrams and state machine. Fig. 4 shows the state machine of the behavior of a
window. Since there is variability in the automatic lifting features of the window,
states ‘Automatically_Up’ and ‘Automatically_Down’ embed variability. Control
flow is designed in order to control the execution of instructions. Well-known
notations for representing the control flow are structograms according to Nassi-
Shneiderman [9].

4.2 ECU Engineering (EE)

EE-1. Analyze a Target ECU Requirement: This activity is to analyze the requirement
of a target ECU and to identify the gap between the generic ECU and the target ECU.
First, we elicit the software requirement of a target ECU from vehicle requirement.
Secondly, we analyze the software requirement of target ECU to help distinguishing
features supported from the generic ECU. Thirdly, we compare the target ECU analysis
model with the generic ECU. Gap analysis specification is produced which specifies
features supported from the generic ECU and features that have to be newly developed.
In our case study, we reused the generic ECU to develop a WCS for Picanto-SLX. Fig. 5
illustrates the requirement specification and the major gap is the feature of locking
windows; Picanto-SLX does not require this feature.

Fig. 5. Requirement Specification of WCS in Picanto-SLX

EE-2. Define Decision Resolution Model (DRM): This activity is to define a DRM
which contains the variants specific to the target ECU. The first step is to identify the
features containing variability from the overlapped features. When variable features
are identified, we first identify architectural VPs from the decision model since the
decisions on the architecture affect the software components. And then, we identify

44 S.W. Choi et al.

VPs within the component. The second step is to define an appropriate variant for
each VP. In our case study, WCS of Picanto-SLX does not support the feature for
locking window. Hence variants are not selected for VP03 and VP04.
EE-3. Instantiate Generic ECU: In this activity, we resolve variability by setting the
variants into the VPs and by modifying the parts of the generic ECU which are not
required from the target ECU according to the decisions defined in the DRM. The
first step is to instantiate the generic architecture according to resolution task of the
architectural DRM. The second step is to instantiate the generic component model
according to the resolution task of the component DRM. Since variants for VP03 and
VP04 were not selected in the architectural DRM, Lock_B and Window_Locker are
eliminated in the instantiated architecture.

EE-4. Implement ECU: This activity is to implement the instantiated ECU for the
target platform. For the implementation, we should consider the programming
language, class library, automotive operating system such as OSEK, bus architecture,
architectural constraints imposed by certain standards such as AUTOSAR, and the
whole domain (i.e. powertrain, chassis, body, etc.) architecture adopted for the target
automobile model. Once a ECU software is implemented, it is integrated onto
appropriate memory such as ROM, flash RAM of the ECU, and software components
are interfaced to hardware sensors, actuators and setpoint generators.

5 Conclusion

There are several issues to be resolved in automotive software engineering area;
managing software complexity, and reducing software cost and time-to-market.
Product line development (PLE) can provide an effective solution to these issues.

In this paper, we first defined the key elements of generic ECUs. To handle the
variability, we identified seven places where the variability may occur in the generic
ECU. Based on the meta-model and variability types, we proposed a product line
development process for developing ECUs. The process consists of two sub-
processes; Core Asset Engineering and ECU Engineering. In the process, we
especially dealt with the dependency between variability. We conducted a case study
project for implementing a Window Control System. Through the case study, it has
been shown that with our framework of ECU meta model and the development
process, various ECUs can be cost-effectively developed by instantiating generic
ECUs.

References

1. Simonot-Lion, F. and Song, Y., “Design and Validation Process of In-Vehicle Embedded
Electronic Systems,” Chapter 41 of Embedded Systems Handbook, Zurawski, R., ed., CRC,
2005.

2. Broy, M., “Challenges in Automotive Software Engineering,” Proceeding of the 28th
International Conference on Software Engineering, pp.33-42, 2006.

 Product Line Based Reuse Methodology for Developing Generic ECU 45

3. Ziegenbein, D., Braun, P., Freund, U., Bauer, A., Romberg, J., and Schatz, B., “AutoMoDe
- Model-Based Development of Automotive Software,” Proceedings of the conference on
Design, Automation and Test in Europe (DATE '05), Vol. 3, pp. 171-177, 2005.

4. AUTOSAR, Automotive Open System Architecture, http://www.autosar.org, June 2006.
5. Thiel, S. and Hein, A., “Modeling and Using Product Line Variability in Automotive

Systems,” IEEE Software, pp. 66-72, July 2002.
6. Eklund, U., Askerdal, O, Granholm, J., Alminger, A., and Axelsson, J., “Experience of

introducing reference architectures in the development of automotive electronic systems,”
Proceedings of the second international workshop on SEAS, 2005.

7. Hardung, B., Kölzow, T., and Krüger, A., “Reuse of software in distributed embedded
automotive systems,” Proceedings of the 4th ACM International Conference on Embedded
software, pp. 203-210, 2004.

8. Jaring, M. and Bosch, J., “Variability Dependencies in Product Line Engineering,” LNCS
3014, In Proceedings of the PFE 2003, pp.81-97, 2004.

9. Schauffele, J., Automotive Software Engineering: Principles, Processes, Methods, and
Tools, SAE International, 2005.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 46–58, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Object-Oriented Protocol for Data Exchange and
Control in Computational-Diverse Embedded Systems

Bogusław Cyganek

AGH - University of Science and Technology
Al. Mickiewicza 30, 30-059 Kraków, Poland

cyganek@uci.agh.edu.pl

Abstract. One of the key functionality of embedded-computer systems is
control and data exchange among its building modules. Different size terminal
sensors, microprocessor sub-systems, specialized devices, etc. should be able to
smoothly exchange data and control notifications. This is often a difficult and
time consuming task for a designer, mostly due to diversity of components.
Usually the protocols and their realizations have to be implemented separately
for each specific case. Therefore it would be desirable to have a definition of a
protocol for data exchange and control that fits a certain class of such systems.
In this paper we propose a solution to this problem which can be easily applied
to different computer platforms. We start with the definition of the proposed
DXC protocol. Then we present its object-oriented implementation. This way
our proposition can be re-used on different platforms. The presented solution
was employed with success to the suite of embedded systems for communica-
tion measurements and showed robustness and flexibility.

1 Introduction

In this paper we address the problem of control and data exchange among components
of embedded computer systems [5][9][13]. The main problem encountered in such
systems is a great diversity of their building blocks which most often than not differ in
hardware, computational power, programming facilities and also networking
capabilities. Actually many such systems are composed of few different computer
platforms, quite often endowed with its own microprocessor and controlled by
different operating system. Additionally, there can be dedicated hardware
programmable devices (FPGA) and many intelligent sensors (e.g. based on the ARM,
’51, HC, etc.). Connecting such components together is a challenging task. This is
caused mostly by two factors: quite different programming facilities (C++ with mega-
bytes of memory vs. assembly and kB) and data level networking (USB, Ethernet vs.
RS232 or I2C). The main purpose of the DXC protocol (Data and eXChange),
presented in this paper, is to facilitate the interconnection task for embedded systems.

We describe DXC providing its definition, sequence diagrams, and number of
assumptions, among which the most important is placement of the DXC on top of a
transport layer. The DXC protocol is characterized by five main groups of commands
and their acknowledge counterparts. Compared with other protocols we can state that
DXC is a complete system that can operate on a set of lower level protocols providing

 The Object-Oriented Protocol for Data Exchange and Control 47

basic data networking, such as RS232 and USB, I2C, etc. On the other hand, it can
operate also on the networks with such protocols as Bluetooth [3], Beep [10] or
ZigBee [15]. Thus the main area of DXC applications constitute embedded systems
consisting of many microprocessor-based components characterized by great
dynamics of their computational and networking capabilities.

In this paper we present also an object-oriented framework for generation of user
defined versions of DXCs. This allows very fast creation of new DXC protocols that
are tailored to a given system. Although we assume an object-oriented approach, the
presented solution can be implemented on almost any microprocessor system (in C,
C++ or assembly) due to its simplicity and modular architecture. DXC was used in the
series of embedded systems for telecommunication measurements and showed great
robustness and flexibility.

2 The Protocol for Data Exchange and Control (DXC)

2.1 Definition of the DXC Protocol

It is not possible to define a protocol that would comply with all requirements for data
exchange and control in computer (embedded) systems. However, based on the
analysis of many embedded systems – starting from 8-bits up to 64-bits devices – we
noticed that it is possible to define a minimal set of commands that can fulfil around
80% of the needs for moderate data exchange and control (DXC) in such systems. For
a suitable DXC protocol we set the following assumptions:

1. The DXC protocol operates on some lower-level data protocol capable of
connecting peer-to-peer components for data exchange.

2. Each message must be acknowledged by a recipient before another message of
that type is sent again to recipients.

3. There are preset constraints on response latency for each type of a message.
4. The protocol is designated for moderate amounts of data exchange.

Fig. 1. Sequence diagram of the DXC protocol

48 B. Cyganek

The first condition places the DXC protocol in a certain hierarchy of protocols. It
means that the protocol has precisely defined role in a system and relies on some
other basic means of data communication and addressing among participants. On the
other hand, it is possible to build other upper layers of protocols based on the DXC.

The second condition assures certain means of system robustness and protection
against message stalling if, for instance, a recipient is not able to respond (conditions
that are frequently encountered in the embedded systems).

The third condition imposes some timing constraints on message delivery – this is
a very important feature if the protocol is to be applied in a real-time systems. The last
condition places some constraints on amount of data to be sent based on this protocol.
Although precise amount of allowable payload is system dependant it precludes
sending data for example in a burst mode, etc.

The rules of the DXC protocol are explained by the sequence diagram in Fig. 1. A
DXC message ‘A’ is sent from a DXC object 1 at event ‘a’. Now the object 1 gets
blocked from sending messages of type ‘A’ – event ‘b’ – until it receives ‘A_ACK’,
what happens at a time event ‘d’. However, before event ‘d’ commences, it is still
possible for the object 1 to send other messages – by this token a message ‘B’ is sent
at instant ‘c’. An object 2 sends an ‘A_ACK’ message at event ‘d’ which finds itself
in an allowable time-out period (preset in the object 1) for the acknowledge messages
‘A_ACK’. Another message ‘A’ can be sent again from the object 1 only after it
receives ‘A_ACK’. Such situation happens at event ‘e’ with acknowledge received at
‘f’ in an allowable time.

A message ‘B’ was sent out from the object 1 to the object 3 at event ‘c’. However,
the latter has not responded with ‘B_ACK’ and therefore the object 1, after being
blocked for sending another ‘B’ messages, enters time-out conditions for the ‘B’
message. After handling this time-out conditions, the object 1 is able again to send
‘Bs’ to other objects – this takes place at event ‘h’ with received acknowledge at ‘i’.

2.2 Structure of the DXC Protocol

Based on the already presented assumptions (2.1), the DXC protocol is assumed to
rely on some lower-level protocol with basic transport facilities [7][2], i.e. it should
provide message addressing and data exchange. In our realization it was the Control
Messaging Channel [4], although other protocols can be used here as well.

The other protocol layers, i.e. an upper and lower to the DXC layer, are totally
transparent. The layered model with the DXC protocol is presented in Fig. 2.

The hardware communication network in Fig. 2 can be any lowest level media of
communication. It is separated from DXC by the transport layers. Based on this
architecture, each DXC message is embedded into lower level messages as shown in
Fig. 3.

Table 1 presents definition of the main group of the DXC commands. Each row of
this table contains a name and detailed description of a message, as well as the same
information for its acknowledge counterpart messages. This proposition is based on
many years of experience in implementations of the computer platforms. We believe
that it is sufficient for majority of the common control and data exchange operations
in most of the embedded systems.

 The Object-Oriented Protocol for Data Exchange and Control 49

As alluded to previously (2.1), each DXC message has an acknowledge
counterpart. This is achieved automatically without separate definition of the latter
group of messages. This way the DXC messages can be actually taught of as pairs,
consisting of a message and its acknowledge companion (i.e. a single row in Table 1).
These features provide desirable properties of the protocol, such as responsiveness
and simple error handling. They help also to maintain system correctness and
robustness. At the same time the protocol is kept as minimal as possible. These
attributes are especially important in case of real-time embedded systems [5][13].

Definition of the DXC presented in Table 1 is an open standard and new message
groups can be easily added. However, it is highly recommended to keep this main
group (Table 1) untouched and if necessary define sub-commands, i.e. specialized
commands relating only to one command from the main group. In practice, this can
be easily achieved by special message encoding format. Fig. 4 depicts structure of a
DXC message. The first field contains message encoding – in this case it is composed
of two fields, one for main message and the second for a sub-command. In practice

Fig. 2. The DXC protocol in the layered pro-
tocol model

Fig. 3. A DXC frame embedded into a CMC
frame

Fig. 4. Structure of an exemplary DXC
message. The first field contains message en-
coding (for example on 2×4-bits). The
second field conveys a payload (potentially
next layer message, etc.).

Fig. 5. Structure of a CMC message. Data field
(green) is used to convey frames of upper layer
protocols (DXC in this case).

50 B. Cyganek

we used eight bits for the DXC message encoding, a nibble for the main and the
second nibble for the sub-command.

The last field in Fig. 4 conveys a payload (e.g. messages of a next layer, etc.).

Table 1. Definition of the main DXC commands

DXC message type DXC acknowledge message type

Name Description Name Description

D
X

C
_I

N
IT

This type of message is sent for
initialization of a receiving part.
This message contains all required
parameters.

D
X

C
_I

N
IT

_A
C

K
 A receiving part responds with

this message upon successful
reception of the initialize message
DXC_INIT (and after
initialization process, if required).
Optionally, this type of message
can contain the error code.

D
X

C
_R

E
SE

T

This type of message is sent to place
a receiving part in a reset state. This
type of message can contain some
additional parameters.

D
X

C
_R

E
SE

T
_A

C
K

A receiving part responds with
this message upon successful
reception and execution of the
reset message (DXC_RESET).
This type of message contains the
error code to inform transmitter
of reset state.

D
X

C
_S

T
A

R
T

 This type of message is sent to start
an action on a receiving part (e.g.. a
measurement). The action should
have been already initialized. This
type of message can convey some
additional parameters.

D
X

C
_S

T
A

R
T

_A
C

K

A receiving part responds with
this message upon successful
reception and execution of the
start message (DXC_START).
This message can contain an error
code to inform a transmitting part
of an operation status.

D
X

C
_S

T
O

P

This type of message is sent to stop
an action on a receiving part. This
type of message can contains some
additional parameters.

D
X

C
_S

T
O

P
_A

C
K

A receiving part responds with
this message upon successful
reception and execution of the
stop message (DXC_STOP). This
message can contain an error
code to inform a transmitting part
of an operation status.

D
X

C
_D

A
T

A
_E

X
C

H

This type of message is sent to
exchange data with a receiving part.
That action should be initialized
previously. This type of message can
convey some additional parameters.

D
X

C
_D

A
T

A
_

E
X

C
H

_A
C

K

A receiving part responds with
this message upon successful
reception and execution of the
data exchange message
(DXC_DATA_EXCH).
This message can contain an error
code to inform a transmitting part
of an operation status.

 The Object-Oriented Protocol for Data Exchange and Control 51

2.3 The Base Protocol Layer

It was already mentioned that the DXC protocol relies on some lower-level protocol
with basic message addressing and data exchange mechanisms. In our realization this
layer was realized by means of the simple CMC protocol, which details can be found
in [4]. This protocol relies on short messages, transferred over fixed channels. Fig. 5
presents the structure of a CMC message. Again, the data field of a massage can be
used to convey frames of the upper layer protocols, i.e. the DXC messages in our case
– see Fig. 3.

Each CMC message is identified by a constant preamble field used for proper
message alignment. Then two address fields follow, the first for a destination, the
second to identify a sender of that message. Each address field, in turn, is divided into
two partitions:

1. System address.
2. Local address.

The first part of an address uniquely identifies a CMC system. The second identifies a
client within a system [4].

Data is conveyed in the message data field of potentially different length which is
placed in the data size field. This field contains number of bytes in the data part of a
message. The CMC traffic is governed by a system of message dispatchers, working
on different levels of a system [4].

3 Object-Oriented Implementation of the DXC Based Protocols

The functionality of the proposed design pattern for generation of DXC protocols can
be summarized as follows:

1. There are two groups of messages:
• Main commands.
• Acknowledge counterpart commands (ACK).

2. For each "main" command there is automatically generated its counterpart in
the "acknowledge" group. Therefore, there is only a need to explicitly define
"main" commands.

3. There is exactly one entry for each command from each group. For each
command it is possible to register an unlimited number of handlers that will be
called (notified) on reception of a command they registered to.

4. In addition, for each command of the "main" group, it is possible to register an
unlimited number of handlers that will be called on acknowledge time-out.
This happens if after sending a given command there is no acknowledge in a
predefined time for that “main” command.

5. Sending a subsequent "main" command is possible only after reception of the
acknowledge message for this command or if time-out conditions have been
met, i.e. after calling the special time-out handlers to handle this situation.
Note however, that it is an error if we receive an acknowledge message while
the corresponding command is not blocked at that time. In such a situation we
do not call the registered handlers.

52 B. Cyganek

6. All actions of the protocol are handled by means of the specialized handlers
(and time-out handlers) that are orphaned [12] to the protocol generator object.

7. A multi-platform implementation is assumed. However, some actions are by
definition platform specific, e.g. time measurement or thread security. For
those operations a separation is necessary (e.g. a handle/body and factories can
be used here [6][1]).

Fig. 6 presents structure of a framework for generation of DXC protocols that
realizes the stated functionality. It consists of the four main components:

1. The DXC commands policy.
2. Base data and addressing protocol.
3. Thread security policy.
4. Containers for DXC message handlers.

Fig. 6. Structure of the DXC protocol generator design pattern

The most important are the
two first components. The
role of the DXC com-
mands policy is to define a
group of DXC commands.
This can be done e.g. in
accordance with the speci-
fication given in Table 1.

The base data and addr-
essing protocol provides
basic transport facilities to
the DXC layer. Although
it is presented in Fig. 6 as
an inherent block, actually
it can be an external
module.

The last component of the DXC generating pattern is actual storage for externally
supplied handlers that are notified on messages they had been registered for.

Additionally, the DXC generator requires access to the system clock. This is used
for example to control message latency and to fire time-out conditions if necessary.
Thanks to this feature the system can cope with unexpected situations, e.g. when a
recipient is not responding for some reasons – not unusual situation in embedded
systems. Details of implementation with full C++ code can be found in [8].

Massage handling is accomplished by registering number of external objects to the
DXC generator object. Handlers are notified on messages they registered for. It is
possible that a single handler is registered to many DXC messages. It is also possible
that no handler is registered for a message. The second group consists of handlers
registered to be notified only on time-out conditions. This can happen if required
acknowledge message is not received in a predefined period of time (which can be set
dynamically). We should notice also that next message can be sent if such a message
has been already acknowledged. Otherwise, sending of this message type is prohibited
and the message sending mechanism stays in a blocked state.

 The Object-Oriented Protocol for Data Exchange and Control 53

3.1 Implementation Issues

Presenting implementation for embedded systems is always problematic due to many
different programming platforms and system specifics. However, throughout recent
years programming embedded computers with high level languages and object-
oriented methods became more frequent. This is very desirable since such languages
and programming environments allow faster development, quick debugging, and easy
maintenance. These development methods lead to the multiplatform design, resulting
with the good quality code, which allows easy upgrades, modifications, as well as
reusability. In this section we present details of implementation of the proposed
pattern for generation of the DXC protocols. This implementation was done in C++
on three platforms: Microsoft® Embedded 4.0 for Windows CE, Metrowerk’s
CodeWarrior® 6.0 for PowerPC embedded platforms, and reference implementation
on Microsoft Visual C++ 6.0 for Windows. Full version of the latter can be
downloaded from [8]. In addition this project contains complete implementation of
the CMC protocol [4], timer adapter, and thread security mechanisms for Windows.

Design of a specific DXC should start with a list of the DXC commands and their
encoding. Exemplary proposition of message encoding presents Table 2. A main
command occupies the higher nibble, a sub-command is encoded on the lower nibble.

Table 2. Exemplary encoding scheme for the suite of the DXC commands. The main
commands are encoded on the four MSBs. The sub-commands on the 2nd nibble (‘x’ bits).

Main DXC commands DXC command encoding (higher nibble)

DXC_INIT 0000xxxx
DXC _INIT_ACK 0001xxxx
DXC _RESET 0010xxxx
DXC _RESET_ACK 0011xxxx
DXC _START 0100xxxx
DXC _START_ACK 0101xxxx
DXC _STOP 0110xxxx
DXC _STOP_ACK 0111xxxx
DXC _DATA_EXCH 1000xxxx
DXC _DATA_EXCH _ACK 1001xxxx
Reserved 11110000

x – a “don’t care” value (these fields can be use to define sub-messages)

In Fig. 7 the class hierarchy of the design pattern for generation of the DXC

protocols is presented (UML and Taligent notations [12]). A practical implementation
can be done in any available language on a given system, however. It has only to
comply with the already defined functionality and semantics.

The T_DXC_ProtocolGenerator template class in Fig. 7 constitutes a core of the
pattern for generation of a user defined DXC protocols. The presented
implementation follows directly definition of the pattern given in (3) – see also Fig. 6
and [8]. It is derived from three classes – two of them are its template parameters at
the same time. This programming techniques allows very flexible generations of

54 B. Cyganek

Fig. 7. Hierarchy of the pattern for generation of the user defined DXC protocols. The pattern
consists of the main T_DXC_ProtocolGenerator template class which is derived from three
classes. The DXC_Command_Policy base class defines user DXC commands. At the same time
it is a template parameter of the T_DXC_ProtocolGenerator class.

compound hierarchies with class policies [1][14]. The DXC_Command_Policy base
class defines such a policy which is a set up by DXC commands defined by a user.

The second (optional) policy is the thread security policy, defined here in the
ThreadSecurity_Policy base class. The third T_CMC_MeasurementProtocol base
class provides base protocol layers necessary for the DXC operations.

The T_DXC_ProtocolGenerator allows a designer to generate his/her own
measurement protocol, given a specific policy. The key issue then is to define a
specific policy in a form of command definitions that will be used by this protocol.
The following list constitutes a user’s guide for creation of the user’s DXC protocols:

1. Copy the example class DefaultCommands_Policy [8], name it User_Policy, and
define your "normal" commands in the appropriate enumerated types. Remember
to keep the special enums, such as k_DXC_GROUP_INIT_LAST_ITEM intact.
Remember also that the corresponding "ack" commands will be created
automatically.

2. Create your own instantiation of the template T_DXC_ProtocolGenerator; As a
template supply your User_Policy, e.g.:

 typedef TMeasurementProtocolGenerator< User_Policy > MyProtocol;

3. Write your own handlers, derived from the THandler (see [8]) and register them to
the MyProtocol.

 The Object-Oriented Protocol for Data Exchange and Control 55

An example of the user defined DXC policy is the InterSystemCommands_Policy
class which was defined for one of our measurement systems for the inter-system
management [8].

4 Experimental Results

The DXC protocol was implemented in a form of a test platform that consists of the
board with the ARM processor running Microsoft Windows CE and the slave-
measurement boards with the PowerPC 8260 processors. The communication and
data channels are implemented in a form of the CMC protocol [4]. The inter system
connections were done by the local RS232 links, as well as the dual-ported RAM.

The obvious question pertinent to the communication protocol is its throughput,
reliability and channel efficiency. The answer can put light onto the influence of the
header overhead, retransmission rate, number of bits devoted to the data and CRC
fields and the ACK message length, etc. on the performance criteria. It is not always
easy to measure those data, however. This is due to the fact that the underlying
protocols contain hidden (or not published) mechanisms which latencies are not
known beforehand. Therefore when performing a quantitative analysis of the DXC
protocol we measured the throughput of the whole chain of protocols with DXC on
top and system mechanisms. The justification for such an approach comes from the
fact the in practice the DXC protocol is not used alone, although different underlying
protocols can significantly change the experimental results.

In the first group of our experiments we measured the channel utilization factor U,
given by the following measure [2]:

1

1
U

a
=

+
, with b pd

D

r
a

N

τ⋅
= (1)

where rb is data bit rate [bits/s], τpd is a worst-case propagation delay [s], ND stands
for maximum frame length [bits]. In our experiments we set the echo mode, i.e. a
transmission chain was set among three participating systems, as presented in Fig. 8.

Fig. 8. The system set-up for measurement of the DXC performance parameters: T – a
transmitter, RPT – a repeating system, R – a receiver

Since the data protocol was a very slow medium, we set the rb as the maximum
possible data rate for this channel, i.e. to 112.5 kB/s in our system. Absolute values of
the τpd parameter in (1) were unknown, but they were increased by adding number Q
of participating objects in the whole communication chain.

56 B. Cyganek

Fig. 9 shows two plots visualizing the measured performance parameters of the
DXC protocol in the set-up in Fig. 8. The channel utilization parameter U versus
number of protocol participating objects Q and for different lengths of a frame ND =
80, 800, and 2080 bits/frame (the latter is the maximal size determined by the
underlying CMC layer) depicts Fig. 9a. It is visible that despite significant increase of
the frame length and number of participants of this DXC system, the average channel
utilization factor is quite similar in the three cases. This means that the throughput of
the underlying data layer (CMC in our case) dominates, which is not a surprise for the
RS232 protocol. This thesis is also acknowledged by the measurements of an average
delay time τpd for different values of Q’s and ND’s – visible in Fig. 9b.

a b

Fig. 9. The DXC performance measurement for different ND=(10*8, 25*8, 260*8): (a) – the
channel utilization parameter U vs. number of clients Q, (b) – the average delay time τpd vs. Q

Fig. 10a depicts another type of tests which consisted in measuring an average
relative data rate of the system set-up shown in Fig. 8 for increased data rate of the

a b

Fig. 10. The average data rate vs. relative data rate of the data channel set in ten quantum steps
for RS232 (300-230400 bit/s), ND=2080, Q=100 of the DXC protocol: (a) – all recipients
responding, (b) – 10% of recipients not responding (ACK stall conditions)

 The Object-Oriented Protocol for Data Exchange and Control 57

underlying data channel (in discrete steps from 300-230400 bits/s). These results
show once again that the prominent factor for DXC is performance of the data link.

The situation gets quite different if 10% of randomly selected participating objects
were not responding – Fig. 10b. In this case significant amount of service time was
spent waiting for the ACK messages (the ACK stall conditions).

5 Conclusions

In this paper we address the problem of control and data exchange in embedded
systems. We provide the complete definition of a versatile DXC protocol which is
characterized by five groups of main and acknowledge commands. We also present a
design framework for generation of user defined versions of this protocol. The object-
oriented development technique allows code reuse and generation of DXC protocols
tailored to specific embedded platforms.

The main areas of applications of the DXC protocol constitute embedded systems
composed of many peer programmable modules that need to be connected together.
DXC allows connection of systems characterized by extremely different programming
and networking capabilities. The advantageous is its ability of using any lower level
data connection of the sub-systems, which can be for instance RS232, USB, etc.

The DXC protocol showed its robustness and flexibility in our implementation on
the test platforms (4). Based on experimental results and achieved performance in our
realisation of the presented protocol, it can be especially recommended for multi
processor and multi system embedded designs. This is due to the fact that the
universal definition of DXC allows its operation on any different lower
communication layers and operating systems. Thanks to the acknowledge policy,
message blocking and time-out mechanisms, DXC joins them seamlessly allowing
reliable control and data exchange even in a case of sub-system failures.

Finally, the multiplatform paradigm undertaken for implementation allows easy
porting of the DXC protocol to other platforms. The C++ source code with full
version of the presented patterns and protocols is also provided [8].

Acknowledgement. This work was supported by the Polish funds for the scientific
research in 2007.

References

1. Alexandrescu A.: Modern C++ Design. Addison Wesley (2001)
2. Baker, D.G.: Monomode Fiber-Optic Design. Van Nostrand Reinhold (1987)
3. Bluetooth Specifications. Bluetooth SIG at http://www.bluetooth.com/ (2005)
4. Cyganek, B., Borgosz, J.: Control Messaging Channel for Distributed Computer Systems,

Proceedings of the ICCSA 2004, Assisi, Italy, Springer LNCS No. 3046 (2004) 261 - 270
5. Douglass B.P.: Doing Hard Time. Developing Real-Time Systems with UML, Objects,

Frameworks, and Patterns. Addison-Wesley (1999)
6. Gamma, E., E., Helm, R., Johnson, R.: Design Patterns. Addison-Wesley (1995)
7. Halsal, F.: Data Communications, Addison-Wesley (1995)
8. http://home.agh.edu.pl/~cyganek/DXC_Protocol.zip

58 B. Cyganek

9. Labrosse, J.J: Embedded Systems Building Blocks. R&D Books (2000)
10. RFC 3081: The Blocks Extensible Exchange Protocol Core (2001)
11. Stroustrup B.: The C++ Programming Language. Addison-Wesely (1998)
12. Taligent Inc.: Taligent's Guide to Designing Programs. Addison-Wesley (1994)
13. Yaghmour, K.: Building Embedded Linux Systems. O’Reilly (2003)
14. Vandervoorde D., Josuttis N.M.: C++ Templates. Addison Wesley (2003)
15. ZigBee Alliance: ZigBee Specification (2005)

A Link-Load Balanced Low Energy Mapping and
Routing for NoC

ZhouWenbiao1,2, ZhangYan1, and MaoZhigang2

1 Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
2 Harbin Institute of Technology Harbin, Harbin, China

Abstract. The paper presents a novel mapping and routing technique for the
mesh based NoC design problem with an objective of minimizing the energy
consumption and normalized worst link-load. The proposed algorithm is a par-
ticle swarm optimization (PSO) based two phases process, one is mapping core
onto NoC, and another is the allocation of routing path. The proposed algorithm
uses a novel representation for PSO particle. Experimental results show that the
proposed technique can reduce the normalized worst link-load by 20% on average
while guarantee a low energy consumption.

1 Introduction

New technologies allow many millions transistors integrated onto a single chip and
thus the implementation of complex SoC that need special communication resources to
handle very tight design requirement. System architecture design is shifting towards a
more communication-centric methodology [1]. Meanwhile, with the chip size’s grow-
ing, the global clock closure is also a problem. The Network-on-Chip [2,3], which
plays a pivotal role in future SoCs, is one of a solution for these challenges. It inte-
grates some heterogeneous resource (for example, CPU, ASIC, DSP, etc) in a homo-
geneous on chip network environment. The mapping and routing are two key steps for
the NoC based system’s design and implementation [4]. The whole design process of
NoCs includes several processes, such as application decomposing, task assignment,
topology selection, mapping IP cores onto title, and routing strategy. NoC design for a
specific application offers an opportunity for optimizing the mapping of cores to differ-
ent titles that act as the placeholder in the architecture, and the style of routing greatly
affects the system performance and power consumption. For example, a specific ap-
plication composed by a set of existing cores must be mapped onto the on-chip phys-
ical network structure, as shown in Fig.1, an application characteristic graph (APCG)
that consists of 6 IP cores is mapped onto a 2x3 two-dimensional mesh NoC. Dif-
ferent mapping algorithms will map the IP cores onto various position. Meanwhile,
after a core has been mapped the coordinate title, the next step is to determine how
to route packets. In Fig.1, the core (a) is mapped onto title-1 and core (e) is mapped
onto title-6, then the shortest routing path between core (a) and core (e) has three
choices:S1 → S2 → S3 → S6,S1 → S2 → S5 → S6, S1 → S4 → S5 → S6.The
selection of routing path will greatly affect the link-load balance of system, and other
performance parameter, such as the bandwidth, delay, jitter, and resource utilization.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 59–66, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

60 W. Zhou, Y. Zhang, and Z. Mao

These lead us to find an optimized mapping position and select a custom routing path
to satisfy the link-load-balance requirement of system while minimizing the NoC com-
munication power consumption. The remainder of the paper is organized as follows.

Fig. 1. A NOC mapping and routing allocation
instance

A NoC mapping instance

(core, title)

A PSO particle

dimension: 1 2 3 4 5 6

value : e a c b d f

(e,1) (a,2) (c,3) (b,4) (d,5) (f,6)

Fig. 2. particle of NoC mapping

Section 2 discusses previous work. Section 3 presents the formation of mapping and
routing problem. Section 4 proposed our new technique for the mapping and routing
problem. Section 5 is the experimental results and finally section 6 concludes the paper.

2 Previous Work

The design of regular NoC architecture has been proposed in [5,6]. In [7], Lei et al.
proposed a two-step genetic algorithm that finds a mapping of cores onto NoC architec-
ture such that the overall execution time is minimized, the first step is assigning the task
onto different IP cores, and the second is mapping the IP cores onto the title of NoC.
Krishnan Srinivasa et al. [8] utilized the GA for the custom NoC mapping process. And
a BB algorithm is used to map cores onto a mesh-based NoC architecture and find a
flexible routing path with the objective of minimizing energy and satisfying the band-
width constraints [9]. In [10], an algorithm NMAP under different routing functions
and bandwidth constraints is presented. Chan-Eun Rhee et al. [11] proposed a MILP
algorithm for the many-to-many core-switch mapping for the NoC architecture with
optimizing the power consumption.However, no methodologies can involve the design
of link-load balance in the course of mapping and routing selection, and in this paper,
we propose a PSO based design methodology to minimize the energy consumption of
NoC while guaranteeing the balance of link-load.

3 Problem Formation

The NoC mapping problem is to determine how to topologically map the selected cores
onto on chip network and select a routing path for different communication flows, such
that certain metrics of performance are optimized. In our formulation, a periodic real-
time application that already bounded and scheduled on a list of selected cores is char-
acterized by an application characterization graph (APCG) G(V, EC),it is a directed

A Link-Load Balanced Low Energy Mapping and Routing for NoC 61

graph, where each vertex vi ∈Vrepresents a selected IP core, and each directed edge
ei,j∈EC models a communication flow between core vi and core vj . The edge weight
ei,j is a 2-turples v(ei,j), w(ei,j) where v(ei,j) denotes the information exchange vol-
ume between cores vi and core vj , w(ei,j) indicates the bandwidth requirement. The
communication volume, bandwidth requirement can be obtained through the set of con-
current tasks’ performance and the respect deadline. In our paper, we assume that the
value of v(ei,j), w(ei,j) has been computed in advance. The underling NoC is repre-
sented by an architecture characterization graph (ARCG) G(T, L), it is also a directed
graph, where each vertex ti∈T represents one title in the architecture, and each directed
edge li∈L represents a physical link, all links are assumed to have the same length and
width B. A routing path p(tvi , tvj) ∈ P indicates that map core vi onto title i and core
vj onto title j, it is a set of several links {lj, lj+1, . . . }, where P is a set of all routing
path. In addition, for the same time, the link bandwidth cannot be processed by two or
more communication flows. In our paper, we define the link-load function as follows:

U(lj) =
∑

∀ei,j

w(ei,j) × f(lj , p(tvi , tvj) (1)

where

f(lj , p(tvi , tvj)) =

{
0 lj ∈p(tvi , tvj)
1 lj �∈p(tvi , tvj)

Moreover, we use the normalized worst link-load γ to evaluate the link-load-balance.
For every core’s mapping position MAP and its source and destination routing path P
set, the normalized worst link-load γ:

γ(MAP, P) =
max U(li)

∀i∈L

2WNKm
(2)

Where the denominator in the Eq.(2) is the bisection bandwidth of 2D mesh NoC, W
is the link bandwidth,N is the node number of NoC, and the km is the max radix of 2D
mesh.And we defined the energy consumption as follows. For the whole application,
the energy consumption EnergyEc :

EnergyEC =
∑

ei,j∈EC

v(ei,j) × {(|p(tvi , tvj)| + 1) × ER + (|p(tvi , tvj)|) × EL} (3)

Where |p(tvi , tvj)| is the hop of path p(tvi , tvj), and ER is the energy consumption of
single router,EL is the energy consumption of one link. After given above the definition,
the objective of the NoC mapping and routing is as follows: ‘Finding a mapping instance
MAP and a set of routing path P , such that total energy consumption of the whole
NoC (not include the IP core’s energy consumption) is minimized and the value of
γ(MAP, P) is minimized’
That is:

min{Energy(MAP)} and min{γ(MAP, P)} (4)

62 W. Zhou, Y. Zhang, and Z. Mao

Such that:

∀vi ∈ V, MAP (vi) ∈ T (5)

∀vi �= vi ∈ V, MAP (vi) �= MAP (vi) (6)

∀link lk, W ≥
∑

b(vi,j) × f(lk, p(tvi , tvj)) (7)

4 Particle Swarm Optimization and NoC Mapping Problem

The mapping IP cores onto NoC architecture is a NP problem [9]. Our attempt is to try
to develop an algorithm that can give near optimal results within the reasonable time, or,
an algorithm with the best trade-off between result quality and computation time. Par-
ticle Swarm Optimization (PSO) has shown the potential to achieve this dual goal quite
well [12,13]. We have developed a two-phase PSO based algorithm for NoC mapping
problem. This section presents the process for the PSO based load balance mapping and
routing in NoC architecture, therefore called PLBMR. PLBMR is a two-phase particle
optimization algorithm. In the first phase, we use the PSO to map IP core onto the title
on the NoC architecture to minimize the energy consumption, and the second phase is
to find all routing path for every mapping pair to satisfy the link-load balance.

4.1 PLBMR Phase 1-Mapping Core onto Title

Particle Swarm Optimization. PSO is an algorithm proposed by Kennedy and Eber-
hartin 1995 [12].Kennedy and Eberhart explore several models to manipulate these fac-
tors to accurately resemble the dynamic of the social behavior of birds, before reaching
to the following equations that amazingly achieve good performance on optimization
problems [14]:

Vid = vid × (pid − xid) + c2 × Rand() × (pgd − xid) (8)

Xid = Xid + Vid (9)

Eq.(9) is used to calculate the particle’s new velocity according to its previous velocity
and to the distances of its current position from both its own best historical position and
its neighbors’ best position. Then the particle flies toward a new position according to
Eq.(10). The performance of each particle is measured according to a pre-defined fitness
function, which is usually proportional to the cost function associated with the problem.
This process is repeated until user-defined stopping criteria are satisfied. Two versions
of PSO exist, gbest and lbest. T he difference is in the neighborhood topology used to ex-
change experience among particles. In the gbest model, the neighborhood of the particle
is the whole swarm . In the lbest model, a swarm is divided into overlapping neighbor-
hoods of particles. This best particle is called the neighborhood best particle. Next, we
present a gbest-model PSO algorithm for the problem at-hand: NoC mapping problem.

Core Mapping’s Particle Encoding Solution. Because NoC mapping has the con-
straint that different IP core cannot be mapped the same title, some randomly generated
particle will violate the constraint. In order to represent a particle containing the mapping

A Link-Load Balanced Low Energy Mapping and Routing for NoC 63

of N IP cores onto 2D mesh to satisfy the constraint, a convenient particle representa-
tion scheme is suggested here. Assuming the mapped 2D mesh NoC is represented by
1D array by using a left to right scan performing in a top-to-down fashion. This way
an N -elements string of integers represents N different IP cores. In the proposed rep-
resentation, at the ith position from the left of the string, an integer between 1 and i
is allowed. The string is decoded to obtain the mapping as follows. The ith position
denotes the mapping of IP cores i in the permutation. The decoding starts from the left-
most position and proceeds serially toward the right. While decoding the ith position,
the first i − 1 IP cores are already mapped, thereby providing with the i placeholders
to position the ith IP core. This decoding procedure is illustrated with an example hav-
ing 6 IP cores (a∼f) to be mapped onto a 2×3 2D mesh: {1 2 1 3 3 6}. In
the above coding, the first integer is used to map a; the second integer is used to map
b, and so on. All solutions will have a 1 in the first position. The coding actually starts
from the second integer. The second IP cores b can be mapped onto two places:1)Before
the IP core a;2)After the IP core a. The first case is represented by a value ‘1’ and the
second case is represented by a value ‘2’. Since the second integer is ‘2’ in the above
string, the IP core ‘b’ appears after the IP core ‘a’. Similarly, with the first two IP cores
mapped as (a b), there are three placeholders for the IP core ‘c’:1) Before a (with a value
1);2) Between a and b (with a value 2);3) After b (with a value 3). Since the string has a
value ′1′ in the third place, the IP core is mapped before a, thereby constructing a partial
mapping. Continuing in this fashion, the following permutation of the six alphabets is
obtained:{c a e d b f}. Next, this 1−D permutation is converted into 2×3 2D
Mesh of alphabets representing components, as Utilizing this representing scheme for
the particle, it can easily deal with the violated particle after update the particle velocity.

Particle 1

Particle 2

Particle 3

a e b c b f c d e d e f

0 0 1 1 0 0 0 1 0 1 0 1 0

0 1 0 1 0 0 0 1 0 1 0 1 0

0 0 1 0 0 1 1 0 0 1 0 1 0

Data flow

Fig. 3. PSO particles of routing path

PSO Optimization for Core Mapping Problem. In our mapping IP cores onto NoC
phase, we setup a search space of M dimension for an M cores mapping problem. Each
dimension has a discrete set of possible values limited to s = {Ti : 1 ≤ i ≤ N}(M ≤
N); such that N is the number of titles in the NoC system under consideration. For
example, consider the problem to map 6 cores in Fig.1 onto a 2×3 2D NoC architecture.
Fig.2 shows an instance between possible mappings to a particle position coordinates in
the PSO domain. Using such particle representation, the PSO population is represented
as a P ×M two-dimensional array consisting of N particles, each represented as a
vector of M cores. Thus, a particle flies in an M -dimensional search space. A core
is internally represented as an integer value indicating the title number to which this
core is mapped to during the course of PSO. Also, the minimum routing algorithm is
used, but we still don’t obtain the information which links the routing path contains,

64 W. Zhou, Y. Zhang, and Z. Mao

therefore, the bandwidth constraints is not considered in the PLBMR phase-1, and we
only minimize the energy consumption. In the followed phase, we minimize the value
of Eq.(2) while considering the link bandwidth constraints.

4.2 PLBMR Phase 2-Routing Path Selection

In the first phase of PLBMR, a core mapping position with minimizing the NoC power
consumption is obtained. In the second phase of PLBMR, we aim to allocate a proper
routing path for every communication flows, the purpose is to make a link-load balance
of NoC with satisfying the link bandwidth constraints. Because the minimum-path rout-
ing algorithm is used, the IP core’s mapping position determines the unique routing path
length. As shown in Fig.1, IP core ‘a’ is mapped onto title ‘1’, and IP core ‘e’ is mapped
onto title ‘6’, then the hop number of communication flow between ‘a’ and ‘e’ is fixed.
We randomly allocate any path among the three paths, and the number of hop is 3. In
our NoC, the routing information is represented by a binary number. Each bit of the bi-
nary number represents routing direction, i.e. bits ‘1’ and ‘0’ correspond to move along
the X-direction and Y -direction respectively. The hop number between source tile and
destination title determines the bit number of routing information, i.e. the three routing
path P1, P2, P3 between ‘a’ and ‘e’ is respectively {0 0 1}, {0 1 0}, {1 0 0}.

Routing Path’s Particle Encoding Solution. The particle of routing path in the PLBMR
is represented by one-dimensional arrays of binary numbers. Each binary array repre-
sents one combination of all communication routing path set P in the APCG. For ex-
ample, Fig.3 shows three particles of communication flow in the APCG which is shown
in Fig. 1. The particle’s representing way is shown in Fig.3. For example, the commu-
nication flow {(a→e),(b→c),(b→f),(c→d),(e→d),(e→f)} routing path in particle
‘1’ is respectively {0 0 1 1 0 0 0 1 0 1 0}. By representing the particle with
this method, we can effectively generate the initial population size of PSO algorithm.
However, the number of ‘1’ and ‘0’ is restricted for every communication flow. When
the X-hop and the Y -hop of a communication flow are ‘n’ and ‘m’ respectively, the
randomly generated binary numbers must assure ‘n’-number of 1s and ‘m’-number of
0s. Thus, this method generates the combination of all communication flow’s binary
number, which forms a valid particle.

PSO Optimization for Routing Path Selection. After having the particle, the PSO
based routing path allocating process is almost the same as the phase ‘1’. Because of
the space limitation, we don’t list the algorithm code. In the course of the position
updating, the new particle’s values will not be a binary number, it violates the routing
path representing principle. Therefore, in the algorithm, we must round these numbers
to the ‘0’ or ‘1’; the greater value is rounded to the binary value ‘1’ according with a
communication flow’s Y -distance. The effects of converting from real number to binary
number should be determined further.

5 Experimental Results

We first compute the model parameters that used to evaluate the energy consumption.
Assuming 0.18um technology and the link length between two switches is 2mm, the

A Link-Load Balanced Low Energy Mapping and Routing for NoC 65

0 20 40 60 80 100 120
1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26
x 106 PSO based Mapping and Routing

Iterations

E
ve

ry
 It

er
at

io
ns

 M
in

P
ow

er
 (n

J)

(a) Phase One

0 20 40 60 80 100 120

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37
PSO based Mapping and Routing

Iterations

E
ve

ry
 It

er
at

io
ns

 M
in

lin
kl

oa
d

(b) Phase Two

Fig. 4. PLBMR Optimization for 6×6 NoC

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Application Characteristic Graph

n
o
rm

a
li
z
e
d

w
o
rs

t
li
n
k

lo
a
d

PLBMR

PBMXY

Fig. 5. Performance comparisons be-
tween PLBMR and PMXY

Energy(nJ) NormalWorstLoad
PLBMR BnB MOCA PLBMR BnB MOCA

G0 54.56 54.56 54.56 0.120 0.120 0.120
G1 256.7 255.2 285.7 0.564 0.587 0.634
G2 156.7 156.5 176.8 0.276 0.395 0.403
G3 189.6 178.7 198.3 0.303 0.323 0.346
G4 168.2 156.1 180.9 0.230 0.296 0.305
G5 130.8 112.9 140.2 0.214 0.325 0.387
G6 178.5 160.4 189.6 0.243 0.356 0.402
G7 567.6 530.2 599.5 0.422 0.576 0.600
G8 356.7 349.2 390.6 0.507 0.613 0.634
G9 367.5 350.1 399.7 0.448 0.568 0.597
G10 298.9 278.2 321.0 0.345 0.456 0.499

Fig. 6. Comparsion of BnB, MOCA and PLBMR

capacitance of a wire is 0.56Ff/um, the voltage swing is 3.3v, then the energy con-
sumption of the link is 6.115pJ , and the bit energy value of 6×6 switches is 0.56pJ .
Given the bit-energy values and the mapping optimization results, the energy consumed
in the NoC architecture can be obtained. At the same time, a minimum-path routing
is used in the 2D mesh NoC and we assume the maximum link bandwidth of NoC
is 1000Mb/s. We started by estimating the efficiency of the PLBMR optimization al-
gorithm. For our experimental, we generated random application characteristic graph.
Fig.4 respectively shows the PLBMR algorithm optimization process for the 6×6 NoC.Fig.4(a)
and Fig.4(b) shows the energy consumption and link-balance optimization process for
6×6 NoC. In order to show the impact of PLBMR algorithm for the link-load balance,
we compare the PLBMR with the PSO based mapping algorithm for XY dimensional
routing (we denote it as the PBMXY). We generated random application characteristic
graph g1 to g10 for different parameter. Fig.5 shows the comparison results.

We also compared PLBMR algorithm with previous algorithm that related with path
allocation: Hu’s BnB [9] and Krishnan’s MOCA [12]. For MOCA, we only consider no

66 W. Zhou, Y. Zhang, and Z. Mao

latency constraints. Table 3 presents the comparison of PLBMR with BnB and MOCA
for g1 to g10 random APCG. As is shown in the table, the energy consumption has low
discrepancies, but for the normalized worst link-load, PLBMR performed within 9% of
MOCA, and 7% of BnB. Moreover, for a NoC with 36 node, our algorithm’s running
time is only 7 minutes with Pentium 4 2.0G and 256M memory machine.

6 Conclusion

A novel PSO based heuristic algorithm called PLBMR is proposed for the design of
link-load balance and low energy mesh based NoC architecture. We use particle swarm
optimization algorithm to explore the large search space of NoC design effectively. The
proposed algorithm optimizes the NoC energy consumption in the IP mapping phase,
and guarantee the link-load balance in the routing path-allocating phase. The perfor-
mance of PLBMR is evaluated in comparison with other proposed mapping and routing
algorithm BnB and MOCA for a number of randomly generated applications.

References

1. A. Jantsch, H. Tenhunen,: Nonlinear oscillations and Network on Chip. Kluwer. (2003)
2. Luca. Benini, G.D.Micheli,: Networks on Chips: A New SoC Paradigm. IEEE Computer 1

(2002) 70-78
3. P. Wielage, K. Goossens: Networks on silicon: Blessing or Nightmare?. DSD’02, Dortmund,

Germany, (2002) 196
4. U. Y. Ogras, J. Hu, and R. Marculescu: Key Research Problems in NoC Design: A Holistic

Perspective. CODES+ISSS’05, Jersey City, NJ, (2005) 69-74
5. W. J. Dally ,B. Towles: Route Packets, Not Wires: On-Chip Interconnection Networks.

DAC’01, (2001) 69-74
6. S. Kumar, A. Jantsch: A Network on Chip Architecture and Design Methodology. VLSI’02,

(2002) 105-112
7. Tang Lei, Shashi Kumar: A Two Genetic Algorithm for Mapping Task Graphs to a Network

on Chip Architecture. Antalya, Turkey, (2003) 180-187.
8. Krishnan Srinivasa, Karam and S. Chatha: ISIS: A Genetic Algorithm. based Technique

for Custom On-Chip Interconnection Network Synthesis. VLSID’05, Kolkata, India, (2005)
623-628

9. J.Hu, R. Marculescu: Exploiting the Routing Flexibility for Energy/Performance Aware
Mapping of Regular NoC architecture. DAT’03, (2003) 10688-10693

10. S. Murali, G. De Micheli: Bandwidth-constrained mapping of cores onto NoC architectures.
DATE’04,Paris,France, (2004) 896-901.

11. Chan-Eun Rhee, Han-You Jeong, Soonhoi Ha: Many-to-Many Core-Switch Mapping in 2-D
Mesh NoC Architectures. ICCD’04, San Jose, CA, USA, (2004) 438-443

12. J. Kennedy, R.C. Eberhart: Particle swarm optimization. ICNN, (1995) 1942-1948.
13. Y. Shi, R. Eberhart: Empirical Study of Particle Swarm Optimization. CEC’99, Washington,

DC, USA, (1999) 1945-1950

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 67–79, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Scheduling for Combining Traffic of On-Chip Trace
Data in Embedded Multi-core Processor

Xiao Hu, Pengyong Ma, and Shuming Chen

School of Computer, National University of Defense Technology,
Changsha, Hunan, P.R. of China, 410073

xiaohu@nudt.edu.cn

Abstract. On-chip trace data contains run-time information of embedded multi-
core processors for software debug. Trace data are transferred through special
data path and output pins. Scheduling for combining the traffic of multi-source
trace data is one of key issues that affect performance of the on-chip trace
system. By analyzing features of trace traffic combination, a lazy scheduling
algorithm based on the service threshold and the minimum service granularity is
proposed. The queue length distribution is constrained by configurable service
threshold of each queue, and switching overheads are reduced by lazy
scheduling and configurable minimum service granularity. Two metrics of
buffer utilizations on overflowing are presented to evaluate the efficacy of
queue priority assignment. Simulation results show that the algorithm controls
the overflow rate of each queue effectively and utilizes the buffer capacity
according to the queues priority assigned sufficiently. The algorithm is realized
in Verilog-HDL. Comparing with a leading method, the overflow rate is
reduced 30% with additional 2,015um2 in area.

1 Introduction

With widely use of SoC (System-on-Chip) and cache in embedded systems, the on-
chip data and instructions are hard to be captured by out-chip instruments for debug.
The real-time visibility of embedded processors has to be solved by additional silicon
area [9]. The leading vendors of embedded processor cores provide on-chip solutions
[1][2][4][5]. The IEEE-ISTO NEXUS 5001 STD also includes protocols to support on-
chip trace [6]. The on-chip trace system non-intrusively records real-time information
such as program path and data access by special hardware. These information are
compressed to trace data and transferred to the Debug Host PC through special data
path, output port and the out-chip emulator. The software tools in the host PC
decompress trace data and recover run-time information for debug and optimization.

YHFT-QDSP is a multi-core processor with one RISC core and four DSP cores of
YHFT-DSP/700[8]. To support real-time visibility of DSP cores for debug and
optimization, an on-chip trace system named TraceDo (Trace for Debug and
Optimization) is designed, as shown in Fig. 1. Trace data of each DSP core is
buffered in its Trace Module and transferred to Trace Port by Trace Bus Arbitrator.

To reduce pins used, only one output port is used by on-chip trace system
currently. The data path of the port is often 4bits~16bits currently. The output port is

68 X. Hu, P. Ma, and S. Chen

Fig. 1. Structure of the on-chip trace system in YHFT-QDSP
(TraceDo)

Fig. 2. Scheduling system
for trace data combination

the bottleneck and an on-chip buffer is required for trace data traffic. For multi-source
trace data in a multi-core trace system, a scheduling algorithm is required to combine
trace data from multiple queue buffers to single output port.

Features of trace traffic combination, evaluation metrics and scheduling schemes
are analyzed in this paper. A novel queue scheduling algorithm (TraceDo algorithm)
with Service Require Threshold (SRH) and Minimum Service Granularity (MSG) is
presented. Setting a SRH to each queue, queue switching is controlled by the
comparing the queue length with the threshold level of SRH. Users can control queue
length distributions and overflow rates according to overflow costs, buffer capacities
and burst characteristics of trace traffic. Using MSG and Lazy Switching together, the
minimum number of consumers served in a queue between two switchovers is
promised and such service granularity will be increased when other queues have
marginal capacity of buffer. Therefore switchover counts are reduced and overflow
probabilities along with such gains are constrained by SRH. Simulation results show
TraceDo algorithm can control queue length distributions effectively and reduce
overflows of one buffer by utilizing other buffers sufficiently. The hardware
realization of the algorithm meets timing constraints with reasonable area cost.

The remainder of this paper is organized as follows. Section 2 introduces
background and related works. This is followed in Section 3 by describing the
scheduling method. Section 4 discusses the realization in VLSI. Section 5 presents
experimental results of benchmark programs. Section 6 concludes the paper.

2 Background and Related Works

The scheduling features for combining traffics of on-chip trace data from multiple
cores are listed:

 Overflow Rate First
The trace system records real-time information of processors, trace data will
be lost when buffer overflows. Therefore, the overflow rate should be

 Scheduling for Combining Traffic of On-Chip Trace Data 69

considered firstly. Constrained by cost and power, the size of on-chip trace
buffer is less than one hundred bytes currently. The data volume of each
transfer is within dozens of bytes. Therefore the relatively limited transfer
delay can be ignored.

 Configurable Priority
The service priority of trace buffers should be configurable because of
different overflow costs, different buffer capacities and different burst
characteristics of trace traffic. Capacity of buffer is fixed at the time of
designing hardware by estimating the applications traffic. Characteristics of
trace traffic are fixed at the time of developing software. Overflow costs are
also known before program runs. Therefore users can tune buffer
performance influenced by above three factors by configuring the service
priority of each queue buffer before running program each time.

 Switchover Time
For identifying the source of trace data after combination, an ID of each trace
source should be inserted when queue switching. The IDs reduce the
bandwidth of Trace Port for trace data and increase out-chip overheads of
transfer and storage. The approach of reducing ID costs is to decrease queue
switchover counts and increase the volume of consumers served at a
switching interval. But such approach also increases the waiting time of other
queues for getting service, and so the probability of overflow increases.

 Area and Timing Constraints
The scheduling algorithm is realized by hardware, the strict constraints of
silicon area and computing cycles require the algorithm should be simple and
efficient.

The problem of trace scheduling in this paper is, in a multi-queue system with
single server as shown in Fig. 2, to design a scheduling algorithm with reasonable
cost that can reduce buffer overflows with configurable service priority, and make a
good tradeoff between queue switchover counts and the probability of buffer
overflow.

All on-chip trace systems that support multicores or multipipelines have to solve
the same problem as TraceDo: how to combine trace data from multiple buffers to a
single output port. ARC never reveals architecture details of its trace system [1],
PDtrace [4] and Freescale’s solutions [5] do not describe their scheduling methods,
and neither configuration about scheduling in their program models can be found.

CoreSight of ARM is the leading solution of multi-core trace [3]. The module of
Trace Funnel in CoreSight disposes trace scheduling. The scheduling scheme used in
CoreSight is named as Funnel algorithm in this paper. It assigned different priority to
each queue and a shared minimum service granularity1 (MSG) to all queues. Both the
priorities and MSG can be configured by users. Funnel is an exhaustive service
system with non-preemptive priority. After serving the current queue with the MSG
volume of customers, the server switches to the non-empty queue with higher priority
if such queue exists. If such queue does not exist, the server keeps on serving the
current queue until it is empty, and then the server switches to next non-empty queue
with lower priority. This method has low hardware costs, but the exhaustive service

1 It is called HTC in CoreSight, HoldTimeCycle.

70 X. Hu, P. Ma, and S. Chen

policy often brings such condition that the buffers of high-priority queues are not
utilized sufficiently while the lowest-priority queue overflows seriously. This is
confirmed by experiments in section 5.2.1.

Trace scheduling system is a polling system [10]. Exhaustive service, gated service
and limited service are three basic service policies. In LBF algorithm [11], the highest
priority is given to the queue with max normalized queue length (the ratio of queue
length to buffer capacity), but division operations for normalization increase hardware
costs and comparing operations of all queues decrease the scalability. There are
neither configurable priorities nor switchover times in LBF. Queues with different
priorities are served in different probabilities [12], but generating random numbers
and related operations require high hardware costs. Lackman uses the most similar
method to this paper [13]. High priority is given to real-time traffic unless the queue
length of non-real-time traffic is over a threshold. Lackman’s method does not give a
threshold to each queue and switchover time is not considered.

3 Algorithm

Definitions and explanations.
N: the number of queues in the scheduling system
Qi: the ith queue
Li: buffer capacity of Qi
t: the system time, cycle unit of the processor clock
bi(t): queue length of Qi at time t
ai(t): normalized queue length of Qi at time t, ai(t) = bi(t)/Li
A customer: one byte of trace data
Current queue: the queue on serving
Queue service time: the total serving time between two switchovers for a queue
Service granularity: the number of all customers served in a queue service time
ServCnt: the number of customers that have been served in current queue service

time
Overflow Rate: the ratio of rejected customers to arriving customers
Overflowing Time: the time when overflow of any queue occurs

Trace buffers dose not overflow frequently, therefore average queue length is not a
good metric for buffer utilizations when bandwidth is limited. A new metric named
Overflow Buffer Utilization (OFBU) is present:

(1) Overflow Buffer Utilization of Qi (OFBU_Qi): average of ai(t), t includes all
Overflowing Time. This metric gives the validity of queue priority
assignment. Low value of this metric means high priority.

(2) Overflow Buffer Utilization of all queues (OFBU_All): average of all
OFBU_Qi. This metric gives the utilizations of all buffers by scheduling
algorithms.

A lazy scheduling algorithm with Service Require Threshold and Minimum
Service Granularity (TraceDo algorithm) is presented, as shown in Fig. 3 and Fig. 4.

 Scheduling for Combining Traffic of On-Chip Trace Data 71

Configurations:

SRH: Service Require Threshold of each queue
MSG: Minimum Service Granularity, shared by all queues
Order Priority: each queue is assigned to a priority, and no queues share the

same priority

State definitions of each queue:

SRH_State: b>SRH, not on serving
Accu_State: SRH ≥ b>0, not on serving
Null_State: b = 0, not on serving
MSG_State: MSG ≥ ServCnt>0, on serving
Lazy_State: ServCnt>MSG, on serving

Switching Policies:

Lazy Switch: switching is permitted only when current queue is in Lazy_State and
there is another queue in SRH_State, or the current queue is served to be its
Null_State.

Order Priority arbitration: when switching, the queue to be served is selected
according to Order Priority when multiple queues are in SRH_States or none of them
is in SRH_State. The latter condition only occurs when current queue go to
Null_State.

Fig. 3. Logical structure of Qi. Li is
capacity of buffer. bi(t) is queue length
at t time. SRHi is the service require
threshold. MSG is the minimum service
granularity. Above parameters are in
byte units

Fig. 4. States graph of a queue in TraceDo algorithm

72 X. Hu, P. Ma, and S. Chen

Frequently switchings are avoided by setting MSG when several queue lengths are
around their SRHs. The service granularity of the queue on serving is increased by
Lazy Switch when other queues have marginal capacity of buffer. Above two
approaches achieve a good trade off between switching and overflows. SRH acts as
the actual assignments of the queue priority. SRH defines that a queue should be
served imperatively when its length over the threshold level. Two type queues should
be set to lower value of SRH: one is queues with high overflow costs; another is
queues with small buffer leading to high overflow probabilities. TraceDo algorithm is
equivalent to Funnel algorithm when all SRHs are set to zeros.

Similar to Funnel algorithm, Order Priority has to be assigned to each queue even
if all queues should be served without priority difference factually. Experiments
show, overflows will concentrate to the queue with lowest Order Priority when
buffers of all queues are exhausted. Such circumstances about queues with factual
same priority can be avoided by polling or random switching, however high hardware
costs come from the configuration complexities of all potential priorities.
Furthermore, there is even no harm for overflow concentrations among queues with
same priority. Assigning a different MSG for each queue does not improve
performance much except for the queue with lowest Order Priority discussed above.

4 Realization in VLSI

TraceDo algorithm and Funnel algorithm are realized by Verilog-HDL. There are four
queues and the capacity of each queue buffer is 64 Bytes. Fine-tuning of SHR does not
improve performance, so a 4-bit register is used for SRH and it is compared with only
highest 4-bits of queue length. Such approach reduces half of hardware costs of SRH
registers and comparators. A shared MSG register uses 4 bits, the same as that of Funnel.

Synthesized using standard cells in 0.18um CMOS process, the area of TraceDo
algorithm is 3,844um2 and the longest path is 1.82ns. Comparing with Funnel
algorithm (1,829um2), the additional area (2,015um2) comes from SRH registers and
comparators. The area is acceptable because the additional area for scheduling is less
than 1% of all buffer area2. TraceDo algorithm has good scalability: the number of
queues (N) hardly affects the critical path delay and area complexity is O(N).

5 Evaluation

In this section, TraceDo algorithm and Funnel algorithm are evaluated by queue
length distributions and queue switchover counts. Various configurations of SRH and
MSG are sued in tests. Then Overflow Rate and Overflow Buffer Utilization (OFBU)
with best configurations of the above two algorithms and LBF-w algorithm are tested.
The results show TraceDo algorithm can reduce overflows efficiently.

5.1 Environments

For efficiency of testing and analyzing experimental results, emulation models of four
queues and three algorithms (TraceDo, Funnel and LBF-w) are made by MATLAB

2 The capacity of one buffer (FIFO structure) is 64 Bytes. All area of four buffers is

233,472um2.

 Scheduling for Combining Traffic of On-Chip Trace Data 73

tools [14]. Each queue has a coefficient Qwi in LBF-w and the queue with max
(ai(t)×Qwi) is always served at t time.

The trace traffic is related with program behaviors and compression methods of
trace data, therefore benchmark programs are used to evaluate performance.
Benchmarks include eight programs (e.g., MP3 decoder, Mpeg4 decoder, Mpeg4
encoder, jpeg encoder, FFT and LPC etc.) of YHFT-QDSP. When simulating the
RTL (Register-Transfer Level) model of YHFT-QDSP by a simulation tool, trace data
generated by TraceDo are recorded into Trace Files. Trace Files are the input traffic
of emulation models.

5.2 Evaluate Configurations with Queue Length Distributions

Four tests are designed to evaluate the influence of SRH and MSG to the queue length
distribution, and each test has three configurations, as listed in Table 1. Infinite buffer
are used in this section for the convenience of queue length distribution. The
switchover time is not considered in section 5.2 for isolating the influence of SRH and
MSG, except the section 5.2.4. Results of experiments include bi(t), Di(b) and
ADi(L0). Di(b) is the distribution of bi(t). ADi(L0) is the accumulation of Di(b):

Table 1. Configurations in experiments, all Byte units. From left to right in the table, four tests
are MSGF (MSG in Funnel), SRH with uniform priority, SRH with ununiform priority and
MSGT (MSG in TraceDo).

TraceDo: SRH1/SRH2/SRH3/SRH4/MSGT Funnel:
MSGF Uni-Priority Priority MSGT

Config1 14× 4 56/56/56/56/2× 4 24/56/56/56/2× 4 32/32/32/32/7× 4
Config2 7× 4 32/32/32/32/2× 4 24/16/56/56/2× 4 32/32/32/32/4× 4
Config3 2× 4 16/16/16/16/2× 4 24/8/56/56/2× 4 32/32/32/32/1× 4

Fig. 5. Di(b) and ADi(L0) in Funnel, in percentage

74 X. Hu, P. Ma, and S. Chen

() ()∑=
+∞

= 0Lb
i0 bD LiAD . A section with 80000 cycles in the Trace File of the jpeg

benchmark is used in this section. The Order Priorities of four queues in TraceDo and
Funnel are both set to 1234 (from high priority to low priority).

5.2.1 MSGF in Funnel
There are sixteen configurations (1×4~16×4) supported by MSGF, and three of them
are tested and shown in Fig. 5. The results show the adjustability of MSGF is limited.
Q1 is served sufficiently and the queue length of Q4 is always large. When the Order
Priority changes to 4123, the queue length distribution of Q3 is the same as the
original distribution of Q4. The queue buffers with high priorities are unable to be
utilized sufficiently. Increasing buffers of Q1~Q3 can not improves the overflow of Q4
and increasing MSGF improves weakly. Such scheduling is not fair for queues with
factual uniform priority.

5.2.2 SRH in Uni-Priority
Assigning uniform priority to all queues in TraceDo by setting uniform values of
SRHs, the curves of Di(b) and ADi(L0) are shown in Fig. 6. The results of Config1 and
Config2 show that queue length distribution has a cut-off at the threshold of SRH.
When the SRH is so small in Config3 that the burst data is unable to be buffered
under the threshold, TraceDo algorithm tries to satisfy high-priority queues firstly.
Therefore overflow of buffer is tuned by SRH that controls the cut-off region of Di(b)
and ADi(L0).

Fig. 6. Di(b) and ADi(L0) in TraceDo, the test of Uni-Priority

5.2.3 SRH in Priority
By configurating different SRHs in this test, Q1 is given the high priority, Q3 and Q4 are
always given the low priorities, and the priority of Q2 is changed from low to high, as
shown in Table 1. When SRH2 decreases, there are no visible changes on other queues’

 Scheduling for Combining Traffic of On-Chip Trace Data 75

Fig. 7. Di(b) and ADi(L0) in TraceDo, the test of Priority

distributions that over thresholds of SRHs. While the buffer under the threshold of SRH
of each other queues is utilized more sufficiently, as shown in Fig. 7. Therefore a
queue’s priority is able to be changed independently in TraceDo algorithm and it does
not worsen other queues’ distributions to a certain extent.

5.2.4 MSGT in TraceDo
When decreasing the service granularity that is connected with MSGT tightly,
switchover counts increase and queue length distributions decrease more sharply at
thresholds of SRHs, as shown in Fig. 8.

Fig. 8. Di(b) and ADi(L0) in TraceDo, the test of MSGT, no ID overheads

76 X. Hu, P. Ma, and S. Chen

Fig. 9. ADi(L0) in TraceDo, the test of MSGT. ID_overhead is 0.5 Byte (left) and 1 Byte (right).

Considering switchover time, a queue ID inserted by Trace Bus Arbitrator
consumes ID_Overhead bytes. Curves of ADi(L0) are shown in Fig. 9 when
ID_Overhead is set to 0.5 Byte and 1 Byte separately. The results show that TraceDo
algorithm works well with switchover time. Small MSGT increases traffic with more
queue IDs and worsens queue length distributions greatly.

5.2.5 Queue Switchover Counts
Without the influence of switchover time, the queue switchover counts are shown in
Fig. 10. MSGs of three Configs are listed in Table 1. Lazy Switch and SRH used in
TraceDo algorithm much reduced queue switchover counts, especially when setting
small MSGs.

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15

MSG/4

Q
u
e
u
e

S
w
i
t
c
h
o
v
e
r

C
o
u
n
t
s

Uni-

Priority

Priority

MSG_Trace

Funnel

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Uni-Pri-

ID

Uni-Pri-

NoID

Pri-ID Pri-NoID

O
v
e
r
a
l
l

O
v
e
r
f
l
o
w

R
a
t
e

LBF-w

TraceDo

Funnel

Fig. 10. Queue switchover counts Fig. 11. Overall Overflow Rate

5.3 Evaluation of Overflow Rate

Overall Overflow Rate is the ratio of rejected customers of all queues and arriving
customers of all queues, but not the average of the Overflow Rate of each queue. To

 Scheduling for Combining Traffic of On-Chip Trace Data 77

evaluate Overall Overflow Rate and Overflow Buffer Utilization (OFBU) of the three
algorithms (LBF-w, TraceDo and Funnel), finite buffers and random sections of Trace
Files are used. For each algorithm, its best result in all its configurations is the final
result. The final result of each algorithm is compared with others. Trace data of 10000
cycles are taken from each Trace File randomly and the final result is the average of
eight Trace Files of benchmarks. The configuration of best result is the best
configuration, listed in Table 2. The criterions of the best configuration are different
according to the priority schemes. It is the configuration with the lowest Overall
Overflow Rate in uniform-priority tests (Uni-Pri) with the same buffer size of all
queues. In ununiform-priority tests (Pri) that Q1 is assigned to high priority with small
buffer size and Q2~Q4 are assigned to low priority with large buffer sizes, the best
configuration is the configuration with the lowest Overall Overflow Rate and without
overflow of Q1.

Table 2. Best configurations in experiments for overflow rates

Config (Byte)

Buffer size
L1/L 2/L 3/L 4

ID_
Overhead

LBF-w
Qw1/Qw2/
Qw3/Qw4

TraceDo (Byte)
SRH1/SRH2/SRH3/SRH4

-MSGT

Funnel
MSGF

(Byte)

Uni-Pri-ID 64/64/64/64 0.5 1/1/1/1 56/56/56/56 -24 16× 4
Uni-Pri-NoID 64/64/64/64 0 1/1/1/1 56/56/56/56 -8 11× 4

Pri-ID 32/64/64/64 0.5 1.7/1/1/1 24/56/56/56 -12 5× 4
Pri-NoID 32/64/64/64 0 1.2/1/1/1 24/56/56/56 -4 7× 4

Overall Overflow Rates of three algorithms are shown in Fig. 11. Comparing with
Funnel algorithm, there are 28% ~32% improvements in TraceDo algorithm. Not
considering switchover time, Overall Overflow Rates of TraceDo are 14% and 1%
higher than that of LBF-w algorithm. Without approaches in LBF-w for reducing
queue switchover counts, results of LBF-w are two times larger than others when
considering switchover time.

OFBU_Qi and OFBU_All are shown in Fig. 12. A final OFBU of eight benchmarks
is computed by averaging (ORj×OFBUj). ORj is the percentage of the Overflow Rate

0

0.2

0.4

0.6

0.8

1

1.2

L_UPI

L_UPN
L_PI

L_PN

T_UPI

T_U
PN

T_PI

T_PN

F_UPI

F_U
PN

F_PI

F_PN

B
u
f
f
e
r

U
t
i
l
i
z
a
t
i
o
n

O
n

O
v
e
r
f
l
o
w

Q1

Q2

Q3

Q4

All

L_ LBF-w

T_ TraceDo

F_ Funnel

 UPI Uni-Pri-ID

 UPN Uni-Pri-NoID

 PI Pri-ID

 PN Pri-NoID

Fig. 12. Buffer Utilization On Overflow (OFBU)

78 X. Hu, P. Ma, and S. Chen

of the jth benchmark to total Overflow Rates of eight benchmarks (Overall Overflow
Rate for OFBU_All), and OFBUj is the OFBU of the jth benchmark. As an algorithm
satisfying realization constraints, TraceDo algorithm improves impartiality and
reduces OFBU_All comparing with Funnel algorithm, though there is a weak gap to
LBF-w algorithm.

6 Conclusion

Solving the problem of combining on-chip trace data in a multi-core processor, this
paper presents a lazy scheduling algorithm with Service Require Threshold (SRH)
and Minimum Service Granularity (MSG). Simulations of variant configurations
show, queue length distributions are constrained by SRH effectively and queue
buffers are utilized sufficiently. All overflow rates decrease and the overflow rate of
each queue is able to be tuned by users. The queue switching overheads are also
reduced. The algorithm pays reasonable costs of realization and provides good
scalability. Future work includes analyzing the algorithm in mathematical models.

Acknowledgements. This work is supported by the National Natural Science
Foundation of China (60473079), SRFDP (No.20059998026).

References

1. ARC International Ltd. ARC International Provides New Configurable Trace and Debug
Extensions to the ARC™ 600 and 700 Core Families. http://www.arc.com/news/
PressRelease.html?id=227, 2005-11-29

2. ARM Ltd. CoreSight Flyer. http://www.arm.com/products/solutions/CoreSight.html
3. ARM Ltd. CoreSight™ Components Technical Reference Manual, http://www.arm.com/

pdfs/DDI0314C_coresight_component_trm.pdf, 2006-7-31
4. MIPS Technologies Inc. The PDtrace™ Interface and Trace Control Block Specification.

http://www.mips.com/content/Docmentation/MIPSDocumentation/ProcessorArchitecture/
doclibrary#ArchitectureSetExtensions, 2005-7-4

5. Freescale Ltd. MPC565 Reference Manual. http://www.freescale.com/webapp/sps/site/
prod_summary.jsp?code=MPC565, 2005-11

6. IEEE-ISTO 5001™-2003, The Nexus 5001 Forum™ Standard for a Global Embedded
Processor Debug Interface v2.0. http://www.nexus5001.org/standard2.html, 2003-11

7. Hopkins, ABT, McDonald-Maier, KD. Debug Support Strategy for Systems-on-Chips
with Multiple Processor Cores, IEEE Trans. on Computers, 2006, 55(2)

8. Shuming Chen, Zhentao Li, Jianghua Wan, Dinglei Hu, Yang Guo, Dong Wang, Xiao Hu
and Shuwei Sun. “Research and Development of High Performance YHFT Digital Signal
Processor”, Journal of Computer Research and Development, 2006, 43(6)

9. Xiao Hu, Shuming Chen. A Survey to On-chip Trace Systems for Real-time Debug in
Embedded Processors, NCCET’06, Guilin, 2006-8

10. TAGAGI H. Queuing analysis of polling models [J]. ACM Computing Surveys, 1988, 20
(1):5-28

 Scheduling for Combining Traffic of On-Chip Trace Data 79

11. LI Wan-lin, TIAN Chang, ZHANG Shao-ren. Performance AnaIysis of Output-Queued
Two-Stage Packet Buffer Structure for Optical Bus Switching Network, ACTA
ELECTRONICA SINICA, 2003, 31 (4):1-4

12. T. D. Lagkas, Georgios I. Papadimitriou, Petros Nicopolitidis, Andreas S. Pomportsis.
Priority Oriented Adaptive Polling for wireless LANs. ISCC’06, 2006: 719-724

13. Robert A. Lackman, Jian Xu. Laxity Threshold Polling for Scalable Real-Time/Non-Real-
Time Scheduling, ICCNMC’03, 2003

14. http://www.mathworks.com/

Memory Offset Assignment for DSPs

Jinpyo Hong1 and J. Ramanujam2

1 School of Internet-Media Engineering
Korea University of Technology and Education, Cheonan, Korea

jphong1@kut.ac.kr
2 Dept. of Electrical and Computer Engineering

Louisiana State University, Baton Rouge, LA, USA
jxr@ece.lsu.edu

Abstract. Compact code generation is very important for an embedded system
that has to be implemented on a chip with a severely limited amount of size.
Even though on-chip data memory optimization technique has been given more
attention, on-chip instruction memory optimization should not be neglected. We
propose in this paper some algorithms for a memory offset assignment for embed-
ded DSP processors in order to minimize the number of instructions for address
register operations. Extensive experimental results demonstrate the efficacy of
our solution.

1 Introduction

Embedded DSP processors contain an address generation unit (AGU) that enables the
processor to compute the address of an operand of the next instruction while execut-
ing the current instruction. An AGU has auto-increment and auto-decrement capability,
which can be done in the same clock of execution of a current instruction. It is very
important to take advantage of AGUs in order to generate high-quality compact code.
In this paper, we propose heuristics for the single offset assignment with modify reg-
isters (SOA-MR) problem and the general offset assignment (GOA) problem in order
to exploit AGUs effectively. Experimental results show that our proposed methods can
reduce address operation cost and in turn lead to compact code. The storage assignment
problem was first studied by Bartley [6] and Liao [8,9,10]. Liao showed that the offset
assignment problem even for a single address register is NP-complete and proposed a
heuristic that uses the access graph, which can be constructed from a given access se-
quence. The access graph has one vertex per variable and edges between two vertices
in the access graph indicate that the variables corresponding to the vertices are accessed
consecutively; the weight of an edge is the number of times such consecutive access
occurs. Liao’s solution picks edges in the access graph in decreasing order of weight
as long as they do not violate the assignment requirement. Liao also generalizes the
storage assignment problem to include any number of address registers. Leupers and
Marwedel [11] proposed a tie-breaking function to handle the same weighted edges,
and a variable partitioning strategy to minimize GOA costs. They also show that the
storage assignment cost can be reduced by utilizing modify registers. In [1,2,3,14], the
interaction between instruction selection and scheduling is considered in order to im-
prove code size. Rao and Pande [13] apply algebraic transformations to find a better

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 80–87, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Memory Offset Assignment for DSPs 81

access sequence. They define the least cost access sequence problem (LCAS), and pro-
pose heuristics to solve the LCAS problem. Other work on transformations for offset
assignment includes those of Atri et al. [4,5] and Ramanujam et al. [12]. Recently, Choi
and Kim [7] presented a technique that generalizes the work of Rao and Pande [13].

The remainder of this paper is organized as follows. In Section 2 and 3, we propose
our heuristics for SOA with modify registers, and GOA problems. We also explain the
basic concepts of our approach. In Section 4, we present experimental results. Finally,
Section 5 provides a summary.

2 Our Approach to the SOA-MR Problem

2.1 The Single Offset Assignment (SOA) Problem

Given a variable set V = {v0, v1, · · · , vn−1}, the single offset assignment (SOA) prob-
lem is to find the offset of each variable vi, 0 ≤ i ≤ n − 1 so as to minimize the
number of instructions needed only for memory address operations. In order to do that,
it is very critical to maximize auto-increment/auto-decrement operations of an address
register that can eliminate the explicit use of memory address instructions.

Liao [8] proposed a heuristic that finds a path cover of an access graph G(V, E) by
choosing edges in decreasing order of the number of transitions in an access sequence
while avoiding cycles, but he does not say how to handle edges that have the same
weight. Leupers and Marwedel [11] introduced a tie-breaking function to handle such
edges. Their result is better than Liao’s as expected.

2.2 Our Algorithm for SOA with an MR

Definition 1. An edge e = (vi, vj) is called an uncovered edge when variables that
correspond to vertices vi and vj are not assigned adjacently in a memory.

After applying the existing SOA heuristic to an access graph G(V, E), we may have
several paths. If there is a Hamiltonian path and SOA luckily finds it, then memory
assignment is done, but we cannot expect that situation all the time. We prefer to call
those paths partitions because each path is disjoint with others.

Definition 2. An uncovered edge e = (vi, vj) is called an intra-uncovered edge when
variables vi and vj belong to the same partition. Otherwise, it is called an inter-
uncovered edge. These are also referred to as intra-edge and an inter-edge respectively.

Definition 3. Each intra-edge and inter-edge contributes to an address operation cost.
We call these the intra-cost and the inter-cost respectively.

Uncovered edges account for cost if they are not subsumed by an MR register. Our goal
is to maximize the number of uncovered edges that are subsumed by an MR register.
The cost can be expressed by the following cost equation.

cost =
∑

ei∈intra edge

intra cost(ei) +
∑

ej∈inter edge

inter cost(ej).

82 J. Hong and J. Ramanujam

It is clear that a set of intra-edges and a set of inter-edges are disjoint because from
Definition 2, an uncovered edge e cannot be an intra-edge and an inter-edge at the same
time. First, we want to maximize the number of intra-edges that are subsumed by an
MR register. After that, we will try to maximize the number of inter-edges that will be
subsumed by an MR register. We think this approach is reasonable because when the
memory assignment is fixed by a SOA heuristic, there is no flexibility of intra-edges in
such a sense that we cannot rearrange them. So, we want to recover as many intra-edges
as possible with an MR register first. Then, with the observation that we can change the
distances of inter-edges by rearranging partitions, we will try to recover inter-edges
with an MR register.

a b c d e gf h i

a b c d e fhi g c ie d b a hgf

ce d b a fgi h

a b c d e f ihg

pi

(b) pi ◦ pj

cost = 3

(c) pi ◦ reverse(pj)

cost = 4

(d) reverse(pi) ◦ pj

cost = 4

(e) reverse(pi) ◦ reverse(pj)

cost = 2

(a) MR = 2

pj

Fig. 1. Merging combinations

There are four possible merging combinations of two partitions. Figure 1 shows those
four merging combinations. Intra-edges are represented by a solid line, and inter-edges
by a dotted line. In Figure 1-(a), there are 6 uncovered edges among which there are
3 intra-edges and 3 inter-edges. So, the AR cost is 6. First, we try to find the most
frequently appearing distance of intra-edges. In this example, distance 2 is the one be-
cause distance(a, c) and distance(b, d) are 2 and distance(f, i) is 3. By assigning
2 to an MR register, we can recover two out of three intra-edges, which reduces the
cost by 2. When an uncovered edge is recovered by an MR register, the correspond-
ing line is depicted by a thick line. Next, we want to recover as many inter-edges as
possible by making the distance of inter-edges 2 by applying proper merging combi-
nation. In Figure 1-(b), the two partitions are concatenated. One inter-edge,e = (e, g)
will be recovered, because distance(e, g) in a merged partition is 2. So, the cost is
3. In Figure 1-(c), the first partition is concatenated with the reversed second one. No
inter-edge will be recovered. The cost is 4. In Figure 1-(d), the reversed first partition
is concatenated with the second one. No inter-edge will be recover, either. The cost is
4. In Figure 1-(e), the two partitions are reversed and concatenated. It is actually equal
to exchanging the two partitions. Two inter-edges will be recovered. In this case, we
recover four out of six uncovered edges by applying our method. Figure 2 shows our
MR optimization algorithm.

Memory Offset Assignment for DSPs 83

Procedure SOA mr
begin

Gpartition(Vpar, Epar) ← Apply SOA to G(V, E);
Φm sorted ← sort m values of edges (v1, v2) by frequency in descending order;
M ← the first m of Φm sorted;
optimizedSOA ← φ;

for each partition pair of pi and pj do
Find the number, m(pi,pj) of edges, e = (v1, v2), e ∈ E, v1 ∈ pi, v2 ∈ pj

such that their distance (m value) = M from four possible merging combinations,
and assign a rule number that can generate m = M most frequently to (pi, pj);

enddo

Ψsorted par pair ← Sort partition pairs (pi, pj) by m(pi,pj) in descending order;

while (Ψsorted par pair �= φ) do
(pi, pj) ← choose the first pair from Ψsorted par pair;
Ψsorted par pair ← Ψsorted par pair − {(pi, pj)};
if (pi /∈ optimizedSOA and pj /∈ optimizedSOA)

optimizedSOA ← (optimizedSOA ◦ merge by rule(pi, pj));
Vpar ← Vpar − {pi, pj};

endif
enddo

while (Vpar �= φ) do
Choose p from Vpar;
Vpar ← Vpar − {p};
optimizedSOA ← (optimizedSOA ◦ p);

enddo

return optimizedSOA;
end

Fig. 2. Heuristic for SOA with MR

3 General Offset Assignment (GOA)

The general offset assignment problem is, given a variable set V = {v0, v1, · · · , vn−1}
and an AGU that has k ARs, k > 1, to find a partition set P = {p0, p1, · · · , pl−1}, where
pi∩pj = φ, i �= j, 0 ≤ i, j ≤ l−1, subject to minimize GOA cost

∑l−1
i=0 SOA cost(pi)

+l, where l is the number of partitions, l ≤ k. The second term l is the initialization
cost of l ARs. Our GOA heuristic consists of two phases. In the first phase, we sort
variables in descending order of their appearance frequencies in an access sequence,
i.e., the number of accesses to a particular variable. Then, we construct a partition set P
by selecting the two most frequently appearing variables, which will reduce the length
of the remaining access sequence most, and making them a partition, pi, 0 ≤ i ≤ l − 1.
After the first phase, the way we construct a partition set P , we will have l, l ≤ k,

84 J. Hong and J. Ramanujam

partitions that consist of only 2 variables each. Those partitions have zero SOA cost,
and we have the shortest access sequence that consists of (|V | − 2l) variables. In the
second phase, we pick a variable v from the remaining variables in the descending
order of frequency, and choose a partition pi such that SOA cost(pi ∪{v}) is increased
minimally, which means that merging a variable v into that partition increases the GOA
cost minimally. This process will be repeated (|V | − 2l) times, till every variable is
assigned to some partition.

4 Experimental Results

We generated access sequences randomly and apply our heuristics, Leupers’ and Liao’s.
We repeated the simulation 1000 times on several problem sizes. Our experiments show
that introducing an MR can improve the AGU performance and that an optimization
heuristic for an MR register is needed to maximize a performance gain. Our experi-
ments show that the results of 2-AR AGU are alway better than 1AR 1MR’s and even
ARmr op’s. It is because even if we apply a MR optimization heuristic, which is nat-
urally to be more conservative than GOA heuristic of 2-AR in such a sense that only
after several path partitions are generated by SOA heuristic on entire variables, a MR
optimization heuristic would try to recover uncovered edges whose occurrences heavily
depend on SOA heuristic. A GOA heuristic can exploit a better chance by partitioning
variables into two sets and applying SOA heuristic on each partitioned set. However,
GOA’s gain over ARmr op does not come for free. The cost of the partitioning of vari-
ables might not be negligible as it was shown in section 3. However, from the perspec-
tive of performance of an embedded system, our experiment shows that it is better to
pay that cost to get performance gain of AGU. The gain of 2-AR GOA over ARmr op is
noticeable enough to justify our opinion. When an AGU has several pairs of a AR and
an MR, in which AR[i] is coupled with MR[i], our path partition optimization heuristic
can be used for each partitioned variable set. Then, the result of each pair of the AGU
will be improved as we observed in Figure 3. Figures 3 shows bar graphs based on the
results of randomly generated access sequences. When an access graph is dense, two
heuristics perform similarly as shown in Figure 3-(a). In this case, introducing a mr

(a) |S|=100, |V|=10

0

10

20

30

40

50

60

Liao Leupers

C
o
s
t

Coarse W_mr W_mr_op

(b) |S|=100, |V|=50

40

42

44

46

48

50

52

54

Liao Leupers

C
o
s
t

Coarse W_mr W_mr_op

(c) |S|=100, |V|=80

0

5

10

15

20

25

30

35

Liao Leupers

C
o
s
t

Coarse W_mr W_mr_op

(d) |S|=200, |V|=100

85

90

95

100

105

110

115

Liao Leupers

C
o
s
t

Coarse W_mr W_mr_op

Fig. 3. Results for SOA and SOA mr

Memory Offset Assignment for DSPs 85

Fig. 4. Results for GOA FRQ

optimization technique does not improve performance much. Figure 3-(b), 3-(d) show
that when the number of variables is 50% of th length of an access sequence, intro-
ducing optimization technique can reduce the costs. Figure 3-(c) shows that when the
access graph becomes sparse, the amount of improvement becomes smaller than when
the graph is dense, but it is still reduce the costs noticeably. Except the case when an
access graph is very dense like in Figure 3-(a), applying our mr optimization technique
is beneficial in all heuristics including Liao’s and Leupers’. Figure 4 shows that our
GOA FRQ algorithm outperforms Leupers’ in many cases. Especially in Figure 4, we
can witness that beyond certain threshold, our algorithm keeps its performance stable.
However, Leupers’ algorithm tries to use as many ARs as possible, which makes per-
formance of his algorithm deteriorated as the number of ARs grows. Line graphs in
Figure 4 shows that our mr optimization technique is beneficial, and that 2 ARs config-
uration always outperforms ar mr op as we mentioned earlier.

We experiment DSP benchmarks like BIQUAD ONE, COMP (Complex multipli-
cation), and ELLIP (Elliptical wave filter) and also numerical analysis algorithms like
GAULEG (Gauss-Legendre weights and abscissas), GAUHER (Gauss-Laguerre
weights and abscissas) and GAUJAC (Gauss-Jacobi weights and abscissas) from [15].
We also use several programs such as CHENDCT, CHENIDCT, LEEDCT and LEEI-
DCT from JPEG-MPEG package. Figure 5 shows the improvements of results of 1AR
1MR, ARmr op, and 2 ARs to 1 AR. Improvement is computed as (1AR−x

1AR × 100),
where x is one of the above three AGUs. Except COMP which is too simple to show
a meaningful result, introducing extra resource (MR) in AGU is always beneficial. The
average improvement of rest 5 algorithms of including MR is 18.5%. With the same
amount of resources (1 AR and 1 MR), we achieve more gains by applying our MR
optimization technique. The average improvement of our MR optimization is 25.4%.
The average improvement of 2 ARs is 44.2%. MR takes a supplemental role to re-
cover edges that were not included in path covers. With understanding such a role of
MR, superiority of the result of 2ARs over MR and MR OP is understandable. How-
ever, we believe that improvement of our MR optimization technique shows that more

86 J. Hong and J. Ramanujam

Fig. 5. Improvements of 1AR 1MR, MR OP and 2ARs to 1 AR

aggressive method for MR optimization should be enforced and that MR be given more
attention in a sense that setting value 1 to MR has an exactly same effect as AR’s auto-
increment/-decrement, which means MR has more flexibility than AR++ and AR--.
Our MR optimization technique can be used to exploit m ≥ 1 pairs of (AR,MR) in
AGU.

5 Summary

We have found that several fragmented paths are generated as the SOA algorithm trys
to find a path cover. We have proposed a new optimization technique of handling these
fragmented paths. As the SOA algorithm generates several fragmented paths, we show
that our optimization technique of these path partitions is crucial to achieve an extra
gain, which is clearly captured by our experimental results. We also have proposed
usage of frequencies of variables in a GOA problem. Our experimental results show
that this straightforward method is better than the previous research works.

Acknowledgments. This work is supported in part by the US National Science Founda-
tion through awards 0073800, 0103933, 0121706, 0508245, 0509442 and 0541409.

References

1. G. Araujo. Code Generation Algorithms for Digital Signal Processors. PhD thesis, Princeton
Department of EE, June 1997.

2. G. Araujo, S. Malik, and M. Lee. Using Register-Transfer Paths in Code Generation for
Heterogeneous Memory-Register Architectures. In Proceedings of 33rd ACM/IEEE Design
Automation Conference, pages 591-596, June 1996.

3. G. Araujo, A. Sudarsanam, and S. Malik. Instruction Set Design and Optimization for Ad-
dress Computation in DSP Architectures. In Proceedings of the 9th International Symposium
on System Synthesis, pages 31-37, November 1997.

4. S. Atri, J. Ramanujam, and M. Kandemir. Improving offset assignment on embedded proces-
sors using transformations. In Proc. High Performance Computing–HiPC 2000, pp. 367–374,
December 2000.

5. Sunil Atri, J. Ramanujam, and M. Kandemir. Improving variable placement for embedded
processors. In Languages and Compilers for Parallel Computing, (S. Midkiff et al. Eds.),
Lecture Notes in Computer Science, vol. 2017, pp. 158–172, Springer-Verlag, 2001.

6. D. Bartley. Optimization Stack Frame Accesses for Processors with Restricted Addressing
Modes. Software Practice and Experience, 22(2):101-110, February 1992.

Memory Offset Assignment for DSPs 87

7. Y. Choi and T. Kim. Address assignment combined with scheduling in DSP code generation.
in Proc. 39th Design Automation Conference, June 2002.

8. S. Liao. Code Generation and Optimization for Embedded Digital Signal Processors. PhD
thesis, MIT Department of EECS, January 1996.

9. S. Liao et al. Storage Assignment to Decrease Code Size. In Proceedings of the ACM
SIGPLAN ’95 Conference on Programming Language Design and Implementation, pages
186–196, 1995. (This is a preliminary version of [10].)

10. S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang. Storage assignment to decrease
code size. ACM Transactions on Programming Languages and Systems, 18(3):235–253, May
1996.

11. R. Leupers and P. Marwedel. Algorithms for Address Assignment in DSP Code Genera-
tion. In Proceedings of International Conference on Computer-Aided Design, pages 109-112,
1996.

12. J. Ramanujam, J. Hong, M. Kandemir, and S. Atri. Address register-oriented optimizations
for embedded processors. In Proc. 9th Workshop on Compilers for Parallel Computers (CPC
2001), pp. 281–290, Edinburgh, Scotland, June 2001.

13. A. Rao and S. Pande. Storage Assignment Optimizations to Generate Compact and Efficient
Code on Embedded Dsps. SIGPLAN ’99, Atlanta, GA, USA, pages 128-138, May 1999.

14. A. Sudarsanam and S. Malik. Memory Bank and Register Allocation in Software Synthesis
for ASIPs. In Proceedings of International Conference on Computer Aided Design, pages
388-392, 1995.

15. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (Editors), Numerical
Recipes in C: The Art of Science Computing, Cambridge University Press, pages 152-155,
1993.

A Subsection Storage Policy in Intelligent

RAID-Based Object Storage Device

Dan Feng, Qiang Zou, Lei Tian, Ling-fang Zeng, and Ling-jun Qin

College of Computer, Huazhong University of Science and Technology
Wuhan National Laboratory For Optoelectronics, China

dfeng@hust.edu.cn, hustmathcs@gmail.com

Abstract. With the development of network storage technology, some
massive storage system architectures have exposed some drawbacks. How
to remove the server bottleneck and decrease the loss rate of I/O requests
have become an issue of increasing importance in the designing of net-
work storage systems. In this paper, object-based storage system (OBSS)
and RAID-based object storage device (RAID-based OSD) are briefly
presented. Based on RAID-based OSD, an object subsection storage pol-
icy for the hot object files is put forward to increase the acceptance rate
of I/O requests and improve the I/O performance of OBSS. Analytical
and experimental results show that it is reasonable and effective.

1 Introduction

With the exponential growth of information, the first generation of massive stor-
age system architectures such as network attached storage (NAS) for file stor-
age, storage area networks (SANs) for block storage, have exposed some of their
own advantages and drawbacks [1]. As a much higher level of abstraction for
networked storage, object-based storage (OBS) has combined the advantages of
SAN and NAS, and becomes the forefront of the next wave of storage technology
and devices [2].

Object storage was first proposed by CMU as an academic research project
[3] and continues to be a hot research topic. Version 1 of the T10 standard was
publicly reviewed and approved in late 2004. The OSD standard proposes a stan-
dard interface for the object-based storage device, by which devices evolve from
being relatively unintelligent and externally managed to being intelligent, self-
managed, aware of the storage applications they serve and of high compatibility
in the object-based storage system.

As a building block of OBS, object-based storage devices (OSDs) play an im-
portant role in OBS and have great impacts on the overall performance of the stor-
age systems. Many efforts have been made to improve the performance of OSDs.
ORAID (ObjectRAID), a novel object-based device, which consolidates disk space
of individual disk into a single storage pool and implements object-sharing and
fault-tolerance through the object-interface, is introduced in [4] and has the abil-
ity to implement online data re-layout and online capacity expansion. The design

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 88–97, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Subsection Storage Policy in Intelligent RAID-Based OSD 89

of the intelligent RAID-based object storage device and the methods to shorten
the access latency and increase the intelligence for OSDs are described in [5].

In this paper, based on RAID-based OSD, we present a subsection storage
strategy to improve the acceptance rate of I/O requests. Hot object files can
be shared by several storage units, which can independently provide services for
I/O requests. In this way, the loss rate of I/O requests decreases significantly and
the I/O bandwidth of OBSS improves noticeably. Analytical and experimental
results show that it is a reasonable and effective policy.

This paper is organized as follows. Section 2 is a short introduction to OBSS
architecture and RAID-Based OSD. In section 3 we present an object subsection
storage policy (OSSP)in brief. In section 4, mathematically we analyze the loss
rate of I/O requests and the I/O bandwidth under OSSP, and the analytical
results are given to suppport OSSP. Section 5 presents the experimental results
that are consistent with the analytical results in section 4. Finally, we conclude
this paper and discuss the future work in section 6.

2 Object-Based Storage System Architecture

2.1 OBSS Overiew

In the OBSS, objects are primitive, logical units of storage that can be directly
accessed on an OSD. An OBSS built from OSDs and other components is shown
in Fig. 1. Metadata server (MDS) provides the information (global object meta-
data) necessary to directly access objects, along with other information about
data including its extended attributes, security keys, and permissions (authen-
tication). For example, MDS stores higher-level information about the object,
such as OID (Object ID), object name, object type (e.g. file, device, database
table) and storage map (e.g. OSD1, partition1, OID1, OSD2, partition2, OID2,
stripe unit size of 64KB), which are not directly interpreted by OSD. OSDs ex-
port object-based interface, with the access/storage unit being an object, such as
a file, a database table, a medical image or a video stream. It operates in a mode
in which data is organized and accessed as objects rather than as an ordered
sequence of sectors. OSDs manage local object metadata (data organization in

Fig. 1. Object-based storage system architecture

90 D. Feng et al.

disks). Clients contact MDS to get information about the objects in which they
are interested and send requests directly to OSDs. OSDs receive and process
these requests based on some policies.

2.2 RAID-Based OSD

The RAID-based OSD architecture is shown in Figure 2. An OSD consists of a
processor, RAM memory, disks and Ethernet interface. The RAID-Based OSD
subsystem is an embedded system built on commodity hardware at a low cost
but with a TERABYTE-scale massive storage capacity to make it more cost-
effective for the general users. We add the ISCSI Target control layer and OSD
command interface to the RAID control software to make the EIDE RAID an
intelligent OSD. The software is running under the embedded Linux operating
system.

As an embedded system, OSD is the core of the object-based storage system.
It is an intelligent, self-managed device, which provides an object interface for
clients to access data stored in it. Every OSD has its own globally unique ID.
The new OSD command set describes the operations available on OSDs. The
result is a group of intelligent disks (OSDs) attached to a switched network
fabric (ISCSI over Ethernet) providing storage that is directly accessible by the
clients. Unlike conventional SAN configurations, OSDs can be directly addressed
in parallel, allowing extremely high aggregate data throughputs.

As an embedded system, OSD has its own CPU and memory to run the con-
trol software itself and executes self-managing functions to become an intelligent
device. With a Gigabyte Ethernet interface OSD can provide high throughput
as a network storage subsystem to process and store data from the network.

Fig. 2. RAID-based OSD architecture

A Subsection Storage Policy in Intelligent RAID-Based OSD 91

Furthermore, it’s also very easy to upgrade to serve the next generation of net-
works by upgrading the network protocol. In our previous work [5], the software
architecture and extended attributes of the OSD are described in detail.

The RAID-based OSD design (see Fig.2) provides an object interface to every
client according to the latest T10 standard, the standard interface focusing on
integrating low-level storage, space management, and security functions into
OSD from MDS.

Block-based file systems can be viewed to contain roughly two main compo-
nents, namely, the user component and the storage component. The former is
responsible for presenting user applications with logical data structures, such as
files and directories, and an interface for accessing these data structures; whereas
the latter maps the data structures to the physical storage. This separation of
responsibilities makes it easy to offload management task to the storage device,
which is the intended effect of the object-based storage.

It is safe to say that OBSS is more facile to set up mass storage system than
NAS and SAN. In OBSS, there are three facets for load balancing. First, the
global policies are initiated by MDS and clients interact with MDS. Second,
OSD has better knowledge of its own load than MDS. Therefore, it is reasonable
that local policy is initiated by OSD. Third, the storage object is encapsulated
with data, attributes and methods. These attributes can be set or obtained as
objects are accessed, and object attribute values are as good as policy threshold.
Furthermore, object methods also can be triggered according to a policy as
follows.

3 Object Subsection Storage Policy (OSSP)

As a resource manager, all of the data requests are monitored by MDS, and
MDS records the correlative information about all OSDs such as total capacity,
used space, available space, optional striping requirement among OSDs, total
I/O bandwidth and IP address.

Santa Barbara’s Active disks in University of California [8], and IDISK in
University of California at Berkeley [9] are typical smart storage devices. Just
like those devices, local intelligence is achieved in OSD and becomes the basis of
the whole storage system. Therefore, OSD has better knowledge of its own load
than MDS.

As we know, object sharing policy can be divided into two categories: long-
term decision and short-term decision. The former makes a decision according to
the history of object access, and the latter generally makes a decision according
to the load state of current metadata server. Therefore, a special threshold should
be devised to identify whether the hot object file belongs to long-term decision
or short-term decision. If I/O load of one OSD reach the local threshold, OSD
may initiate object subsection policy to enforce load balance, and OSD is able to
decide the OSDs where the hot object file should be shared into, this interaction
process is performed by the cooperation between MDS and OSD. With the
overall resource information, MDS deals with subsection request from OSD and

92 D. Feng et al.

sends some tips to OSDs. At the same time, MDS records those metadata that
has been modified (added or moved), and updates management parameters.
Then, with the help of MDS, a hot object file can be divided into more than one
object and mapped to different OSDs. The client can communicate with different
OSDs in parallel to access the file to make good use of the I/O bandwidth and
improve the throughput of the system.

OSSP is a real-time policy, and based on high-speed network with the high
bandwidth and low delay. With the rapid development of network technology,
a real-time OSSP is feasible. Of course, there are also some additional system
cost and the minimum cost is expected while the hot object file is shared from
the congested OSD into other OSDs. The additional system cost due to OSSP
in each OSD can be denoted as Δt(i), and the average is E[Δt(i)]. Furthermore,
the cost due to the data conformity in Client is neglectable.

The advantages of OSSP will be shown in the following sections by means of
mathematical analysis and experiments.

4 System Performance Analysis

4.1 Mathematical Description of OBS

Consider a simple object storage system that includes only one OSD in which
there is only one disk that can sustains N I/O requests simultaneously. In the
disk there is only one program whose transmission length is T . The I/O requests
arrive stochastically, with a service time of T . Suppose that the ith I/O request
time is ti, i = 1, 2, ..., then the first N requests can be immediately serviced as
soon as the server receives them. The (N + 1)th request will be serviced upon
its arrival if the first request has been completed before the (N + 1)th request
arrives, i.e. t1 + T ≤ tN+1; Otherwise, i.e. t1 + T > tN+1, the requests that
arrive in the interval (tN , t1 +T) will be refused. At the moment t1 +T , the first
I/O request has been completed so that the system is able to respond to new
requests.

The service time for each request is a constant T , so that the requests arriving
in the interval [0, tN] should be accepted, and the requests arriving in the interval
(tN , t1 + T] are rufused. Requests arrive with a probability of λ in the interval
[2t1 + T, t1 + tN + T], requests arriving in the interval [t1 + tN , t1 + tN + T]
will be accepted. Similarly, requests arriving in the interval [t1 + tN + T, 2t1 +
2T] will be refused. Therefore, using the same methods as above we know that
requests arriving in the interval [it1 + iT, it1 + tN + iT] will be accepted, and
requests arriving in the interval [it1 + tN + iT, (i+1)t1+(i+1)T] will be refused
(see Fig.3).

From the above analysis, we can draw a conclusion that the I/O request
response time is composed of a continuous cycle that can be devided into two
different phases of “accept” and “refuse”, and the cycle length is t1 + T , where
the length of the “accept” phase is tN and the length of the “refuse” phase is
t1 + T − tN .

A Subsection Storage Policy in Intelligent RAID-Based OSD 93

Fig. 3. The respondence sequence of I/O requests

Definitions and notations:

NRR— the number of refused requests;
TNR— the total number of requests;
LRP— the length of the “refuse” phase;
TTL— the total length;
OFS— the object filesize;
THR— the transmission rate.

According to the properties of Poisson distribution, the average of I/O re-
quests during the time length of ti is λti. The average value of ti is i/λ. There-
fore, the loss rate of I/O requests can be expressed as relation (1), which presents
that T(=OFS/THR) should be decreased first in order to minimize the loss rate
of I/O requests (i.e. to decrease OFS or to increase THR).

ηloss =
NRR

TNR
=

λLRP

λTTL
=

t1 − tN + T

t1 + T

=
1 − N + λT

1 + λT
= 1 − N · THR

THR + λ · OFS
(1)

In general RAID-based OSD is scalable so that an object storage system is
composed of several RAID-based OSDs. Every OSD includes k storage units
and there are several files in each object. In order to express the loss rate of I/O
requests, we assume that the storage system is composed of k RAID-based OSDs
that constitute one RAID0, and the ith OSD (RAID0) is composed of ni disks.
Therefore, there are mij files that are stored in the jth disk. The lth file length
in the jth disk belonging to the ith RAID0 is Tijl and the probability of that
file being requested by an I/O request is rijl, i = 1, 2, · · · , k; j = 1, 2, · · · , ni; l =

1, 2, · · · , mij ,
k∑

i=1

ni∑
j=1

mij∑
l=1

rijl = 1. It is easy to express the loss rate of I/O requests

as follows:

η
′

loss =
k∑

i=1

{(
ni∑

j=1

mij∑

l=1

rijl) · [1 − N

1 + λ ·
ni∑

j=1

mij∑
l=1

rijl · Tijl

]} (2)

94 D. Feng et al.

4.2 The Formulation of OSSP

In the presence of hot data, subsection storage is an effective method to stor-
age hot data in RAID-based OSD. In other words, the data is divided into k
subsections with each subsection being stored in a different object. Suppose that
the length of the ith subsection is T (i), i = 1, 2, ..., k, and the system cost due to
subsection strategy is Δt(i),E[Δt(i)] = t, then the loss rate of I/O requests is

ηloss = 1 − N

1 + λkt + λmax[T (i)]
, i = 1, 2, ..., k (3)

As T (i) = T (i + 1) = T/k = E[T (i)], i = 1, ..., k − 1, relation (3) can be
expressed as:

ηloss = 1 − N

1 + λkt + λT/k

= 1 − k · N · THR

k · THR + k2 · THR · λt + λ · OFS
(4)

According to relation (4), we know that these performance values such as THR
(i.e. the I/O bandwidth), the number of OSDs (i.e. k), system cost Δt(i) and
the loss rate of I/O requests, are interactional. Due to λkt + λT/k ≥ 2λ

√
T t,

ηloss get the minimum as λkt + λT/k = 2λ
√

T t. The figure corresponding to
relation (4) can be described as Fig.4 where the abscissa shows the number of
OSDs that the hot object files are divided into, and the ordinate shows the loss
rate of I/O requests. Obviously, hotter is the object file, higher is the arrive rate
of I/O request, and higher is the loss rate of I/O request. According to Fig.4, the
value of ηloss arrives the minimum at one of the inflexions that exist evidently
on each curve. As a result, there is an optimum value kopt =

√
T/t in which

the system cost sway the improvement of performance values least. According

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

T
he

 lo
ss

 r
at

e
of

 I/
O

 r
eq

ue
st

λ=2
λ=3
λ=4

Fig. 4. The relationship can be mined from relation (4)

A Subsection Storage Policy in Intelligent RAID-Based OSD 95

to relation (4), there is a close relationship between ηloss and THR. Higher is
THR, less is the relevant ηloss as other factors are invariable.

Some experimental results are used to show that analytical results is a rea-
sonable and effective in the following section.

5 Analysis and Discussion of Experimental Results

All of the experiments were executed on an OBSS with a 3.00GHZ Intel Xeon
CPU, Super-Micro mainboard, 200GB(Maxtor, 7200RPM) disk and 512MB of
RAM, running Linux AS3, kernel version 2.4.21. Fig.5 and Fig.6 show the ex-
perimental results with 2 OSDs and several OSDs.

Fig. 5. The relationship between blocksize, the transmission rate (I/O bandwidth) and
the number of OSDs where the hot object file is divided into

As a beginning, a hot object file whose filesize is 2 GB is separately divided
into 2 OSDs, 4 OSDs and 9 OSDs. As can be seen from Fig.5, on the one
hand, the value of THR in the case of 2 OSDs is much bigger than the case of
single OSD, and the loss rate of I/O request decreases by a long way because
of the less system cost. On the other hand, it is evident that the viewpoint
to argue that more subsections the hot object file is divided into, better value
system performance will achieve, is ivory-towered. As descriped in Fig.5, the
I/O bandwidth improves enormously after the object file has been divided into
2 OSDs. However, the improvement ratio of I/O bandwidth after the object file
has been divided into 4 OSDs is lower than the case of 2 OSDs. Even the I/O
bandwidth after the object file has been divided into 9 OSDs is only near the
case of 2 OSDs. The main reason for this phenomena is that the system cost
due to the policy enhances rapidly so as to affect the improvement of system
performance.

96 D. Feng et al.

Moreover, the size of hot object file is also a important factor which effects the
value of THR and the loss rate of I/O request. Fig.6 describes the variational I/O
bandwidth as the hot object files with variational filesize are divided into several
OSDs. As can be seen from Fig.5, the improvement ratio of I/O bandwidth will be
evidently affected when the hot object filesize is very large (e.g. more than 1GB).
While object filesize is no less than 100MB and the object file is divided into 3
OSDs and 4 OSDs, system cost enhances rapidly so as to the I/O bandwidth is
less than the case of 2 OSDs, and then affect the improvement of the loss rate of
I/O requests. The loss rate of I/O requests doesn’t decrease enough to arrive in
the expected goal, so that the anticipative effect of the subsection storage policy
will be limited.

Fig. 6. The relationship between filesize, the transmission rate (I/O bandwidth) and
the number of OSDs where the hot object file is divided into

The analytical and experimental results above show that OSSP is reasonable
and effective. However, there are also some instance needed to be drawn atten-
tion. For an example, the I/O bandwidth improves enormously after the object
file has been divided into 2 OSDs, and the system cost sway the system perfor-
mance less than other cases. As a result, the loss rate of I/O requests arrives the
minimum. Furthermore, the improvement of the loss rate of I/O requests is not
so evident due to the impact of the increasing system cost. These experimental
results inosculate entirely with the analytical result in section 4.

6 Conclusions and Future Work

With the exponential growth of information, how to remove the I/O bottleneck
and increase the acceptance rate of I/O request come into being a challeng-
ing subject. In this paper, an object-based storage system (OBSS) is briefly
presented. Based on RAID-based OSD that is composed of RAID0, an object

A Subsection Storage Policy in Intelligent RAID-Based OSD 97

subsection storage policy for hot object files is put forward to increase the accep-
tance rate of I/O request and improve the I/O bandwidth of OBSS. Analytical
and experimental results show that it is reasonable and effective. As the future
work, for more complex storage objects such as RAID3 and so on, a similar ob-
ject storage policy which should be proved by experiment results will be provided
to solve the problem of server bottleneck.

Acknowledgments

This work was supported by the National Basic Research Program of China (973
Program) under Grant No. 2004CB318201, and the National Science Foundation
of China under Grant No. 60603048.

References

1. Alain Azagury, Vladimir Dreizin, Michael Factor, Ealan Henis, Dalit Naor, Noam
Rinetzky, Ohad Rodeh, Julian Satran and Ami Tavory. Towards an Object Store.
20th IEEE/11th NASA Goddard Conference on Mass Storage Systems and Techolo-
gies (MSST’03), 2003.

2. P. J. Braam. The Lustre storage architecture. Technical report, Cluster File Sys-
tems. Inc., January 2004, available at http://www.lustre.org/docs/ lustre.pdf

3. G. Gibson, D. Nagle, K. Amiri, F. chang, H. Gobioff, E. Riedel, D. Rochberg and J.
Zelenka. File systems for network-attached secure disks. Technical Report CMU-
CS-97-112, CMU, 1997.

4. Dan Feng, Lingfang Zeng, Fang Wang and Shunda Zhang. ORAID: an intelligent
and fault-tolerant object storage device. EUC Workshops 2005, LNCS 3823, pp.403-
412, 2005.

5. Fang Wang, Song lv, Dan Feng and Shunda Zhang. A general-purpose, intelligent
RAID-based object storage device. ICESS 2005, LNCS 3820, pp.747-756, 2005.

6. Lin-Wen Lee, Scheuermann P. and Vingralek R.. File assignment in parallel I/O
systems with minimal variance of service time. IEEE Transactions on Computers.
Vol 49, No.2, (2000) 136-143.

7. Kavitha Ranganathan and Ian Foster. Design and Evaluation of Dynamic Replica-
tion Strategies for a High-Performance Data Grid.

8. Acharya, M. Uysal, and J. Saltz. Active disks: programming model, algorithms
and evaluation. In: Proceedings of the 8th Conference on Architectural Support for
Programming Languages and Operating System (ASPLOS VIII), pp. 81-91, Oct.
1998.

9. K. Keeton, D. A. Patterson, and J. M. Hellerstein. A case for intelligent disks
(IDISKs), SIGMOD Record, 27(3), Sept. 1998.

Joint Source-Channel Decoding ASIP

Architecture for Sensor Networks�

Pablo Ituero1, Gorka Landaburu2, Javier Del Ser3, Marisa López-Vallejo1,
Pedro M. Crespo3, Vicente Atxa2, and Jon Altuna2

1 ETSIT, Universidad Politécnica de Madrid
{pituero,marisa}@die.upm.es

2 Mondragon Unibertsitatea
{glandaburu,batxa,jaltuna}@eps.mondragon.edu

3 CEIT and TECNUN, University of Navarra
{jdelser,pcrespo}@ceit.es

Abstract. In a sensor network, exploiting the correlation among differ-
ent sources allows a significant reduction of the transmitted energy at
the cost of a complex decoder scheme. This paper introduces the first
hardware implementation for joint source-channel decoding of correlated
sources. Specifically, a dual-clustered VLIW processor with a highly op-
timized datapath is presented.

Keywords: ASIP, DSC, Factor Graphs, Joint Source-Channel Coding,
Sensor Networks, Turbo Codes, VLIW.

1 Introduction

During the last decade the research interest for sensor networks has risen sharply
in the scientific community. Such networks consist of densely deployed sensors
spread across a certain geographical area. Data is transmitted to either neigh-
boring nodes or a common destination, which collects the information from all
the existing sensors. This work focuses on the latter scenario, i.e. a centralized
sensor network.

In this context, the high density of nodes in these networks and, consequently,
their physical proximity may incur the appearance of correlation among the data
collected by the different sensors. This correlation can be exploited, for instance,
to reduce the required transmitted energy for a certain level of performance and
complexity. Even if there is no communication among sources, the Slepian and
Wolf Theorem reveals that distributed compression can be performed as long as
the decoder is aware of the correlation among the sources.

However, when the channels from the sensors to the common receiver are
noisy, each node has to add controlled redundancy (equivalently, apply forward

� This work was funded by the projects OPTIMA (TEC2006-00739) and MIMESIS
(TEC2004-06451-C05-04/TCM) of the Spanish Ministry of Education and Science
and TECMAR (IBA/PI2004-3) of the Basque Government Ministry of Industry.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 98–108, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Joint Source-Channel Decoding ASIP Architecture for Sensor Networks 99

error correcting or channel coding techniques) to the transmitted data in order
to combat the errors introduced by the channel. Under these circumstances,
the separate design of source (compression) and channel coding schemes is an
optimal solution whenever the complexity is not an issue (Separation Theorem).

The sensors of these networks are examples of complex embedded systems.
Small, low-power, low-cost transceiver, sensing and processing units need to be
designed. Actually, communication becomes one of the most power and area
consuming elements in the hardware of a sensor network node. Thus, efficient
hardware strategies are essential to obtain a good implementation. On the one
hand, the power hungry general purpose processors do not satisfy the constraints
given by such wireless systems. On the other hand, the high cost and low de-
sign productivity of new submicron technologies have turned ASIC designs into
extremely expensive solutions. Therefore, special architectures that match the
architecture to the application are required. Application Specific Instruction Set
Processors (ASIPs) provide an attractive solution to this kind of problems: First,
several applications can be run on it, and different generations of the same ap-
plication are allowed. Second, for the application developer that uses an ASIP
instead of an ASIC the time to market is reduced, it is cheaper and there is
lower risk. Furthermore, the power overhead related to programmability (stan-
dard processors) can be mitigated by ASIPs architectures, especially if they are
very dedicated.

In this paper we present a novel application specific processor architecture for
centralized sensor networks. Specifically, we present a dual-clustered VLIW pro-
cessor that implements a joint source-channel SISO decoder within an iterative
scheme. To the best of our knowledge, the ASIP described here, based on [1],
is the first hardware architecture for distributed coding of correlated sources.
A customized datapath allows very high efficiency while providing enough flex-
ibility to execute all the operations involved in the joint source-channel turbo
decoding.

The remainder of the paper is outlined as follows. In the next section, an
overview of the source data generating process is provided. Section 3 analyzes
the proposed iterative joint source-channel turbo-decoder ASIP structure. In
Sect. 4 the most important results of the design are presented. Finally Sect. 5
draws some concluding remarks.

2 State of the Art and Signal Processing Foundations

The research activity on the potential of the Slepian-Wolf Theorem for DSC (Dis-
tributed Source Coding), through noisy communication networks has gravitated
around two different scenarios. On the one hand, for an asymmetric scenario
consisting of two nodes (i.e. when only one of the channels is noisy), the au-
thors in [2] proposed a joint source-channel coding scheme for a BSC channel
based on turbo codes. Using Irregular Repeat Accumulate codes, the authors in
[3] followed the same approach for BSC, AWGN and Rayleigh fading channels.
On the other hand, the case of symmetric (i.e. both channels are noisy) joint

100 P. Ituero et al.

Fig. 1. Turbo joint source-channel decoding scheme with side information from [7]

source-channel coding with AWGN channels has been analyzed using turbo [4]
and Low Density Generator Matrix [5] codes. Joint turbo equalization and de-
coding in asymmetric scenarios with correlated sources was also proposed in [6].
In [7] it was shown that the correlation parameters can be iteratively estimated
at the decoder.

Following the system proposed in [7], the communication setup for the pro-
posed VLIW based decoder is shown in Fig. 1. The source block {Xk}M

k=1 pro-
duced by source S1 is interleaved with a permutation function τ , and then
processed by a binary rate Rj = 1/3 turbo code [8] with two identical con-
stituent convolutional encoders C1 and C2 of constraint length L, giving rise to
a set of Sc = 2L−1 possible states. The encoded binary sequence is denoted by
{Xk, P 1

k , P 2
k }K

k=1, where we assume that P 1
k and P 2

k are the redundant symbols
produced for input bit Xk by C1, C2, respectively. The input to the AWGN
channel (with average energy per symbol Ec and noise variance σ2 = N0/2)
is denoted as {φ(Xk), φ(P 1

k), φ(P 2
k)}K

k=1, where φ : {0, 1} → {−
√

Ec, +
√

Ec}
denotes the BPSK transformation performed by the modulator. Finally, the re-
ceived corresponding sequence will be denoted by {X̃k, P̃ 1

k , P̃ 2
k }K

k=1. The main
idea behind the scheme in Fig. 1 hinges on the fact that, in order to estimate the
original source symbols as {X̂k}K

k=1, the joint decoder utilizes, not only the con-
trolled redundancy {P 1

k , P 2
k }K

k=1 added by the encoding stage, but also the side
information {Yk}K

k=1 available at the decoder. A brief explanation of the HMM
(Hidden Markov Model) based multiterminal source model and the designed
decoding algorithm followed in [7] is next provided.

2.1 Adopted Model for the Correlated Multiterminal Source

As stated previously, we consider the general case where the random variable
pairs (Xi, Yi) and (Xj , Yj) ∀ i �= j at the output of the multiterminal source are
not independent, i.e. the correlation among the sources represented by such a
multiterminal source has memory. This class of multiterminal source may model,
for instance, either temperature monitoring or video capture sensors. To empha-
size the distributed nature of such modeled sources we will further assume that
the random processes {Xk} and {Yk} are binary, i.i.d.1 and equiprobable.
1 The term i.i.d. stands for independent and identically distributed.

Joint Source-Channel Decoding ASIP Architecture for Sensor Networks 101

The following generation model fulfills these requirements: the first com-
ponent {Xk}K

k=1 is a sequence of i.i.d. equiprobable binary random variables,
while the second component {Yk}∞k=1 is produced by bitwise modulus-2 addi-
tion (hereafter denoted ⊕) of Xk and Ek, where {Ek} is a binary stationary
random process generated by a HMM. This model has often been utilized in
the related literature [9,10]. The HMM is characterized by the set of parameters
λHMM = {Sλ, A, B, Π}, where Sλ is the number of states, A = [as′,s] is a Sλ×Sλ

state transition probability matrix, B = [bs,j] is a Sλ × 2 output distribution
probability matrix, and Π = [πs] is a Sλ × 1 initial state probability vector. By
changing these parameters of the HMM, different degrees of correlation can be
obtained.

As shown in [7], this model can be reduced to an equivalent HMM that directly
outputs the pair (Xk, Yk) without any reference to Ek. Its Trellis diagram has
Sλ states and 4Sλ branches arising from each state, one for each possible output
(Xk, Yk) combination. The associated branch transition probabilities are easily
derived from the set of parameters λHMM of the original HMM and the marginal
probability P (xk), yielding

T MS
k (SMS

k−1 = s′, SMS
k = s, Xk = q, Yk = v) �

{
as′,s bs′,0 0.5 if q = v,
as′,s bs′,1 0.5 if q �= v, (1)

where again s, s′ ∈ {1, . . . , Sλ} and q, v ∈ {0, 1}. The label MS for the branch
functions T MS

k (·) and the state variables SMS
k stands for Multiterminal Source.

2.2 Joint Source-Channel MAP Receiver Based on SISO Decoders

The tasks of source (compression) and channel coding of {Xk}K
k=1 are jointly

performed by means of a turbo code. The corresponding turbo decoder must
be modified to take into account the correlated data {Yk}K

k=1 available at the
receiver in order to decrease the required transmit energy. Such a joint decoder
will estimate the original source sequence {Xk}K

k=1 as {X̂k}K
k=1 under the MAP

(Maximum a Posteriori) rule

x̂k = arg max
xk∈{0,1}

P
(
xk|{x̃k, p̃1

k, p̃2
k, yk}K

k=1
)
, (2)

where P (·|·) denotes conditional probability, and k = 1, . . . , K. This can be
achieved by applying the Sum-Product Algorithm (SPA) over the factor graph
that jointly describes the two constituent recursive convolutional encoders and
the statistical structure of the two correlated sources [11]. This factor graph is
plotted in Fig. 2. Observe that such a graph is composed of 3 subgraphs (SISO
decoders) corresponding to both convolutional decoders (D1 and D2) and the
multiterminal source (MS), all of them describing Trellis diagrams with different
parameters. Notice that variable nodes Xk and Yk are related via T MS

k , where
T MS

k (·) is given in expression (1). Also note the local functions IYk
(yk), which

are indicator functions taking value 1 when Yk = yk, i.e. when the variable Yk

equals the known value yk.

102 P. Ituero et al.

Fig. 2. Factor graph of the turbo joint source-channel decoder proposed in [7]

The SPA, when applied to cycle-free graphs, comprises a finite number of steps
and provides the exact values for the computed marginalization [11]. However,
the factor graph shown in Fig. 2 has cycles, and hence the algorithm has no
natural termination. To overcome this issue, the SPA is separately applied to
each subgraph — which, in turn, reduces to the Forward Backward (FBA) or
BCJR algorithm — in the order MS → D1 → D2.

In practice, the forward and backward recursions are computed in the loga-
rithmic domain to reduce complexity (Log-MAP and Max-Log-MAP). Let us be
more concise and propose the notation:

– Le,i
in (xk): extrinsic LLR (log-likelihood ratio) coming from Di (i ∈ {1, 2}).

– Ls
in(xk): extrinsic LLR coming from SISO decoder MS.

– Le
out(xk): a posteriori LLR generated at a certain SISO decoder.

– tp(s′, s, xk, yk) � log
(
T MS

k (s′, s, xk, yk)
)
: Logarithmic version of T MS

k (·).

With the above notation, the Max-Log-MAP FBA recursions for SISO decoder
D1 result in (similar expressions can be obtained for D2):

γk(s′, s) =
1
2
xk

(
Le,2

in (xk) + Ls
in(xk) + Lcx̃k

)
+

1
2
Lcp̃

1
kp1

k, (3)

αk(s) = max∗
s′ ∈ {1, . . . , Sc}{αk−1(s′) + γk−1(s

′, s)}, (4)

βk−1(s
′) = max∗

s ∈ {1, . . . , Sc}{βk(s) + γk−1(s
′, s)}, (5)

Joint Source-Channel Decoding ASIP Architecture for Sensor Networks 103

Le
out(xk) = max∗(s′, s) ∈ S+

{
αk(s′) +

1
2
Lcp̃

1
kp1

k + βk+1(s)
}

− max∗
(s′, s) ∈ S−

{
αk(s′) +

1
2
Lcp̃

1
kp1

k + βk+1(s)
}

, (6)

where Lc � 2
√

Ec/σ2, s′, s ∈ {1, . . . , Sc}, and S+ and S− are the set of Trellis
branches (s′, s) with output xk = 1 and xk = 0, respectively. For the the SISO
decoder MS, the recursions are:

γk(s′, s) =
1
2
xk

(
Le,1

in (xk) + Le,2
in (xk) + Lcx̃k

)
+ tp(s′, s, xk, yk) (7)

αk(s) = max∗
s′ ∈ {1, . . . , Sλ}{αk−1(s′) + γk−1(s

′, s)} (8)

βk−1(s
′) = max∗

s ∈ {1, . . . , Sλ}{βk(s) + γk−1(s
′, s)} (9)

Le
out(xk) = max∗

(s′, s) ∈ S+

{
αk(s′) + tp(s′, s, xk, yk) + βk+1(s)

}

− max∗
(s′, s) ∈ S−

{
αk(s′) + tp(s′, s, xk, yk) + βk+1(s)

}
. (10)

Finally, the overall LLR for the source symbols Xk (k = 1, . . . , K) will be
given by the sum of all LLR values arriving at variable node Xk, i.e. LLR(xk) =
Le

out(xk) + Le,1
in (xk) + Le,2

in (xk) + Lcx̃k, over which a hard decision is carried out
to provide the estimate X̂k.

3 Hardware Architecture

The process of iterative joint source-channel turbo decoding described before has
been implemented by means of a clustered VLIW ASIP. This kind of processor
provides the best trade-off between area, performance and power in most signal
processing applications.

The whole processor is meticulously optimized for the implementation of the
convolutional SISO decoders D1 and D2 as well as for the implementation of
SISO decoder MS. In a general perspective, the architecture comprises a master
controller, a datapath and memory elements that store separately the data and
the program.

The master controller consists of the instruction memory, the instruction de-
coder and the address generation unit. Following the approach exposed in [1], our
controller is microprogrammed to direct each stage of the pipeline. This provides
it with a higher flexibility and optimizes the resources utilization ratio, although
complicates the labor of the programmer who is in charge of maintaining the
pipeline [12].

All the computations of the system are performed in the Datapath of the
processor, therefore the main design effort was carried out on it. This module is
responsible for the frequency and latency of the whole decoder. Table 1 shows the
computational needs of the datapath. The number of inputs, outputs and neces-
sary hardware resources — adders, multipliers and Add Compare Select (ACS)

104 P. Ituero et al.

Table 1. SISO decoders computational needs

Operation Inputs Outputs Add. Mult. ACS
SISOs D1 D2 Gamma 5 3 3 1 0

SISOs D1 D2 Alpha Beta 10 8 0 0 16
SISOs D1 D2 Le

out 17 1 8 0 32
SISO MS Gamma 7 9 10 1 0

SISO MS Alpha Beta 10 2 0 0 8
SISO MS Le

out-LLR 13 2 9 0 16

structures — are displayed. The Datapath is composed of two FUs (Functional
Units), one for the gamma operations, which will be referred to as gamma FU,
and another one for the alpha, beta, LLR and Le

out operations which will be
referred to as ABLE FU.

3.1 ABLE FU

The ABLE FU must be able to compute six operations that have different
amounts of inputs — up to 17 — and outputs and different hardware resources
needs. Based on [1] and in order to reduce the connectivity necessities, the num-
ber of registers inside the FU and improve the throughput, the serialization of
the fetching and asserting of data was considered in the design.

Departing from equations 7 to 10 and 11 to 14 and Table 1 we came up with the
design that is depicted in Fig. 3. The figure includes ACS (Add-Compare-Select)
structures that implement the Jacobian algorithm approximation in the maxi-
mization, i.e. the max* operator; there are also CSA (Compare Select Accumu-
late) structures that are used to compute many comparisons throughout several

Fig. 3. ABLE Unit Implementation

Joint Source-Channel Decoding ASIP Architecture for Sensor Networks 105

(a) (b)

Fig. 4. (a) Pipelined execution of the ABLE Unit Operations.(b) Pipelined execution
of the Gamma Unit Operations.

cycles. Pipeline registers (PIPE) divide the system into two halves comprising
add-max∗-norm structures which yields a design that is both well-balanced and
independent of the max∗ module implementation. The figure is segmented into
four hardware blocks, aL1 to aL4, that will serve to explain each of the pipeline
stages of each operation.

The execution of each operation of the ABLE Unit is described in Fig. 4.a. All
the operations start with a data fetch (DF) and end with a data assert (DA), in
between they use different hardware blocks and also fetch and assert data. Note
that, since the outputs of the system are registered, these are always asserted
one cycle later than produced, requiring an output enable (OE) signal.

As far as the operations of SISO decoders D1 and D2 are concerned, in the
case of the alpha-beta computations, the unit in the first cycle half the state
metrics and one gamma are fetched and in the second cycle the rest of the
data is input, moreover in the second cycle the first set of four state metrics is
produced and the remaining four state metrics are computed in a third cycle, all
this entails a throughput of two cycles/symbol. Concerning the Le

out operation,
at each of the first four cycles the state metrics of a butterfly, which share
the same gamma, are fetched and subsequently processed, a throughput of four
cycles/symbol is achieved.

Regarding the operations of SISO decoder MS, the alpha-beta computations
process all the branches arising from one state metric — i.e. alpha or beta —
each cycle so that the number of inputs is reduced. Therefore in the first cycle
one state metric is fetched along with the corresponding four gammas, and in
the second cycle the other state metric and the rest of the gammas are fetched.
In the case of the Le

out-LLR operations, the procedure is similar to that of the
other decoders, but taking in consideration the new trellis section constraints.
These two previous operations achieve a throughput of two cycles/symbol.

106 P. Ituero et al.

Table 2. Latencies and throughputs of the datapath operations

Operation Latency Throughput
SISOs D1 D2 Alpha Beta 3 2
SISOs D1 D2 LLR Le

out 7 4

SISO MS Alpha Beta 3 2
SISO MS LLR Le

out 5 2

SISOs D1 D2 Gamma 5 2
SISO MS Gamma 6 2

Fig. 5. Gamma Unit Implementation

Finally, Table 2 summarizes the latencies and throughputs of all the operations
in the ABLE FU. Since these computations take their inputs from the gamma
FU, the gamma computations of all the SISO decoders will have to achieve a
throughput of two cycles/symbol.

3.2 Gamma FU

The gamma FU must be able to compute the gamma operations of the log-MAP
algorithm and the source decoding. At first glance the only remarkable difference
between equations 7 and 11 are the terms 1

2Lcp̃
k
kpi

k — which can take two values,
depending on pi

k — and tp(uk, zk, s′, s) — which can take eight different values
that are prestored in a look-up table. Taking this into account, along with the
figures in Table 1 and the throughput constraint of two cycles/symbol, we devised
the structure displayed in Fig. 5. Here, the symbols X1 and X2 represent the
first and second stages of a pipelined multiplier, respectively. Again, the unit is
divided into four hardware blocks to ease the comprehension of the operations
execution, shown in Fig. 4.b.

The gamma operation for SISOs D1 D2 has to yield three outputs — two
gammas and 1

2Lcy
p
kxp

k — and achieves this with a latency of five cycles and
throughput of two cycles continuously using every block except for “g4” that is
left unused. In contrast the gamma operation in the source decoding yields nine
outputs — eight gammas along with Le,1

in +Le,2
in +Lcx̃k — allowing a throughput

of two cycles/symbol and a latency of six cycles, in this case all the blocks are

Joint Source-Channel Decoding ASIP Architecture for Sensor Networks 107

used continuously except for “g1” that is used once every two cycles. Table 2
summarizes all these figures.

4 Synthesis Results

Considering that each symbol has to undergo one alpha, one beta and one Le
out

computation at each of the three decoders, and having in mind the figures from
Table 2 the following results are yielded. The Datapath achieves a throughput of
8 cycles/symbol when implementing decoders D1 and D2 and a throughput of 6
cycles/symbol when decoder SC is implemented, thus a whole iteration through
the three decoders entails a throughput of 22 cycles/symbol.

The design was prototyped in a Xilinx VirtexII 4000 FPGA. The whole system
takes up 728 slices which is a very reduced area and makes the system attractive
for embedded applications. The ABLE FU takes up 353 slices, almost half of
the whole system, whereas the gamma FU takes up 42 slices, a relatively small
portion. The maximum frequency of the system was fixed at 73.6 MHz which
entails a data throughput of 3.3 MSym/sec for each complete iteration.

5 Concluding Remarks

Exploiting the correlation among different sources in a sensor network has drawn
the attention of the research community due to its promising reduction of the
transmitted energy. In this work, we have presented a dual-clustered VLIW archi-
tecture that supposes the first implementation of a turbo joint source-channel de-
coder for spatially correlated multiterminal sources with memory. The most crit-
ical aspects of the system design have been thoroughly described, especially the
complex datapath that embodies two pipelined multioperand functional units.
The approach combines the benefits of programmable solutions along with the
characteristics of very dedicated designs, resulting highly appropriate for an em-
bedded solution.

References

1. Ituero, P., Lopez-Vallejo, M.: New Schemes in Clustered VLIW Processors Applied
to Turbo Decoding. In: 17th IEEE International Conference on Application-Specific
Systems, Architecture Processors. (2006)

2. Aaron, A., Girod, B.: Compression with Side Information using Turbo Codes. In:
Proceedings of the IEEE Data Compression Conference. (2002) 252–261

3. Liveris, A.D., Xiong, Z., Georghiades, C.N.: Joint Source-Channel Coding of Binary
Sources with Side Information at the Decoder using IRA Codes. In: Proceedings
of the IEEE International Workshop on Multimedia Signal. (2002) 440–442

4. Garcia-Frias, J.: Joint Source-Channel Decoding of Correlated Sources over Noisy
Channels. In: Proceedings of the IEEE Data Compression Conference. (2001)
283–292

108 P. Ituero et al.

5. Zhong, W., Lou, H., Garcia-Frias, J.: LDGM Codes for Joint Source-Channel Cod-
ing of Correlated Sources. In: Proceedings of the IEEE International Conference
on Image Processing. Volume 1. (2003) 593–596

6. Del Ser, J., Munoz, A., Crespo, P.M.: Joint source-channel decoding of corre-
lated sources over ISI channels. In: Proceedings of the IEEE Vehicular Technology
Conference. Volume 1. (2005) 625–629

7. Del Ser, J., Crespo, P.M., Galdos, O.: Asymmetric Joint Source-Channel Coding
for Correlated Sources with Blind HMM Estimation at the Receiver. Eurasip
Journal on Wireless Communications and Networking, Special Issue on Wireless
Sensor Networks 4 (2005) 483–492

8. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon Limit Error-Correcting
Coding and Decoding: Turbo Codes. In: Proceedings of the IEEE International
Conference on Communications (ICC). (1993) 1064–1070

9. Tian, T., Garćıa-Fŕıas, J., Zhong, W.: Compression of Correlated Sources Using
LDPC Codes. In: Proceedings of the IEEE Data Compression Conference. (2003)
450

10. Garcia-Frias, J., Zhong, W.: LDPC Codes for Compression of Multi-Terminal
Sources with Hidden Markov Correlation. IEEE Communication Letters 7 (2003)
115–117

11. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor Graphs and the Sum-Product
Algorithm. IEEE Transactions on Information Theory 47 (2001) 498–519

12. Jacome, M.F., de Veciana, G.: Design challenges for new application-specific pro-
cessors. Design&Test of computers 17 (2000) 40–50

Theory and Practice of Probabilistic Timed

Game for Embedded Systems

Satoshi Yamane

Graduate School of Natural Science, Kanazawa University
syamane@is.t.kanazawa-u.ac.jp

Abstract. Recent embedded systems are composed of many compo-
nents, and each component is an open system, and it has both real-time
properties and uncertainties. We specify each component using timing
constraints and probabilities, and compose systems from all the compo-
nents. In order to treat them, we develop the followings: First we develop
probabilistic timed game automata based on a probabilistic timed game
as a computational model. Next we develop probabilistic timed game
verification.

Keyword: formal specification, formal verification, game-theoretic ap-
proach, probabilistic timed game automaton, reachability game.

1 Introduction

Recently, 99 percent or more of the microprocessor is used for embedded systems
from control systems to information appliances. Also, embedded systems are
increasingly deployed in safety-critical situations [1]. This calls for systematic
design and verification methodologies that cope with the following three major
sources of complexity [2] :

1. Embedded systems have reactivity, and various components concurrently
behave as open systems [3]

2. Embedded systems have real-time properties [4]
3. Embedded systems behave in an uncertain environment [5]

In order to resolve these sources, the following techniques have been studied.

1. A.Pnueli and his colleague have modeled reactivity by the game theory be-
tween system and environment [6].

2. In order to specify timing constraints, R.Alur and his colleagues have devel-
oped timed automata and hybrid automata [7,8].

3. In order to specify uncertainty, R.Segala and N.Lynch have studied proba-
bilistic automata [9], and M. Kwiatkowska and her colleagues have developed
probabilistic timed automata [10].

Especially, L. de Alfaro and T.A. Henzinger have notably developed interface
theories for componentware of reactive systems [11,12,13]. They have guaranteed
the validity of systems by weak game-theoretic foundations.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 109–120, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

110 S. Yamane

In this paper, we propose probabilistic timed game theory by combining game
theory and timed automata with probabilities as follows:

1. First, we propose probabilistic game automaton, and define its game-theoretic
semantics.

2. Next, we propose verification method of probabilistic timed game.

The paper is organized as follows: In section 2, we define probabilistic timed
game automaton. In section 3, we define verification method of probabilistic
timed reachability game. In section 4, we specify wireless LAN protocol using
probabilistic timed game automata. Finally, in section 5, we present conclusions.

2 Probabilistic Timed Game Automaton

We assume embedded systems consist of many components, which concurrently
behave. We specify each component by probabilistic timed game automaton.

First we define probabilistic timed game automaton, and define its semantics
by probabilistic timed game theory.

2.1 Probabilistic Timed Game Automaton

First we define the discrete probability distribution.

Definition 1 (Discrete probability distribution)
We denote the set of discrete probability distributions over a set Q by μ(Q).
Therefore, each p ∈ μ(Q) is a function p : Q → [0, 1] such that

∑
q∈Q p(q) = 1.

Next, we define clock constraints.

Definition 2 (Clock constraint and clock valuations)
Let χ be a set of clock variables over R.

A constraint over χ is an expression of the form x ≺ c or x − y ≺ c, where
c ∈ N ∪ {∞}, x, y ∈ χ, ≺∈ {<, ≤}. We denote a set of clock constraints over χ
by Ξ[χ].

Let v : χ → R be a function assigning a real value to each of the clocks. We
write 0χ for the valuation that assigns 0 to each clock. We write V(χ) for all
the valuations in χ. We denote v + Δ for Δ ∈ R the valuation such that for
x ∈ χ, (v + Δ)(x) = v(x) + Δ. For some r ⊆ χ, we write v[r := 0] for the clock
valuation that assigns 0 to all clocks in r, and agrees with v for all clocks in
χ \ r. For ϕ ∈ Ξ[χ], we write v |= ϕ if v satisfies ϕ. It clearly holds v[r := 0] iff
v |= ϕ[r := 0].

Next we define probabilistic timed game automaton.

Definition 3 (Probabilistic timed game automaton)
A probabilistic timed game automaton is a tuple

A= (QA, qA
init, χA, ActsA

I , ActsA
O, InvA, ρA) , where

Theory and Practice of Probabilistic Timed Game for Embedded Systems 111

1. QA is a finite set of locations
2. qA

init is an initial location
3. χA is a finite set of clock variables
4. ActsA

I is a set of input actions, and ActsA
O is a set of output actions,

ActsA = ActsA
I ∪ ActsA

O ∪ D, where D is the set of time delays and
Δ ∈ D. Input actions are generated by environment, and are not controlled
by probabilistic timed game automaton. On the other hand, output actions
are generated by probabilistic timed game automaton, and are controlled by
probabilistic timed game automaton.

5. InvA : QA → Ξ[χA] associates to each location its invariant.
6. ρA ⊆ QA × Ξ[χA] × {ActsA

I ∪ ActsA
O} × 2χA × μ(QA) is a finite set of

transitions.
For (qA, gA, aA, rA, pA) ∈ ρA, qA ∈ QA is a source location, gA ∈ Ξ[χ] is a
clock constraint, aA ∈ ActsA

I ∪ ActsA
O is an action, rA ⊆ 2χA is a set of

reset variables, pA ∈ μ(QA) is a discrete probability distribution over a set
of locations.

Our proposed probabilistic timed game automaton is quite different from M.
Kwiatkowska’s probabilistic timed automaton [10] as follows:

1. Probabilistic timed game automaton distinguishs between input actions and
output actions. Input actions are generated by environment, and are not
controlled by probabilistic timed game automaton. On the other hand, out-
put actions are generated by probabilistic timed game automaton, and are
controlled by probabilistic timed game automaton.

2. In order to simplify models, we define the discrete probability distribution
over a set of locations. On the other hand, M. Kwiatkowska defines the
discrete probability distribution over a set of locations and a powerset of
reset variables.

3. We define game theoretic semantics of probabilistic timed game automaton.

Example 1 (Example of probabilistic timed game automaton)
Example of probabilistic timed game automaton is shown in Figure 1. The solid
arrows denote controllable actions, and the dotted arrows denote uncontrollable
actions. Now we consider a reachability game, and verify whether the goal is
reachable from < qA

init, x ≥ 2 > the probability by 0.8 or more. The reachability
game consists in finding a strategy for a controller, i.e. when to take the con-
trollable transitions that will guarantee that the system, regardless of when and
if the opponent chooses to take uncontrollable transitions, will eventually end up
some probability in the location the goal. In Figure 1, for all initial location with
x > 1 there is no winning strategy. On the other hand, for all initial location
with x ≤ 1 there is such a winning strategy.

2.2 Theory of Probabilistic Timed Game

Probabilistic timed games are classified into reachability game, safety game,
infinite game. In this paper, we consider reachability game. Given a proba-
bilistic timed game automaton A and a reachability condition K such as a pair

112 S. Yamane

Fig. 1. Example of a probabilistic timed game automaton

(G ⊆ QA × R, ≥ p), the reachability game (A, K) consists in finding a strategy
f such that A supervised by f enforces K.

A state of a A is a pair < qA, vA >∈ QA × R, where vA ∈ V(χA). We
denote a set of finite or infinite nonZeno runs from < qA

init,0χA > by Runs(<
qA

init,0χA >,A). ρ in Runs(< qA
init,0χA >,A) is as follows [14] :

ρ =
< qA

init,0χA >
Δ0−→

< qA
init,0χA + Δ0 >

g0,i0,r0,p0−→
< qA1,0χA + Δ0[r0 := 0] >

Δ1−→

< qA1,0χA + Δ0[r0 := 0] + Δ1 >
g1,o0,r1,p1−→

< qA2,0χA + (Δ0[r0 := 0] + Δ1)[r1 := 0] >
Δ2−→

< qA2,0χA + (Δ0[r0 := 0] + Δ1)[r1 := 0] + Δ2 >
g2,i1,r2,p2−→

. ..
We can compute the probability of ρ as follows:

p0(qA1) × p1(qA2) ×
Let (G ⊆ QA × R, ≥ p) be a reachability condition.
The runs are winning if

∑
k{p0(qA1) × p1(qA2) × . . . × pk−1(qAk)} ≥ p holds

true for any k which satisfies < qAk, vAk >∈ G. The set of winning runs in A
from < qA

init,0χA > is denoted WinRuns(< qA
init,0χA >,A).

Basically actions of probabilistic timed game are determined by the following
rule. An infinite run is assumed to have no infinite sequence of delay transitions of
duration 0. We define rule based on timed game by O. Maler, A.Pnueli, J.Sifakis
[15]. But we define the asymmetric setting between environment and system, as
actions of environment have a priority over those of system.

Definition 4 (Rule of probabilistic timed game)
Actions of probabilistic timed game are determined by the following rule.

Theory and Practice of Probabilistic Timed Game for Embedded Systems 113

1. First, in location qA, action α is determined according to the following rule.
Here α ∈ R is passage of time to have stayed in the location, and α ∈ ActsA

generates the state transition.
(a) If αI , αO ∈ R, α = min{αI , αO} is chosen. Namely, if αI < αO then

αI , otherwise αO, where I is an input player(environment), and O is an
output player(automaton).

(b) If αI ∈ ActsA
I and αO ∈ R, α = αI is chosen.

(c) If αO ∈ ActsA
O and αI ∈ R, α = αO is chosen.

(d) If αI ∈ ActsA
I and αO ∈ ActsA

O, α = αI is chosen.
(e) If αI , αI ′ ∈ ActsA

I , α = αI or α = αI ′ is nondeterministically chosen.
(f) If αO, αO′ ∈ ActsA

O, α = αO or α = αO′ is nondeterministically chosen.
2. Next, by α, a probability distribution p is solely determined.

In the following, we define strategies and outcomes of probabilistic timed game.
First we define a strategy of probabilistic timed game by extending a strategy

of timed game (proposed by O. Maler, A.Pnueli, J.Sifakis [15,16]). A strategy
of probabilistic timed game is a function that during the course of the game
constantly gives information as to what the controller should do in order to win
the game.

Definition 5 (A strategy of probabilistic timed game)
Let A= (QA, qA

init, χA, ActsA
O, ActsA

I , InvA, ρA) be a probabilistic timed game
automaton. A strategy f over A is a partial function from Runs((qA

init,0χA),A)

to ActsA
O∪D such that for every finite run ρ, if f(ρ) ∈ ActsA

O then last(ρ)
f(ρ)−→<

qA′, vA′ > for some < qA′, vA′ >, where we denote last(ρ) the last state of the
run ρ.

Moreover, Luca de Alfaro, Thomas A. Henzinger, Rupak Majumdar [17] have
proposed the idea such that the run controlled with some strategy f is defined by
the notion of outcome. Here the runs of a probabilistic timed game automaton
A controlled with some strategy f is the subset of all the runs. Using Luca de
Alfaro’s idea [17], we define the run controlled with some strategy f as outcome.

Definition 6 (Outcome of probabilistic timed game)
Let A= (QA, qA

init, χA, ActsA
I , ActsA

O, InvA, ρA) be a probabilistic timed game
automaton and f be a strategy over A. The outcome Outcome(< qA, vA >, f)
of f from (qA, vA) is the subset of Runs(< qA, vA >,A) defined inductively by:

1. < qA, vA >∈ Outcome(< qA, vA >, f),
2. if ρ ∈ Outcome(< qA, vA >, f) then ρ′ = ρ

eA−→< qA′, vA′ > if ρ′ ∈ Runs(<
qA, vA >,A) and one of the following three conditions hold:
(a) eA = (g, i, r, p),
(b) eA = (g, o, r, p) and o = f(ρ),
(c) eA = Δ ∈ R and ∀Δ′ ≤ Δ, ∃ < qA′′, vA′′ > such that last(ρ) Δ′−→<

qA′′, vA′′ > ∧f(ρ Δ′−→< qA′′, vA′′ >) = Δ′.

114 S. Yamane

3. for an infinite run ρ, ρ ∈ Outcome(< qA, vA >, f) if all the finite prefixes
of ρ are in Outcome(< qA, vA >, f).

We assume that uncontrollable actions(input actions) can only spoil the game
and the controller has to do some controllable action (output action) to win [15].
In this sense, we compute the minimal probability. A run may end in a state
where only uncontrollable actions(input actions) can be taken. Here we define
a maximal run ρ of probabilistic timed game by borrowing the maximal run
of timed game from K.G.Larsen [18] as follows: A maximal run ρ is either an
infinite NonZeno run [19] or a finite run ρ that satisfies either (1)last(ρ) ∈ G or

(2)if ρ
(g,a,r,p)−→ then a ∈ ActsA

I .
A strategy f is winning from < qA, vA > if maximal runs in Outcome(<

qA, vA >, f) satisfy a reachability condition K. Also they are in WinRuns(<
qA, vA >,A). A state < qA, vA > is winning if there exists a winning strategy f
from < qA, vA > in A.

3 Verification of Probabilistic Timed Reachability Game

3.1 Basic Idea

In famous existing timed game [15,17,18], they define controllable predecessors
operator and compute a set of winning states by controllable predecessors op-
erator. But in our probabilistic timed game, in order to compute probabilities,
we apply M. Kwiatkowska’s idea [10] into our verification of probabilistic timed
reachability game. Therefore, as in existing timed game [15,17,18], we constr-
cut zone graph using controllable predecessors operator, and moreover compute
probabilities over zone graph using linear equation systems [10].

3.2 Controllable Predecessors Operator

Let A= (QA, qA
init, χA, ActsA

I , ActsA
O, InvA, ρA) be a probabilistic timed game

automaton. First we define a symbolic state [10], and next define controllable pre-
decessors operator [18].

Definition 7 (symbolic state)
A symbolic state is a pair of the form < qA, ζA >, where qA ∈ QA and ζA ∈ ZA.

ZA is a set of valuations satisfying the followingF∧
0≤i�=j≤n xi − xj ≺ij cij,

where χ = {x0, x1, . . . , xn} and x0 = 0, cij ∈ Z ∪ {∞}, ≺ij∈ {<, ≤}.

Definition 8 (Discrete-successors and time-successors)
We define discrete-successors and time-successors as follows:

1. Discrete-successors:
For aA ∈ ActsA, we define discrete-successors Posta(X) as follows:

Theory and Practice of Probabilistic Timed Game for Embedded Systems 115

Posta(X) = {< qA′, ζA′ > |∃ < qA, ζA >∈ X, < qA, ζA >
(gA,aA,rA,pA)−→ <

qA′, ζA′ >},
where pA(qA′) > 0, ζA′ = ((ζA ∩ gA)[rA := 0]) ∩ InvA(qA′).

2. Time-successors:
We define controllable timed successors Suct(X) as folllows:

Suct(X) = {< qA, (↗ ζA) ∩ InvA(qA) > | < qA, ζA >∈ X},
where ↗ ζA = {v|∃Δ > 0 . (v − Δ |= ζA ∧ ∀Δ′ ≤ Δ.(v − Δ′ |= ζA))}.

Definition 9 (Discrete-predecessors and time-predecessors)
We define discrete-predecessors and time-predecessors as follows:

1. Discrete-predecessors:
For an aA ∈ ActsA, we define discrete-predecessors Preda(X) as follows:

Preda(X) = {< qA, ζA > |∃ < qA′, ζA′ >∈ X, < qA, ζA >
(gA,aA,rA,pA)−→ <

qA′, ζA′ >},
where pA(qA′) > 0, ζA′ = ((ζA ∩ gA)[rA := 0]) ∩ InvA(qA′).

2. Time-predecessors:
We define controllable timed predecessors Predt(X) as folllows:

Predt(X) = {< qA, (↙ ζA) ∩ InvA(qA) > | < qA, ζA >∈ X},
where ↙ ζA = {v|∃Δ > 0 . (v + Δ |= ζA ∧ ∀Δ′ ≤ Δ.(v + Δ′ |= ζA))}.

Finally we define controllable predecessorsF

Definition 10 (Controllable predecessors operator)
We define controllable predecessors operation Predt(X, Y) as follows:

Predt(X, Y) = {< qA, ζA >∈ QA × ZA|∃Δ ∈ R s.t. < qA, ζA >
Δ−→<

qA, ζA′ >, < qA, ζA′ >∈ X and Post[0,Δ](< qA, ζA >) ⊆ Y },
where Post[0,Δ](< qA, ζA >) = {< qA, ζA′ >∈ QA × ZA|∃t ∈ [0, Δ]s.t. <

qA, ζA >
Δ−→< qA, ζA′ >} and Y = (QA ×ZA) \ Y . The controllable predecessors

operator π is defined as follows:
π(X) = Predt(X ∪

⋃
o∈ActsA

O Preda(X),
⋃

i∈ActsA
I Preda(X)).

3.3 Construction of Zone Graph

Let (G ⊆ QA × R, ≥ p) be the condition of a reachability game, where GA is a
set of target locations and G is a set of target symbolic states. We use zone graph
construction method developed by K.G.Larsen’ SOTFTR algorithm [18] based
on controllable predecessors operation. The SOTFTR algorithm is viewed as an
interleaved combination of forward computation of the probabilistic timed game
automaton together with back-propagation of information of winning states,
and finally construct zone graph, which consists of only winning states. In M.
Kwiatkowska’s method [10], as probabilistic timed automaton is nondetermin-
istic with respect to probability distributions, zone graph is Markov decision
process. On the other hand, probabilistic timed game automaton is determinis-
tic with respect to probability distributions, zone graph is Markov process.

116 S. Yamane

Definition 11 (Zone graph)
The zone graph MA

GA of the probabilistic timed game automaton
A= (QA, qA

init, χA, ActsA
I , ActsA

O, InvA, ρA) with respect to GA is the
Markov process MA

GA= (SA
GA , < qA

init, ζA
init >, pA

GA), where

1. SA
GA : a set of winning symbolic states,

2. < qA
init, ζA

init > is an initial symbolic state, where qA
init is an initial loca-

tion and ζA
init is its initial zone,

3. For all < qA, ζA >∈ SA
GA and pA ∈ μ(QA), there exists pA

GA ∈ μ(SA
GA),

such that, for each < qA′, ζA′ >∈ SA
GA , pA

GA(< qA′, ζA′ >) = pA(qA′, r),
where < qA, ζA >

(gA,aA,rA,pA)−→ < qA, ζA′ >. Here the probability (that Markov
process will make a transition to a location qA′, and reset all the clocks in r
to 0,) is given by pA(qA′, r)

Now we define PA
GA instead of pA

GA as the standard form in Markov process.
PA

GA(< qA, ζA >, < qA′, ζA′ >) = pA(qA′, r)
Namely, the zone graph is Markov process MA

GA =(SA
GA , < qA

init, ζA
init >,

PA
GA) .

3.4 Computing Probabilities over Zone Graph

We verify whether (G ⊆ QA × R, ≥ p) is satisfiable or not over Markov process
MA

GA = (SA
GA , < qA

init, ζA
init >, PA

GA). First, we compute the total of prob-
abilities such that all the states in G are reached from an intial < qA

init, ζA
init >.

Second, if the total of probabilities satisfy ≥ p, the probabilistic timed game au-
tomaton is winning. Here we compute the total of probabilities using C. Cour-
coubetis and M. Yannakakis’s method [20,21,22] as follows.

Definition 12 (Method of computing the total of probability)
We verify whether (G ⊆ QA × R, ≥ p) is satisfiable or not over Markov process
MA

GA = (SA
GA , < qA

init, ζA
init >, PA

GA) according to the following steps:

1. First we divide SA
GA into the following three sets by depth-first search.

(a) All states in G are in SA
GA

Y ES

(b) All states, which do not reach G, are in SA
GA

NO

(c) SA
GA

?
= SA

GA \ (SA
GA

Y ES ∪ SA
GA

NO
)

2. Next we solve the regular linear equation system x = A · x + b, where
(a) x = (xs)s∈SA

GA
? .

(b) b = (bs)s∈SA
GA

? , where bs = PA
GA(s, SA

GA
Y ES

).

(c) A = (PA
GA(s, t))s,t∈SA

GA
? .

We can easily solve this linear equation system using Gauss-Seidel method
[23].

Theory and Practice of Probabilistic Timed Game for Embedded Systems 117

3.5 Example

First we show probabilistic timed game automaton A in Figure 2. This automa-
ton has the reachability condition (< Goal, x = y >, ≥ 0.90).

Next we construct zone graph MA
GA shown in Figure 3 from probabilistic

timed game automaton A in Figure 2.
If the total of probabilities of the runs from an initial state q0 to Goal satisfies

≥ 0.90, the runs are in WinRuns(< q0,0{x,y} >,A). The runs are classified into
two categories, and the probabilities of candidates of WinRuns(< q0,0{x,y} >,
A) as follows:

1. Path without loops(< q0, x = y ≤ 3 >→< q2, x = y ≤ 3 >→< Goal,
x = y >):
(a) 0.05 × 0.8 = 0.04

2. Paths with loops(< q0, x = y ≤ 3 >→ (< q1, x = y ≤ 2 >)ω →< Goal,
x = y >):
(a) 0.95 × 0.9 = 0.855
(b) 0.95 × 0.9 × (0.1 × 0.9)1

Fig. 2. Probabilistic timed game automaton A

Fig. 3. Zone graph

118 S. Yamane

(c) 0.95 × 0.9 × (0.1 × 0.9)2

(d) 0.95 × 0.9 × (0.1 × 0.9)3

. .

. .

We compute the total of probabilities of paths with loops by solving the fol-
lowing linear equation system. Here SA

GA
Y ES

= {Goal}, SA
GA

NO
= ∅, SA

GA
?

= {q0, q1}.

1. x0 = 0.95 × x1
2. x1 = 0.1 × x1 + 0.9 × xG

3. xG = 1.0,

where x0 is the probability to reach Goal from q0, x1 is the probability to reach
Goal from q1, xG is the probability to reach Goal from Goal. By solving the linear
equation system, x0 = 0.95 is computed. Therefore, the total of probabilities is
0.95 + 0.04 = 0.99. Then we conclude this probabilistic timed game automaton
is winning. Namely, the above runs are in WinRuns(< q0,0{x,y} >,A). As
WinRuns(< q0,0{x,y} >,A) is not empty, a strategy f is winning from <
q0,0{x,y} >. Moreover, as there exists a winning strategy f from < q0,0{x,y} >
of A, < q0,0{x,y} > is winning.

4 Specifying IEEE802.11 Protocol

In this section, we model and specify DCF components of ad hoc network of the
IEEE802.11 [24] using probabilistic timed game automatonD The model consists

Sense1

x DIFS

Random1-2/2

x 0

No_Backoff1

x 0

Channel_Idle1-1

x 0

Channel_Busy1-1

x 0

Channel_Idle1-2

x 0

Random1-1/2

x 0

Channel_Idle1-3

x SlotTime

Channel_Idle1-4

x SlotTime

Channel_Idle1-5

x 0

Backoff1-0,

x:=0

IndicationIdleTo1,x:=0

x=0,BkDoneFalse1

x=0,BkDoneTrue1

Backoff1-1,x:=0

CallRandom1

x 0

IndicationBusyTo1

Random1-1

Transmittng1

x T-MAX

StartTrans1

x 0
EndTrans1

x 0

Wait_IFS1-1

x DIFS

Wait_IFS1-2

x DIFS

Wait_IFS1-3

x DIFS

x=0,TxConfirm1

x=T-MAX,

PHYConfirm1,

x:=0

x=0,

PHYRequest1,

x:=0

TxRequest1,

x:=0

IndicationIdleTo1,

x:=0

IndicationIdleTo1,

x:=0

IndicationBusyTo1

IndicationBusyTo1

IndicationBusyTo1

IndicationBusyTo1

IndicationBusyTo1

x=DIFS,

Idle1,

x:=0

x=DIFS ,Idle1,x:=0
x=DIFS,

Idle1,

x:=0

Idle1

x=DIFS

x:=0

x= SlotTime,

Slot1,

x:=0

x= SlotTime,

Slot1,

x:=0

IndicationBusyTo1

controllable action

uncontrollable action

Fig. 4. TRANSMISSION
(S)
1

Theory and Practice of Probabilistic Timed Game for Embedded Systems 119

of Send1CSend2, RECIEV E
(S)
1 CRECIEV E

(S)
2 C Wireless Media WM (S). Here

Send1 consists of CONTROL
(S)
1 and TRANSMISSION

(S)
1 . The components

concurrently behave. We show only TRANSMISSION
(S)
1 in Figure 4 because

of lack of spaces. Here Ramdom1-1 means 1/16-probability distribution.
We easily specify each component in ad hoc network using probabilistic timed

game automaton. Also, we can compose all the components into one embedded
system described in probabilistic timed game automaton. In this experience, it
is most important that we could easily specify systems using probabilistic timed
game automaton.

5 Conclusion

In this paper, we propose both probabilistic timed game automaton and the ver-
ification method of probabilistic timed reachability game. Also, it is shown that
we easily specify embedded systems using probabilistic timed game automaton.
We are now planning to study the followings:

1. First we effectively implement verifier by on-the-fly method, and apply our
proposed method into real systems.

2. Next we develop infinite probabilistic timed game theory.

References

1. T.A. Henzinger, C.M. Kirsch. Embedded Software: Proceedings of the First Inter-
national Workshop, EMSOFT ’01. LNCS 2211, P.504, Springer-Verlag, 2001.

2. T. A. Henzinger. Games, time, and probability: Graph models for system design
and analysis. LNCS, 2007ito appearj.

3. D. Harel, A. Pnueli. On the Development of Reactive Systems. NATO ASI Series
F, Vol. 13, pp.477-498, SpringerVerlag, 1985.

4. M.K. Inan, R.P. Kurshan. Verification of Digital and Hybrid Systems. NATO ASI
Series F: Computer and Systems Sciences, Vol. 170, Springer-Verlag, 2000

5. H.A. Hansson. Time and Probability in Formal Design of Distributed Systems.
PhD thesis, Uppsala University, 1991.

6. A. Pnueli, R. Rosner A Framework for the Synthesis of Reactive Modules. LNCS
335, pp.4-17, Springer 1988.

7. R. Alur, D.L. Dill. A theory of timed automata. TCS,Vol.126, pp.183-235, 1994.
8. R. Alur, et al. The Algorithmic Analysis of Hybrid Systems. TCS, Vol.138, No.1,

pp. 3-34, 1995.
9. R. Segala, N.A. Lynch. Probabilistic Simulations for Probabilistic Processes.

Nordic Journal of Computing, Vol.2, No.2, pp.250-273, 1995.
10. M. Kwiatkowska, et al. Automatic verication of real-time systems with discrete

probability distributions. TCS 282, pp 101-150, 2002
11. L. de Alfaro, T.A. Henzinger. Interface Theories for Component-Based Design.

LNCS 2211, pp.148-165. Springer-Verlag, 2001.
12. L. de Alfaro, T.A. Henzinger. Interface Automata. FSE ,pp. 109-120, ACM Press,

2001.

120 S. Yamane

13. L. de Alfaro, T.A. Henzinger, M. Stoelinga. Timed interfaces. LNCS 2491, pp.
108-122, 2002.

14. S. Yamane Probabilistic Timed Simulation Verification and Its Application to
Stepwise Refinement of Real-Time Systems. LNCS 2896, pp.276-290, 2003.

15. O. Maler, A.Pnueli, J.Sifakis. On the Synthesis of Discrete Controllers for Timed
Systems. LNCS 900, pp.229-242, 1995.

16. R. Alur, T. A. Henzinger. Modularity for timed and hybrid systems. LNCS 1243,
Springer, 1997, pp. 74-88.

17. Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Symbolic algorithms
for infinite-state games. LNCS 2154, pp. 536-550, 2001.

18. F. Cassez, A. David, E. Fleury, K.G. Larsen, D. Lime: Efficient On-the-Fly Algo-
rithms for the Analysis of Timed Games. LNCS 3653, pp.66-80, 2005.

19. M. Abadi, L. Lamport. An Old-Fashioned Recipe for Real Time. ACM TOPLAS,
No. 16, Vol.5, pp.1543-1571, 1994.

20. C. Courcoubetis, M. Yannakakis. Verifying Temporal Properties of Finite-State
Probabilistic Programs. 29th FOCS, pp.338-345, 1988.

21. H. Hansson, B. Jonsson. A Logic for Reasoning about Time and Reliability. Formal
Aspects of Computing, 6(5), pp.512-535, 1994.

22. C. Courcoubetis, M. Yannakakis. The Complexity of Probabilistic Verification.
Journal of ACM, 42(4), pp.857-907, 1995.

23. William J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press., 1994.

24. Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifica-
tions . ANSI/IEEE Std 802.11, 1999 Edition.

A Design Method for Heterogeneous Adders

Jeong-Gun Lee1, Jeong-A Lee2, Byeong-Seok Lee2, and Milos D. Ercegovac3

1 Computer Laboratory, University of Cambridge, UK
Jeong-Gun.Lee@cl.cam.ac.uk

2 Department of Computer Engineering, Chosun University, Republic of Korea
3 Dept. of Computer Science, University of California Los Angeles, US

Abstract. The performance of existing adders varies widely in their
speed and area requirements, which in turn sometimes makes designers
pay a high cost in area especially when the delay requirements exceeds
the fastest speed of a specific adder, no matter how small the differ-
ence is. To expand the design space and manage delay/area tradeoffs,
we propose new adder architecture and a design methodology. The pro-
posed adder architecture, named heterogeneous adder, decomposes an
adder into blocks (sub-adders) consisting of carry-propagate adders of
different types and precision. The flexibility in selecting the characteris-
tics of sub-adders is the basis in achieving adder designs with desirable
characteristics.

We consider the area optimization under delay constraints and the
delay optimization under area constraints by determining the bit-width
of sub-adders using Integer Linear Programming. We demonstrate the
effectiveness of the proposed architecture and the design method on 128-
bit operands.

1 Introduction

Embedded system design recently has attracted much attention from academia
and industry for its great demand in market. The demand in applications is
very wide and the diversity covers from the very high-performance real-time
embedded systems to the very simple micro-controller based embedded systems.
In consequence, design requirements and constraints varies a lot according to
applications, and cost-effective optimization has to be applied to reduce their
cost. Especially the cost-effectiveness is very important in the hardware parts of
the embedded systems.

In this paper, we propose a cost-effective optimization of adder architecture.
Addition is an essential operation in a digital embedded hardware/system and
many adders such as a ripple carry adder (RCA), a carry skip adder (CSKA), a
carry lookahead adder (CLA), and a parallel prefix adder (PA) have been devel-
oped utilizing different carry generation schemes to provide tradeoffs in speed,
area and power consumption [1,2]. To date, these single type (homogeneous)
adders were mixed in a multi-level architecture by adopting a different scheme
for carry and sum generation, e.g., a carry lookahead scheme in the carry gener-
ation network and a carry select scheme for the sum generation, as in the case
of a hybrid carry-lookahead/carry-select adder [3].

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 121–132, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

122 J.-G. Lee et al.

Area

Delay

Infeasible T
im

ing C
onstraint

Carry lookahead adder,
Parallel-Prefix adder

Carry skip adder

Ripple carry adder

Optimal design points
for homogeneous adders

Optimal design points
for heterogeneous adders

Hybrid carry lookahead/select adder

Fig. 1. Conceptual design space of adder design

For non-uniform input bit arrivals, adders consisting of sub-adders of different
types have been proposed [4,5] and are typically used in the design of parallel
multipliers. We do not consider here adders with non-uniform input arrivals. It
is noteworthy that the hybrid adder in [3] improves the delay performance at
the increased cost of area.

However, for a certain delay requirement, the additional area cost might be
very big due to the characteristic of delay-area curves shown in Fig. 1. Solid
lines in Fig. 1 are delay-area curves and correspond to a set of optimal design
points for given conventional adder architectures [1,6]. The individual solid line
is typically banana-shaped but the overall delay-area curve formed by these solid
lines is not banana-shaped. Some of work [7,8] have tried to tradeoff area/delay
through sparsing computational circuit and changing the amount of internal
wiring/the fanout of intermediate nodes on the carry generation network in a
parallel prefix adder.

In this paper,we propose a heterogeneous adder architecture,which corresponds
to a pareto-optimal delay-area curve as denoted by the dashed lines in Fig. 1. The
heterogeneous adder architecture permits better design tradeoffs in terms of area
and delay. The same approach is expected to provide better tradeoffs when consid-
ering power consumption. The heterogeneous adder can be described as an n-bit
adder where various bit-width blocks of carry propagation adders such as RCA,
CSKA and CLA are connected iteratively using carry-in and carry-out signals
of block adders. We will describe in this paper an Integer Linear Programming
(ILP) based methodology to configure a heterogeneous adder. Our formulated ILP
produces the best choice of types and precisions of sub-adders for two cases: (i)
area-constraineddelay optimization, and (ii) delay-constrained area optimization.
Compared to the work [7,8], our approach provide more high-level view of arith-
metic optimization without considering low-level circuit issues such as fanout size
and wiring complexity. In addition, our formulation provide a more systematic op-
timization method through ‘mathematically’ modelled adder delay and area.

A Design Method for Heterogeneous Adders 123

The remainder of this paper is organized as follows. Heterogeneous adder ar-
chitecture and its characteristics are explained in detail in Section II. In Section
III, we address the mathematical modeling of the heterogeneous adder for its
optimization. Experimental results are presented in Section IV to show the ef-
fectiveness of the proposed method. Finally, in Section V, we conclude this paper
with summary of work and possible future work.

2 Proposed Architecture and Advantage

The architecture of a heterogeneous adder allows to combine different types of
adder implementations with various precision to form a single heterogeneous
adder. While the conventional implementation selects only one implementation
in a given library, the proposed bit-level implementations with different sub-
adders can explore an extended design space allowing more find-grained area-
delay tradeoffs.

For example, in the Synopsis design library [12], many sub-adders of differ-
ent precision are available and we can use those sub-adders to make an adder
to satisfy design constraints manually which is quite laborious and inefficient.
The proposed method provides an automated procedure for determining a best
configuration of sub-adders and their precisions under given design constraints.
The procedure is fast and allows efficient design exploration.

Definition [Heterogeneous Adder]. A Sub Adder SAi(ni) is an n-bit sub-
adder whose carry propagating scheme is denoted by SAi. When the number of
available sub-adders is I, an n-bit heterogeneous adder is defined as an n-bit adder
which concatenates SAi(ni) where 1 ≤ i ≤ I. SAi(ni) uses the carry-out signal
of SAi−1(ni−1) as its carry-in signal. The sum of all ni should be equal to n.

In Fig. 2 we show an n-bit heterogeneous adder with three different sub-adders,
i.e., I = 3 with n1 + n2 + n3 = n. In general, I can be any number according
to the available adder designs. For better understanding, in this paper, we use
three sub-adders for our example of heterogeneous adder. As we explore design
space of a heterogeneous adder with at most three different sub-adders under
either delay constraint or area constraint condition, it produces a solution with
one, two sub-adders or three sub-adders. If the heterogeneous adder has two
sub-adder components, this can be denoted as zero for a certain i in ni.

SA3 = Ripple
Carry

Sub-adder

SA2 = Carry
Skip

Sub-adder

SA1 = Carry
Lookahead
Sub-adder

n
3

n
2

n
1

A[n:1] B[n:1]

Sum[n:1]

CinCout

n
3

n
2

n
1

n
3

n
2

n
1

Cout Cin Cout Cin Cout Cin

Fig. 2. A heterogeneous adder example

124 J.-G. Lee et al.

If ni is found to be zero by the optimization procedures, then it means that
SAi type is not allocated to a heterogeneous adder and, in this case SAi(ni)
is simply a wire conveying a carry signal from SAi−1(ni−1) to SAi+1(ni+1). In
this point of view, it is obvious that SA0(n0) and SAI+1(nI+1) are carry-in and
carry-out ports, respectively.

• Property of Heterogeneous Adder: First, the heterogeneous adder al-
ways has a lower cost (a lower delay) than a single type homogeneous adder for a
given total delay (cost). Homogeneous adder is a subset of heterogeneous adder
according to our definition. Consequently, in the worst case, the heterogeneous
adder is implemented by a single homogeneous adder and, in other cases, a mix
of different types of sub-adders implements the heterogeneous adder. Hetero-
geneous adder covers a bigger design space which in turn results a lower cost
(delay) design for a given total delay (cost).

Second, the order of sub-adders has an impact on the delay of a heterogeneous
adder. The processing delay of the heterogeneous adder is determined by finding
a maximum value among the completion times of all sub-adders. In general, there
is a time difference between carry generation delay and sum generation delay in
each sub-adder. Depending on the order of sub-adders, the carry generation of
sub-adders positioned at a MSB part can overlap sum generation of sub-adders
at a LSB part.

Now, the question, “How to allocate bits for each sub-adder optimally and
efficiently?” becomes an important design problem for a heterogeneous adder ar-
chitecture. Here, ‘optimal’ means the minimum area under a delay constraint or
minimum delay under an area constraint. The ‘efficiency’ relates to the efficiency
of the automated procedure of finding optimal solutions.

To consider the advantages of the heterogeneous adder, which is optimized at
the bit level, consider Fig. 3 showing the delays of three single type adders syn-
thesized using Synopsis tools with 0.25μm CMOS library [11,12]. Even though
there are timing variations, which can be controlled by the circuit or synthesis
optimization, in general, there will be delay ranges falling between delay curves
of various single type adders. This can be seen in Fig. 1.

When specific timing constraints fall into the uncovered delay ranges, a designer
considering the design space consisting of single type homogeneous adders has no
choice but to select another adder producing speed higher than necessary at an
extra unavoidable cost. When an expanded design space provided by a heteroge-
neous adder is used, one can explore design points in the uncovered delay ranges,
marked by a shadow region in Fig. 3, and select faster designs with smaller area.

3 ILP Based Optimization

3.1 Problem Formulation

With the target adder architecture, delay-constrained area optimization problem
can be written as “find the bit widths, n1, n2, . . . , nI of sub-adders to minimize

A Design Method for Heterogeneous Adders 125

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140

RCA
CSKA

CLA

Delay

Range covered
by

design variation

Range covered by
heterogeneous adder

Precision
[bits]

Fig. 3. Delay plot for three different types of adders

the area of n-bit heterogeneous adder, while satisfying a constraint that the total
adder delay should be less than ub”, where ub denote the upper bound of the
total delay of the heterogeneous adder. The area-constrained delay optimization
can be specified in a similar manner.

3.2 ILP Formulation

A direct formulation of the delay-constrained area optimization can be described
by the following equations:

Minimize
(n1,n2, ... ,nI) AREA(Heterogeneous Adder)

with Constraints

1: DELAY(Heterogeneous Adder) ≤ ub

2: Bit-Width Sum of Sub-Adders = n

In these equations, ‘AREA’ and ‘DELAY’ are functions computing area and
delay. To model these ‘AREA’ and ‘DELAY’, we use Integer Linear Programming
(ILP) method [10]. Current ILP model assumes that the order of sub-adders
allocated to a heterogeneous adder is fixed. Within an ILP formula, according
to the assumption, ‘I’ types of sub-adders (SAi, 1 ≤ i ≤ I) are placed from the
least significant bit (LSB) to the most significant bit (MSB).

In the proposed ILP formulation, an integer variable, xSAi

ni , denotes the num-
ber of SAi(ni) which is used in a heterogeneous adder. Three constants, DSAi

ni,s ,
DSAi

ni,c and ASAi
ni

, are the sum generation/carry generation delays and area of
SAi(ni), respectively. Here, ‘c’ denotes carry generation and ‘s’ stands for sum
generation. More precisely, DSAi

ni,s and DSAi
ni,c are worst-case delays from the carry-

in signal arrival to the output of the sum and carry-out signals, respectively.

126 J.-G. Lee et al.

Basically, ‘i’ of ni determines the type, SAi, so we do not need to put ‘SAi’ in
the notations of these variable and constants. However, for better understaning,
we put ‘SAi’ to their notation.

• Area Modelling: For a specific i-th type of sub-adder, AREA (SAi(ni))
can be derived by the linear combination of xSAi

ni and ASAi
ni

as follows.

∑n
ni=0 ASAi

ni
×xSAi

ni
, where

∑n
ni=0 xSAi

ni
≤ 1.

The equation, ‘
∑n

ni=0 xSAi
ni

≤ 1’, means at most one bit-width is selected for
each type of sub-adder. This equation, however, can be removed in the con-
straint list to allow multiple instances of each sub-adder. When n1, n2, . . . , nI

are given, the area of a heterogeneous adder, (sum of the sub-adder areas), can
be expressed as

∑I
i=1 AREA(SAi(ni)) and, finally, in the following form:

∑I
i=1

∑n
ni=0 ASAi

ni
×xSAi

ni
, where

∑n
ni=0 xSAi

ni
≤ 1.

In this paper we assume that the area of a heterogeneous adder is described by
the summation of areas of its sub-adders. Since sub-adders are linearly combined
to make a heterogeneous adder by connecting carry signals, we believe that this
assumption is reasonable.

• Delay Modelling: Compared to area modeling, ‘DELAY (Heterogeneous
Adder)’ is more complex to model because the completion delay is not simply a
sum of delays of sub-adders. The DELAY of a heterogeneous adder is a maximum
propagation delay between many possible data propagation paths from the input
signals and carry-in signal to the sum and carry-out signals of the heterogeneous
adder.

Fig. 4 shows one possible timing path of a heterogeneous adder with three
different sub-adders. There are three possible completion times for each sub-
adder, (1) DCLA

n1,s , (2) DCLA
n1,c + DCSKA

n2,s or (3) DCLA
n1,c + DCSKA

n2,c + DRCA
n3,s . The

final completion time is evaluated by finding the maximum delay of those three
different path delays. With the assumption that I sub-adders are allocated from
LSB to MSB in the predefined order, the DELAY of a heterogeneous adder can
be formulated in the following way.

DELAY = Max{TPass1 , TPass2 , . . ., TPassI }
TPass1 = DSA1

n1,s

TPassi =
∑i

k=2D
SAk−1
nk−1,c + DSAi

ni,s , 1 < i ≤ I

Since ni can be varied from 0 to n, the constant values, DSAi
ni,s and DSAi

ni,c in this
equations, can be derived from

∑n
ni=0 DSAi

ni,s ×xSAi
ni

and
∑n

ni=0 DSAi
ni,c ×xSAi

ni
with

an additional constraint,
∑n

ni=0 xSAi
ni

≤ 1, respectively, as in the AREA modeling.

A Design Method for Heterogeneous Adders 127

time

DCLA
n1,c

DCLA
n1,s

Carry propagation time
Sum propagation time

DCSKA
n2,c

DCSKA
n2,sDRCA

n3,c

DRCA
n3,s

LSBMSB

SA3 = Ripple
Carry

Sub-adder

SA2 = Carry
Skip

Sub-adder

SA1 = Carry
Lookahead
Sub-adder

n
3

n
2

n
1

CinCout

n
3

n
2

n
1

n
3

n
2

n
1

Cout Cin Cout Cin Cout Cin

Fig. 4. Delay modeling of a heterogeneous adder

With the mathematically modeled delay and area, finally, the ILP formulation
of our delay-constrained area optimization problem is described below.

Minimize
(n1,n2, ... ,nI)

∑I
i=1

∑n
ni=0 ASAi

ni
×xSAi

ni

with Constraints

1:
∑n

ni=0 DSAi
ni,s×xSAi

ni
≤ ubdelay for all SAi, (1 ≤ i ≤ I)

2:
∑i

k=2

∑n
nk−1=0 D

SAk−1
nk−1,c × x

SAk−1
nk−1

+
∑n

ni=0 DSAi
ni,s × xSAi

ni
≤ ubdelay, 1 < i ≤ I

3:
∑n

ni=0 xSAi
ni

≤ 1 for all SAi

4:
∑I

i=1

∑n
ni=0 ni × xSAi

ni
= n

Similarly, area-constrained delay optimization is formulated as.

Minimize
(n1,n2, ... ,nI) dmax

with Constraints

1:
∑n

ni=0 DSAi
ni,s × xSAi

ni
≤ dmax for all SAi, (1 ≤ i ≤ I)

2:
∑i

k=2

∑n
nk−1=0 D

SAk−1
nk−1,c × x

SAk−1
nk−1

+
∑n

ni=0 DSAi
ni,s × xSAi

ni
≤ dmax, 1 < i ≤ I

3:
∑I

i=1

∑n
ni=0 ASAi

ni
×xSAi

ni
≤ ubarea

4:
∑n

ni=0 xSAi
ni

≤ 1 for all SAi

5:
∑I

i=1

∑n
ni=0 ni × xSAi

ni
= n

128 J.-G. Lee et al.

4 Experiments

As an experiment, we consider the three types of sub-adders, RCA, CSKA,
and CLA, in the design a 128-bit heterogeneous adder. In addition, possible
bit-widths of sub-adders are restricted to the bit-widths from 2 to 128 bits. In
this paper, variations caused by actual implementation are not considered since
our focus is on bit-level optimization strategies. In actual implementation, some
physical design issues including layout and interconnect will lead to alterations
of the optimized design produced by our method. However, the structurally opti-
mized design obtained from our method makes the actual physical optimization
more efficient.

For experiment, we calculate the constant delay and area estimates, DSAi
ni,s ,

DSAi
ni,c and ASAi

ni
which are estimated from synthesized designs using Synopsis

with 0.25μm CMOS technology [11,12]. The ILP formulation is solved using a
public domain LP solver called “lp solve” [10].

Fig. 5 depicts the advantage of the proposed adder architecture, which shows
the area-delay curve of the 128-bit heterogeneous adder obtained through the LP
solver. While changing delay (or area) boundary, ub, optimal heterogeneous adder
configurations are searched to minimize area (or delay). Fig. 5(a) shows the case
of “Delay-constrained area optimization problem” and Fig. 5(b) shows the case
of “Area-constrained delay optimization problem”. In this experiment, the con-
straint ‘

∑n
ni=0 xSAi

ni
≤ 1’ is removed from the constraint list to allow multiple

instances of each sub-adder to get more room for optimization.
We considered all possible combination of ordering of sub-adders, that is 15

configurations of a heterogeneous adder out of 3 sub-adders, RCA, CSKA, and
CLA. For better illustration purposes, in Fig. 5, we show configurations of some
design points marked with their delay/area values. In the figures, two values
in parentheses are ‘delay’ and ‘area’ pairs of the corresponding heterogeneous
adders.

LP solver produced a three sub-adder concatenation such as RCA ‖ CSKA ‖
CLA as a solution (here, we use a symbol, ‘‖’, to denote a linear carry connection
between sub-adders. For example, in the case of RCA ‖ CSKA ‖ CLA, a CLA is
located to a LBS part and CSKA is used in a middle part, and RCA is located to
a MSB part). However, the difference of delay (or area) between RCA ‖ CSKA
‖ CLA and CSKA ‖ CLA was so small, we eliminate this 3 sub-adder solution
in the design space and keep only one or two sub-adder configurations for the
heterogeneous adder design space.

The design space we obtained, as indicated in Fig. 5(a) and 5(b), shows
that RCA, RCA ‖ CSKA, CSKA, CSKA ‖ CLA, RCA ‖ CLA are good can-
didate orderings for the solution space. The design space covered by CSKA ‖
CLA in Fig. 5 contains many solutions with various precision of CSKA and
CLA sub-adders. The precision of each sub-adder shown in the Fig. 5 explains
clearly that heterogeneous adder indeed allows time-area tradeoffs much better
than the conventional adder design. The solutions with RCA ‖ CSKA, CSKA
‖ CLA, RCA ‖ CLA are newly introduced design points. Those newly introduced

A Design Method for Heterogeneous Adders 129

Fig. 5. A delay-area curve for a 128-bit heterogeneous adder

pareto-optimal points in these regions cannot be obtained without using hetero-
geneous adder architecture.

Finally, Fig. 6 shows the delay/area reduction rate obtained from the use of
a heterogeneous adder. Delay/area reduction is observed in the interval where
a heterogeneous adder interpolates a new design point effectively between two
homogeneous adders. In these intervals, unless the heterogeneous adder is used,
we have to use a homogeneous adder with extra cost. These intervals where de-
lay/area reduction is observed are corresponding to the region covered by a het-
erogeneous adder in Fig. 3 given in Section 2. In this experiment, up to near 70%
delay reduction and around 30% area reduction are obtained. However, we would
like to note the improvement numbers are not absolute since this improvement

130 J.-G. Lee et al.

(a)

(b)

Fig. 6. Delay/area reduction rate by a 128-bit heterogeneous adder (a) Delay reduction
rate, (b) Area reduction rate

is based on the assumption that the area/delay cost of a homogeneous adder we
use is fixed. The improvement would be changed relatively if other circuit level
optimizations like a transistor sizing are applied to homogeneous adders. Those
area/delay variations of homogeneous adders are also shown in Fig. 4 as “range
covered by design variations”.

A Design Method for Heterogeneous Adders 131

5 Conclusions and Future Work

For designing delay-area efficient adders, we have proposed a heterogeneous
adder architecture, which consists of sub-adders of various sizes and different
carry propagation schemes. The proposed decomposition into heterogeneous sub-
adders allows more design tradeoffs in delay-area optimization. We also devel-
oped an ILP based technique and applied it iteratively to find an optimal config-
uration in selecting the type and bit-width of sub-adders as components of the
heterogeneous adder.

Considering a 128-bit adder, we showed that many delay-area efficient designs
could be found with the extended design space of heterogeneous adder architec-
ture, which were not possible in a conventional, homogeneous adder design space
using the proposed method with tools like Synopsis. Currently we are develop-
ing power modeling of heterogeneous adders using ILP and extending the design
method to allow tradeoffs between delay, area, and power.

Acknowledgement

This work was supported in part by research funds from Chosun University, 2004
and by the Korea Research Foundation Grant funded by Korean Government
(KRF-2005-D00026). The work of Jeong-Gun Lee was supported in part by IT
Scholarship Program supervised by IITA & MIC, Republic of Korea.

References

1. C. Nagendra, M.J. Irwin, R.M. Owens, “Area-time-power tradeoffs in parallel
adders,” In IEEE Trans. on Circuits and Systems II: Analog and Digital Signal
Processing, vol. 43, pp. 689-702, Oct. 1996

2. V. Oklobdzija, B. Zeydel, S. Mathew, and R. Krishnamurthy, “Energy-Delay Es-
timation Technique for High-Performance Microprocessor VLSI Adders,” In Prod.
IEEE Symposium on Computer Arithmetic, pp. 272- 279, Jun. 2003

3. Y. Wang, C. Pai, X. Song, “The design of hybrid carry-lookahead/carry-select
adders,” In IEEE Trans. on Circuits and Systems II: Analog and Digital Signal
Processing, vol. 49, Jan. 2002

4. V. Oklobdzija and D. Villeger, “Improving Multiplier Design by Using Column
Compression Tree and Optimized Final Adder in CMOS Technology,” IEEE Trans.
on VLSI, 3(2):292-301, 1995.

5. P. F. Stelling and V. Oklobdzija, “Design Strategies for Optimal Hybrid Final
Adders in a Parallel Multiplier,” Journal of VLSI Signal Processing, Vol. 14(3)
pp.321-31, 1996.

6. M.D. Ercegovac and T. Lang, “Digital Arithmetic,” Morgan Kaufmann Publishers,
2004

7. R. Zimmermann, “Binary Adder Architectures for Cell-Based VLSI and their Syn-
thesis,” PhD thesis, Swiss Federal Institute of Technology (ETH) Zurich, Hartung-
Gorre Verlag, 1998

8. Simon Knowles, “A Family of Adders,” In Prod. IEEE Symposium on Computer
Arithmetic, pp. 30-34, 1999

132 J.-G. Lee et al.

9. H.P. Williams, “Model Building in Mathematical Programming,” 4th Ed., John
Wiley, New York, 1999

10. M. Berkelaar, “lp solve - version 4.0,” Eindhoven University of Technology,
ftp://ftp.ics.ele.tue.nl/pub/lp solve/, 2003

11. “IDEC-C221: IDEC Cell Library Data Book,” IC Design Education Center, 2000
12. “DesignWare IP Family Reference Guide,” Synopsis Corporation, September 12,

2005

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 133–141, 2007.
© Springer-Verlag Berlin Heidelberg 2007

FPGA Based Implementation of Real-Time Video
Watermarking Chip

Yong-Jae Jeong, Kwang-Seok Moon, and Jong-Nam Kim

Division of Electronic Computer and Telecommunication Engineering
Pukyong National University Busan, Korea

jy034@pknu.ac.kr

Abstract. In this paper, we propose a real-time video watermarking chip and sys-
tem which is hardware based watermark embedding system of SD/HD (standard
definition/high definition) video with STRATIX2 FPGA device from ALTERA.
There was little visual artifact due to watermarking in subjective quality evalua-
tion between the original video and the watermarked one. Embedded watermark
was all extracted after a robustness test called natural video attacks such as A/D
(analog/digital) conversion and MPEG compression. Our implemented water-
marking hardware system can be useful in movie production and broadcasting
companies that requires real-time based copyright protection system.

1 Introduction

The recent development of computing and communication technologies enabled high
definition video (HDV) applications. In today’s computing environment, the end
users can easily perform storing, editing, reproducing, and or distributing HDV
scripts. Copyright protection has therefore been increasingly important to protect
HDV data against illegal copy and reproduction and copy right infringement.

Digital watermarking technology has been actively investigated to solve the copy-
right protection problem of HDV media data by hiding injected watermark informa-
tion into original digital contents. To be effective, a watermarking scheme must sat-
isfy two important technical requirements: invisibility and robustness [1]. To satisfy
the invisibility (or transparency) requirement, the watermark should be injected into
the original media contents in such a way that human beings cannot visually recog-
nize the watermark. The effective watermarking scheme should also be robust against
possible attacks such as translation, rotation, and/or scaling. In addition a watermark-
ing scheme for HDV applications should be robust against natural attacks such as
analog/digital conversion and/or MPEG compression.

The applications of HDV broadcast monitoring and on-air live broadcasting need
fast real-time watermarking solution. To enable fast real-time watermarking, chip
level implementations of watermarking algorithms have been investigated [2, 3].
VLSI implementations of watermarking algorithms, which are robust against ana-
log/digital conversion and JPEG compression, for still digital images were reported in
the literature [4, 5]. These research works focused on single chip implementations of
watermarking algorithms but did not address system level studies on the effectiveness
and efficiency of underlying watermarking schemes.

134 Y.-J. Jeong, K.-S. Moon, and J.-N. Kim

In this paper, we present a hardware system that enables fast real-time watermark-
ing for SD/HD applications. The presented hardware system has an embedded water-
marking processor implemented based on the STRATIX II FPGA device family from
ALTERA®. The embedded watermarking processor is based on our novel watermark-
ing algorithm suitable for optimal hardware implementation. Our system can embed
user information such as video meta-data to any selected video frames, so that we can
extract the injected watermark data at any frame of the watermarked video. The pre-
sented hardware watermarking system for SD/HD real-time applications satisfies
invisibility and robustness that are essential requirements for practical watermarking.
The presented hardware system can not only be used for live broadcasting with real-
time SD/HD watermarking but also used for mass production video watermarking
such as movies or DVDs.

In Section 2, we describe the implementation of the proposed watermarking em-
bedder which includes watermarking algorithm and hardware chip implementation.
Section 3 explains the configuration of the proposed watermarking system with prac-
tical hardware equipments and experimental results. Finally, we conclude the paper in
Section 4.

2 Implementation of Watermark Embedding Chip

This section explains hardware implementation of watermark embedder. To imple-
ment an efficient watermark embedder, a novel watermarking algorithm was devel-
oped based on the Kutter’s algorithm [6] [7]. This algorithm is based on multiple
embedding the same watermark at several times at horizontally and vertically shifted
locations in the image. The watermark can be made by using the spread-spectrum
manner between the binary signature and the modulation function. The proposed
novel watermarking algorithm is suitable for optimal hardware implementation, and
has strong robustness against known natural and hostile attacks.

Kutter et al. proposed an efficient watermark embedding algorithm using Eq. (1)
and (2). The watermark),(yxw is consist of three factors: watermark strength from

image characteristics and binary signature as the input message and finally modula-
tion function that is generated from pseudo-random function. More specifically, wa-

termark strength (,)x yα is calculated based on video characteristics which include
variance, gradient, and spatial complexity of the pixels on a frame. In addition, the
watermark strength calculation considers inter-frame motion speed. The novel pro-
posed watermarking algorithm for optimal hardware implementation was devised by
improving the modulation function and watermark strength of the Kutter’s algorithm.

),(),(),(
^

yxwyxIyxI += (1)

),(),()1(),(
1

0

yxyxsyxw i

N

i

bi α∑
−

=

−= (2)

 FPGA Based Implementation of Real-Time Video Watermarking Chip 135

signaturebinary : function modulation :),(s

k watermar: strength k watermar:),(

contents ked watermar:),(contents original :),(

i
i

^

byx

w(x,y)yx

yxIyxI

α �

�

Our target is to embed not the binary signature but the string in the image. The wa-
termark generates to spreading at the modulation function the code that mapping the
string to the ASCII code. In the previous watermarking algorithms, modulation func-
tion has been realized by pseudo-random function. In general, when pseudo-random
function size increases, the watermark detection ratio increases while embeddable
watermark data decreases. In the proposed algorithm, Hadamard sequence [8] was
employed to increase the detection ratio without increasing the pseudo-random se-
quence size (therefore without decreasing the embeddable watermark payload).

Watermark embedding strength in general affects invisibility of the watermark and
robustness of the watermarking. When the embedding strength increases, the robust-
ness increases; whereas, the invisibility property decreases. In our proposed algo-

rithm, the watermark strength (,)x yα is calculated based on filtered image obtained
by high pass filter such as Cross Shape Filter (CSF). Since the watermark strength is
represented by a floating point number, obtaining watermark data needs computation-
ally expensive floating point calculations as shown in Eq. (2). Watermark is injected
into the plain areas of the image with relatively lower watermark strength. Image
areas with contours (or edges) are considered as detailed areas into which watermark
is injected with higher strength. In our proposed scheme, in order to accelerate the
watermark data calculation, the floating point calculation is replaced by integer calcu-

lations. To enable integer calculation, the value of (,)x yα of Eq. (2) in our algo-
rithm should be an integer value. To get integral watermark strength, the high pass
filtered image is first quantized into different floating point intervals. Any floating
number in an interval is then mapped into an integer value, which is called a quantiza-
tion index. Using the Hadamard sequence as pseudo-random function and achieving
integer calculations for watermark strength are the basis for the proposed algorithm.

The schematic diagram of the watermark embedder chip is shown in the Figure 1.
The watermark embedder is implemented based on the STRATIX®II FPGA device
family from ALTERA®. Watermark is injected into each frame of the video scripts.
The original video signal is in the format of SDI from SMPTE [9]. The watermark
data is embedded into only Y component of each pixel of the SDI format YCbCr.

As the diagram shows, the original video frame extract the TRS(Time Reference
Signal) by the synchronize signal in the SDI format YCbCr. and then this frame
is filtered by the high pass filter Cross Shape Filter (CSF) module which detects
the edge of the original video. The CSF has N×N matrix window to detect edges, and
the matrix window is a register of N2 bytes. The video input signal is buffered into the
video input buffer register. The buffer register can hold by N rows of the image pix-
els. In the case of HD video signal processing, the buffer size is 1920 * N bytes. The
buffer is structured as a queue by shift registers, so that image rows are replaced in
First In First Out (FIFO) manner. The buffer registers and arithmetic logic unit for the
CSF are implemented by the STRATIX®II FPGA chip.

136 Y.-J. Jeong, K.-S. Moon, and J.-N. Kim

Fig. 1. Schematic diagram of the watermark embedding chip

The output signal of the CSF (i.e., detected edge of the video) is fed into Water-
mark Strength Generator (WSG). As explained in the previous section, WSG gener-
ates watermark strength value for each pixel of the filtered image. The WSG is
realized as a simple lookup table which maps one byte Y component value into an
integer value in the range of {0,..,M}. The mapping rule (i.e., the scalar quantization
rule) was devised by empirical data obtained by a series of simulations.

The Watermark Generator generates watermark signals according user information
which is mapped into appropriate Hadamard sequences according to the key. That is,
the Watermark generator selects a proper Hadamard sequence according to the user
information and the key. N-dimensional Hadamard matrix is stored in ROM of FPGA
and selected in the fashion of lookup table.

Actually, SDI (Serial Digital Interface) signal format includes TRS(Time Refer-
ence Signal) which is composed of start of active video(SAV), end of active
video(EAV), vertical flag(V) and field flag(F) and used to search the active video area
in video signal [9]. By using the TRS, we seek the active video area in SDI signal,
then add the scaled watermark to original video after scaling watermark signal ac-
cording to the calculated watermark strength. The watermarked video has no any
difference in the sense of appeared visual quality compared with the original video.
According to the procedure described above, we implemented the watermarking chip
based on VHDL and the STRATIX®II FPGA device family from ALTERA®. In our
implementation, we used 720*487 video frame size specified by SD format. Video
input signal is SDI format, which is composed of Y, C, and TRS signal. The Y and C
are 10bit's signal individually, and TRS is composed of 3 bits. 256×256 sized Ha-
damard matrix is used, and the strength of watermark is adjusted with 6 levels.

Figure 2. shows that the RTL schematic of the synthesized embedder.

 FPGA Based Implementation of Real-Time Video Watermarking Chip 137

Fig. 2. RTL view result with the Quartus II

Figure 3 shows VHDL simulation waveform of the implementation of video wa-
termark embedder on ALTERA Quartus II. In the figure 3, the signal ORGOUT is the
output of original video and the signal WMOUT is the output of watermark embed-
ding result. The original video and the watermark embedded video signals can be
identified easily in the figure. The embedded watermark signals are in the range of -6
and +6 and are calculated according to complexity of the video signal. If we compare
WMOUT with ORGOUT at 79.15us in the figure, ORGOUT has hexadecimal digit
167 and WMOUT has hexadecimal digit 16D. According to the simulation result, we
can see that the implemented VHDL code is operated properly.

�

Fig. 3. VHDL simulation result with the Quartus II

138 Y.-J. Jeong, K.-S. Moon, and J.-N. Kim

3 System Configuration

We configured the overall real-time watermarking system as shown in Figure 4.
Video source is from DVD player and the signal format of the video source is YPbPr.
The YPbPr signal from the DVD player must be converted to be connected to the
watermark embedder because the watermark embedder processes only SDI signal. A
video signal converter from TV-Logic® is used and converts the YPbPr to SDI for-
mat. After embedding watermarks in the watermark embedder, the output signal of

Fig. 4. Overall operation of watermark embedding system

Fig. 5. Original video (right) and watermark embed video (left)

 FPGA Based Implementation of Real-Time Video Watermarking Chip 139

the embedder must be converted to YPbPr from SDI for the watermarked video to be
displayed in a LCD screen. Of course, the original DVD video signal is connected to
LCD to compare the original video and watermarked one.

According to the figure 3, we practically made up a real-time video watermarking
system as shown in figure 5. The most right things represent DVD player and the origi-
nal video on a LCD monitor from the DVD player. The next left part shows the real-
time video embedder and the watermarked video, and the most left small module is
video format converter which converts YPbPr to SDI format or inversely for each other.

Figure 6 shows that our test of the real-time watermark embedder. there was little
visual difference between the original video and the watermarked video.

(a)

(b)

Fig. 6. Original video (a) and watermark embed video (b)

Table 1 shows the result of subject video quality test by five people who observe
the original video and the watermarked video at the same time. In the experiment, five
DVD contents are used as shown in Table 1, which shows various video characteris-
tics such as brightness, motion, and texture. We measured subjective video quality
instead of objective quality such as PSNR because the subject quality test measures
actual video quality well than the objective quality test. The test distances between
observers and LCD are 30 cm, 70 cm, 1m, 2m respectively, which is a 17 inch wide
LCD monitor from LG®. There is no difference in video quality except for 30 cm

140 Y.-J. Jeong, K.-S. Moon, and J.-N. Kim

Table 1. Experimental result of watermark embedding

Distance
Video seq.

30(cm)
70(c

m)
1

(m)
2(

m)

The Lord of the Ling
3

2 1 1 1

Forrest Gump 2 1 1 1

Star Wars 3 2 1 1 1

Saving Private Ryan 2 1 1 1

Matrix 3 2 1 1 1

1. Imperceptible 2. Almost imperceptible 3. Perceptible 4. Very perceptible

between the original video and the watermarked video as shown in Table 1. For 30
cm, the video artifact from watermark is almost imperceptible, which can be negligi-
ble in practical applications

4 Conclusions

In this paper, we designed and implemented a real-time video watermark embedder
chip by using STRATIX2 FPGA device from ALTER® and configured the embedder
system. Our video watermarking system embeds watermarks into spatial domain of
video, and has little visual artifact caused by the inserted watermark. In the water-
marking chip, we modified and improved Kutter’s algorithm for optimal hardware
implementation. The presented hardware watermarking system satisfies invisibility
and robustness that are essential requirements for practical watermarking applications.
The implemented hardware watermarking system can be useful for real-time SD/HD
video watermarking system, which requires the function of copyright protection in
broadcasting or movie production.

References

1. Cox, M. Miller, and J. Bloom, "Digital Watermarking," Press of Morgan Faukmann, 2002.
2. L. Strycker, P. Termont, J. Vandewege, J. Haitsma, A. Kalker, M. Maes, and G. Depovere,

“Implementation of a Real-Time Digital Watermarking Process for Broadcast Monitoring
on Trimedia VLIW Processor,” IEE Proc. on Vision, Image and Signal Processing, vol.
147, no. 4, pp. 371–376, Aug. 2000.

3. N. Mathai, A. Sheikholeslami, and D. Kundur, “VLSI Implementation of a Real-Time
Video Watermark Embedder and Detector,” Proc. IEEE International Symposium on Cir-
cuits and Systems, vol. 2, pp II-772 - II-775, May 2003.

4. Garimella, M. Satyanarayana, P. Murugesh, and U. Niranjan, “ASIC for digital color image
watermarking,” IEEE Signal Processing Education Workshop pp. 292-296 Aug. 2004.

5. S. Mohanty, N. Ranganathan, and R. Namball, “VLSI implementation of invisible digital
watermarking algorithms towards the development of a secure JPEG encoder,” IEEE Work-
shop on Signal Processing Systems, pp 183-188, Aug, 2003.

 FPGA Based Implementation of Real-Time Video Watermarking Chip 141

6. M. Kutter “Watermarking resisting to translation, rotation, and scaling,” Proc. SPIE, vol.
3528, pp. 523-531, Nov. 1998.

7. M. Kutter and S. Winkler, “A Vision-Based Masking Model for Spread-Spectrum Image
Watermarking”, IEEE Trans. on Image Processing, vol. 11, pp. 16-25, Jan. 2002.

8. P. Shlichta, "Higher-dimensional Hadamard matrices," IEEE Trans. on Information Theory,
1979.

9. “Component Video Signal 4:2:2 Bit-Parallel Digital Interface,” American National Stan-
dard, ANSI/SMPTE 125M, Sept, 1995.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 142–153, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Unified Compressed Cache Hierarchy Using Simple
Frequent Pattern Compression and Partial Cache Line

Prefetching*

Xinhua Tian and Minxuan Zhang

Department of Computer Science, National University of Defense Technology,
Changsha, Hunan, 410073, China

tianxinhua71@163.com, xhtian@nudt.edu.cn

Abstract. In this paper, we propose a novel compressed cache hierarchy that
uses a unified compression algorithm in both L1 data cache and L2 cache,
called Simple Frequent Pattern Compression(S-FPC). This scheme can increase
the cache capacity of L1 data cache and L2 cache without any sacrifice of the
L1 cache access latency. The layout of compressed data in L1 data cache en-
ables partial cache line prefetching and does not introduce prefetch buffers or
increase cache pollution and memory traffic. Compared to a baseline cache hi-
erarchy not supporting data compression in cache, on average, our cache hierar-
chy design increases the average L1 cache capacity(in terms of the average
number of valid words in cache per cycle) by about 33%, reduces the data cache
miss rate by 21%, and speeds up program execution by 13%.

1 Introduction

Modern processors use two or more levels of cache memories to reduce memory
latency and bandwidth. Effectively using the limited on-chip cache resources becomes
more and more important as memory latencies continues to increase relative to proc-
essor speeds[1]. Cache compression[2,3] has previously been proposed to improve per-
formance, since compressing data stored in on-chip caches can increase their effective
capacity, potentially reducing misses and transmit bandwidth requirement between
levels of memory hierarchy. However, current compression techniques[2,3,9] mainly
proposed to compress the data in main memory or L2 cache can not be applied to the
L1 cache because of rigorous restriction in L1 cache access latency.

In this paper, we propose a novel compressed cache hierarchy that uses a unified
compression scheme in both L1 data cache and L2 cache, called Simple Frequent
Pattern Compression (S-FPC). This compression algorithm is a simpler version of
FPC (Frequent Pattern Compression) encode scheme [11], proposed by Alaa and ap-
plied to compressing data in L2 cache and main memory. Because FPC compression
scheme needs 5 cycles decompression latency, it can not be directly applied to the L1
cache. To solve this problem, the decompression process of compressed cache line is

* This work was supported by National Natural Science Foundation of China, grant No.

60376018.

 A Unified Compressed Cache Hierarchy Using Simple Frequent Pattern Compression 143

divided into two stages: in the first stage, a compressed cache line in L2 cache is un-
packed to separate encoded words and an encoded word is decoded in the second
stage. The intermediate results produced by unpacking simultaneously two address-
contiguous compressed cache lines from L2 cache in the first stage will be stored in
one cache line in L1 D-cache, so the latency of the first stage is added to the access
latency of L2 cache; In the second stage, the intermediate results stored in L1 D-cache
are decoded and the latency of the second stage can be hidden when processor ac-
cesses L1 D-cache in our design, so the access latency of L1 D-cache will not in-
crease. Because of the layout of compressed data in L1 D-cache, compressing two
address-contiguous cache lines from L2 cache into one cache line in L1 D-cache will
trigger to prefetch partially the cache line adjacent to the cache line requested nor-
mally by a cache miss. Because the prefeched partial cache line and normally re-
quested cache line share a physical cache line space, the prefetching caused by L1 D-
cache compression does not introduce prefetch buffers or increase the cache pollution
and memory traffic relative to common sequential prefetch technology.

Compared to tradition cache hierarchy not supporting data compression in cache,
our cache hierarchy design can apparently increase the effective cache capacity of L1
D-cache and L2 cache. In addition, our cache hierarchy design combines partial cache
line prefetching and data compression, which can improve the performance and de-
crease cache miss rate significantly. We have evaluated our design through executing
a set of SPEC benchmarks on SimpleScalar. Initial experimental results show that, on
average, our cache hierarchy design can increase the average L1 cache capacity(in
terms of the average number of valid words in cache per cycle) by about 33%, reduce
the L1 D-cache miss rate by 21%, and speed up program execution by 13%.

The rest of this paper is organized as follow. Section 2 discusses the motivation
behind our design and the related works. The compressed cache hierarchy design
details presented in section 3. Section 4 evaluates our cache hierarchy design and
gives experiment results. Section 5 concludes this paper.

2 Motivation and Related Works

2.1 Motivation

Cache compression is one way to improve the effectiveness of cache memories [4,5,6,7].
Storing compressed lines in the cache increases the effective cache capacity and re-
duces cache misses, thereby reduces the time spent to long off-chip miss penalties.
However, compression increases the cache hit time, since the decompression over-
head lies on the critical access path. Therefore, for some applications, cache compres-
sion can improve performance, but for other applications, cache compression can
degrade performance. To solve this issue, some researchers proposed adaptive com-
pression technique[2,7]. In this paper, we proposed a unified compression cache hierar-
chy. The motivation derived from the performance analysis of compressed cache
hierarchy as follow:

The average memory access time of a conventional memory system (convAMAT)

can be represented as in (1), in which 1LT , 2LT , 1LM and 2LM denote the L1 and L2

cache access times and their cache miss rate, respectively. memT is the main memory

144 X. Tian and M. Zhang

access latency classified into four timing components such as bus arbitration time,
RAS latency, memory read overhead and data transfer time. For the convenience of
analysis, the variety of data transfer time caused by the changing of the cache line size
of the L2 compressed cache is ignored. So the memT is fixed.

()memLLLLconv TMTMTAMAT ×+×+= 2211 (1)

))(
~

(2211_2 dememLdeLLLcompL TTMTTMTAMAT +×++×+= (2)

Equation (2) represents the average memory access time (compLAMAT _2) when

compression technique is applied to L2 cache. 2
~

LM is the L2 cache miss rate when

compression technique is applied to L2 cache and deT is the decompression latency.
So the upper bounds of decompression latency for performance improvement are
calculated as:

2

22
~

1

)
~

(

L

memLL
de

M

TMM
T

+
−

< (3)

Define decompression latency balance point thD to be the point where the average

memory access time of a conventional memory system (convAMAT) is equal to the

average memory access time when compression technique is applied to the memory
system. So when compression technique is applied to L2 cache, equation (3) can be
written as:

 thde DT < (4)

in this case, =thD
2

22
~

1

)
~

(

L

memLL

M

TMM

+
−

 (5)

From (4), we can know that there are two ways to improve performance of com-
pressed cache hierarchy, one is to decrease the decompression latency of compressed
cache deT , the other is to increase the decompression latency balance point thD . The
motivation of this paper is rooted in the second way, the compressed cache hierarchy
proposed by this paper can increase the decompression latency balance point thD . In
our compressed cache hierarchy, data compression technique is applied in L1 D-cache
and L2 cache, and the decompression latency of L1 D-cache can be hidden when the
processor accesses L1 D-cache. So the decompression latency of L1 D-cache is zero.
The average memory access time in our cache hierarchy can be calculated as:

))(
~

(
~

2211_2_1 dememLdeLLLcompLL TTMTTMTAMAT +×++×+= (6)

compLLAMAT _2_1 represents the average memory access time in our cache hierar-

chy. 1
~

LM is the L1 D-cache miss rate when the compression technique is applied to

L1 D-cache. In this case, according to equation compLLconv AMATAMAT _2_1= , the

decompression latency balance point can be calculated as:

2

222
~

1

)
~

()1(

L

memLLL
th

M

TMMT
D

+
−+−

=
αα

 (7)

 A Unified Compressed Cache Hierarchy Using Simple Frequent Pattern Compression 145

In equation (7),
1

1
~

L

L

M

M
=α . Because our cache hierarchy design combines partial

cache line prefetching and data compression, L1 cache miss rate will decrease relative
to conventional cache hierarchy, so 1>α will be satisfied. From equation (7) and (5),
we can know that our design makes the decompression latency balance point growing.
So our compressed cache hierarchy will improve performance significantly.

2.2 Related Works

Several researchers proposed hardware cache compression implementations that
aimed at increasing the effective cache capacity and reducing cache miss rate. These
implementations apply known hardware compression algorithms mainly to the L2
cache[2,3,18] or main memory[16,17,19]. More sophisticated compression techniques (such
as XRL compression[12], and parallel compression with dictionary construction[8]) can
only be applied to main memory and L2 cache as they are more tolerant to increase in
hit times. Only a few simple compression algorithms[6,13,14,20] (such as frequent value
compression, and sign-bit extension removing compression) can be applied to L1
cache.

Yang and Gupta designed L1 data compressed cache[6,13] based on frequent value
compression. However, their compression technique needs to obtain frequent value
table from value profile, and the compression scheme is not adaptable to program
behavior. In addition, their technique increases L1 cache hit latency.

P.Pujara and A.Aggarwal proposed restrictive compression technique[14] for L1
data cache. Their compression scheme is based on the observation that most data
types (e.g, 32-bit integers) can be stored in half of their original size through remov-
ing high 16 bits sign-bit extension. When all words (32 bits) in a cache line can be
stored in half of their original size, the cache line is called a narrow cache line. Two
narrow cache lines in the same set can be compressed to share one physical cache
line. So their compression scheme will degrade compressibility of cache line when
cache line size increase because the probability that a cache line is a narrow cache line
will decrease.

Our work is inspired by frequent pattern compression algorithm shown by Alaa R.
Alameldeen et al. [11] and partial cache line prefetching shown by Youtao Zhang et al. [15].

Alaa R. Alameldeen and David A. Wood developed frequent pattern compression
(FPC) scheme for L2 cache. Their compression scheme is based on the observation
that some data patterns are frequent and also compressible to a fewer number of bits.
For example, many small-value integers can be stored in 4, 8 or 16 bits, but are nor-
mally stored in a full 32-bit word. In their compressed cache design, cache line de-
compression occurs when data is read from the L2 to L1 cache and needs 5 cycles
decompression latency. So FPC can not directly be applied to L1 cache.

Youtao Zhang and Rajiv Gupta proposed a partial cache line prefetching scheme[15]
through data compression. The layout of compressed data in their cache design is
similar to our design, but their compressed algorithm will produce more cache block
resource conflict than our compressed algorithm, thereby decrease the effective cache
capacity of compressed cache.

146 X. Tian and M. Zhang

3 Cache Design Details

3.1 Simple Frequent Pattern Compression (S-FPC) Encode

The compression encode algorithm used by our compressed cache hierarchy is called
simple frequent pattern compression (S-FPC). Each word in the cache line is encoded
into a compressed format if it matches any of the patterns in the first three rows in
Table1. A word that doesn’t match any of these patterns is stored in its original 32-bit
format. All prefix values are stored at the beginning of the line to speed up decom-
pression.

Table 1. Simple Frequent Pattern Encoding

Prefix Pattern Encoded Data Size
00 Zero Run 0 bit
01 One byte sign-extended 8 bits
10 Halfword sign-extended 16 bits
11 Uncompressed word 32 bits

3.2 Unified Compressed Cache Hierarchy

Our proposed unified compressed cache hierarchy has two levels on-chip cache, as
shown in Fig.1. L1 I-cache stores instructions in uncompressed format. When data is
written to L1 D-cache by processor, data will be encoded on a word basis at first, and
then be placed to the corresponding location of L1 cache line according to its word
offset. All encoded words in a L1 cache line will be packed to a compressed cache
line when data is written back from L1 D-cache to L2 cache. In L2 cache, data and
instruction are stored in compressed and uncompressed format respectively. When L1
D-cache miss occurs, L2 compressed cache line will be unpacked to separate encoded
words, and then these encoded words will be placed into corresponding location of L1
cache line according to their word offset respectively.

3.3 L1 Data Cache Organization

In our compressed cache hierarchy, every physical cache line in L1 D-cache can hold
content from two consecutive encoded cache lines, identified as the primary cache
line and the affiliated cache line. As shown in Fig. 2, block Prefix0 and Prefix1 hold
the prefixes of all words in primary and affiliated cache line respectively. The primary
cache line is defined as the line mapped to physical cache line/set by a normal cache
of the same size and associativity. Its affiliated cache line is the unique line that is
calculated through the following formulas:

Tag
affiliated

 = Tag
primary

Set
affiliated

 = Set
primary

+1

The encoded data layout of L1 compressed D-cache enables a cache miss triggering
next line partial prefetching. When a referenced cache line x causes a L1 cache miss,
it will be loaded from L2 cache. In our S-FPC compression scheme, every word

 A Unified Compressed Cache Hierarchy Using Simple Frequent Pattern Compression 147

(32-bit) can be encoded and occupy 0, 16
or 32 bits according its matching pattern
(the word matching one byte sign-
extended pattern occupies 16 bits in L1
D-cache). If the i-th word in the primary
line x is compressible, as shown in
Fig.2(b), the space freed up by the en-
coded i-th word can be used to store the
i-th encoded word in the affiliated line
x+1. Thus, when all words in primary
line x are fetched into the cache, some of
the words in affiliated line x+1 are also
simultaneously prefetched into the cache.
Let)(iprefixx represents the encode

prefix of the i-th word in primary line x,
)(1 iprefixx+ represents the encode prefix

of the i-th word in affiliated line x+1. The
condition that the i-th encoded word from
line x+1 can be prefetched into the cache
is that this word together with the i-th
word in line x can be accommodated in
one 32-bit word space, i.e. the encode
prefix of the two words should satisfied
the following inequation:

4)()(1 <+ + iprefixiprefix xx (*)

Fig.3 illustrates the L1 compressed
cache organization. This cache is com-

posed of tag array, data array, primary prefix array and affiliated prefix array. When a
read request is sent from the processor, there are two possible places that the re-
quested word can reside in. So the primary cache line is accessed and its affiliated line
is accessed at next cycle (with
one extra cycle latency). If the
requested word is found in the
primary line, we return the data
item in the next cycle, and so as
found in the affiliated line. A
encoded word is decompressed
and sent back to processor. In
the case of writing a value to
L1 cache, a write hit in the
affiliated cache will bring the
line to its primary place and
invalidate the affiliated one.

When a new cache line ar-
rives to the L1 D-cache from

Instruction
Fetcher

Load-Store
Queue

L1 I-cache
(uncompressed) L1 D-cache

(compressed)

L2 cache
(Partial compressed)

Write back
Buffer

Main memory
(compressed or
uncompressed)

Encoder

Pack Unpack

Decoder

Fig. 1. Compressed Cache Hierarchy

Prefix0

x

DATA Prefix1

x+1

(a) before encoding

x

(b) after encoding x+1

Fig. 2. Encoded Data Layout of L1 Data

Tag

Offset

Ptag

Atag

=

DATA Affiliated Primary

Selector

Pprefix

Pprefix

Ta Index

=

Hit

Aprefix

Aprefix

Fig. 3. L1 Compressed Cache Orgnization

148 X. Tian and M. Zhang

L2 cache, the prefetched affiliated line is discarded if it is already in the cache (it must
be in its primary place in this situation). On the other hand, before discarding a re-
placed cache line, we check to see if it is possible to put the line into its affiliated
place. If the dirty bit is set, we still write back its contents and keep a clean partial
copy in its affiliated place. In short, the cache access and replacement policy ensure
that at most one copy of a cache line is kept in the cache at any time.

It is critical to quickly decompress an encoded word which is associated with a
read instruction. To decompress an encoded word, determining primary or affiliated
place and selecting one of four pattern are required. The total delay of critical path of
decoding encoded word is a 8-to-1 multiplexer. This delay can be hidden in write
back stage of the processor pipeline, so there is no decompression overhead in L1
access latency.

Compared to traditional cache, our compressed cache adds 4 bits for every 32-bit
word. It is about 12.5% cache size increase. However, it enables next line partial
prefetching, completely removes the prefetch buffer, and does not increase cache
pollution and memory traffic between L1 D-cache and L2 cache (the sum of the line
size of the primary and affiliated encoded cache line is equal to one physical cache
line size). So it can distinctly reduce cache miss rate and improve performance of
compressed cache hierarchy.

3.4 L2 Cache Organization

We show L2 compressed cache organization in our compressed cache hierarchy in
Fig. 4. S-FPC compression algorithm compresses / decompresses on a cache line
basis in L2 cache. L2 cache line size is 64 bytes, so its encode prefix has 32 bits
(4-byte) after compression. In L2 cache, each set is 8-way set associative, with a com-
press information tag stored with each address tag. The data array is broken into 4-
byte segments, with 64 segments statically allocated to each cache set. Thus, each set
can hold no more than four uncompressed 64-byte lines, or no more than eight com-
pressed cache lines. So compression can at most double the effective capacity. Each
line is compressed into 1-16 4-byte segments, with 16 segments being the uncom-
pressed form. The compression tag indicates i) the compressed size of the line (CSize)
and ii) the form that the line is stored (Compress Flag), iii) the start segment of the
compressed cache line (segments offset). The cache is split into banks for even and

odd set index, in order that two
address-consecutive cache lines can
simultaneously be fetched per cycle
and be used as primary and affili-
ated cache lines in L1 D-cache.

Consider a 4-way, 1MB uncom-
pressed cache with 64-byte lines,
each set has 2048 date bits, in addi-
tion to four tags. Each tag includes
a 14-bit address tag, a 2-bit LRU
state, a valid bit and a dirty bit, for a
total of 4*(14+2+1+1) =72 bits per

LRU
State Tag0 Tag1

Segments
Offset CSize

Address
Tag

Compress
Flag

Tag Array

1 4 6

Data Array(n≤7)

 Block_0

Segments Offset Size

Compressed Data Block Format:
Prefix

32 bits
(CSize+1)×32bits

Tag7 Block_1 Block_n

Fig. 4. L2 Compressed Cache Organization

 A Unified Compressed Cache Hierarchy Using Simple Frequent Pattern Compression 149

set. Our compressed cache design adds four extra tags, increases the LRU state to
three bits and adds a 6-bit segments offset, a 4-bit CSize and a 1-bit compress flag
each tag, for a total of 8*(14+3+1+1+6+4+1)=240 bits tag overhead per set. This
increases the total cache storage by approximately 8%.

3.5 Unpacking L2 Cache Line

 In L2 cache, all encoded words of a cache line are packed together. So when a
L1 D-cache miss occurs, two address-consecutive L2 compressed cache line will be
simultaneously fetched into L1 D-cache, one is identified as primary cache line and
the other is identified as affiliated cache line. Fig.5 shows the unpack pipeline of L2
compressed cache. Each prefix is used to determine the length of its corresponding
encoded word and the starting location of all the subsequent compressed words. Both

prefixes also is used to
determine if to place en-
coded word at some word
offset from the affiliated
cache line to the corre-
sponding location of the
L1 affiliated line. Unpack-
ing L2 cache latency is
critical since it is directly
added to the L2 hit la-
tency, which is on the
critical path. In our com-
pressed design, unpack
latency is 4 cycles.

Cache line packing oc-
curs when data is written
back from L1 D-cache to

L2 cache. A write back buffer that contains several entries can be used to hide the
packing latency on L1 writebacks, as shown in Fig.1. However, since packing
cache line is off the critical path, we do not consider pack latency as design constraint.
An L2 fill caused by L1 writebacks or L2 cache miss can replace a line in L2 cache. If
the new line’s compressed size is the same as the replaced line (or small), this re-
placement is trivial. However, if the new line is larger, the cache controller has to
allocate space in the set. This may entail replacing one or more L2 lines or compact-
ing invalid lines to make space. More than one line may have to be replaced if the
newly allocated line is larger than the LRU line plus the unused segments. In this
case, wereplace at most two lines by replacing the LRU line and searching the LRU
list to find the least-recently-used that ensures enough space is available. Compacting
a set requires moving tags and data segments to maintain the contiguous storage in-
variant. With a large write-back buffer, compaction can have a negligible impact on
performance.

Parallel
Prefix

Decoder

Parallel Shift
Register

16x32-bit
Registers

Prefix1

Prefix0

Starting Address
16x6 bits

L1 Cache

Primary
Cache
Line
Data

Prefix0

Prefix1

Affiliated
Cache
Line
Data

32 bits 16x3-bit
Word Lengths

32 bits 16x3-bit
Word Lengths

Parallel Shift
Register

Starting Address
16x6 bits

16 separate affiliated
line encoded word

16 separate primary line
encoded word

16 separate affiliated line
encoded word write enable

Parallel
Carry-lookahead
Adder Array

Parallel
Carry-lookahead
Adder Array

Parallel
Prefix

Decoder

Fig. 5. Unpack Pipeline of L2 Compressed Cache

150 X. Tian and M. Zhang

4 Experimental Results

4.1 Experimental Setup

We implemented our unified compressed cache hierarchy and enabled partial cache
line prefetching in L1 D-cache using Simplescalar 3.0[10], simulating alpha binary.
The baseline processor is a four issue superscalar with two levels of on-chip cache
(Table 2). Except the basic cache configuration, we use the same parameters for im-
plementations of all different cache designs.

Table 2. Baseline experimental set up

Parameter Value Parameter Value
Issue width 4 issue, OO I-cache hit latency 2 cycles
IFQ size 16 instr. I-cache miss latency 20 cycles
Branch Predictor 8 entry L1 D-cache hit latency 2 cycles
Memory access latency 150 cycles L1 D-cache miss latency 20 cycles
Func. units 4 ALUs, 1 Mult/Div, 2 Mem ports, 4 FALU,

1FMult/FDiv

We chose a collection of 6 integer (vpr, mcf, parser, bzip2, gcc and twolf), and 6
FP (equake, ammp, art, swim, wupwise and mesa) from SPEC CPU 2000 benchmark
suite, using ref inputs. The statistics are collected for 300M instructions after skipping
the first 1 billion instructions. Firstly, we evaluated the increase of the L1 D-cache
effective capacity with varying the cache line size. And then, we compared the per-
formance of cache configurations described below. The comparisons are made in
terms of IPC and miss rates.

• Baseline Cache (BC): The L1 D-cache and L1 I-cache are 32K 4-way set-
associative and 64B/line. The L2 cache is 1MB 4-way associative and 64B/line.

• Baseline cache with L2 compressed cache (BL2C): The L1 D-cache and L1 I-
cache are same as BC, and the L2 cache is 1MB 8-way associative and 64B/line, as
described in the paper. The access latency of L2 compressed cache is 24 cycles.

• Unified Compressed Cache Hierarchy (UCCH): The L1 I-cache is same as BC,
the L1 D-cache is compressed cache, 32K 4-way set-associative and 64B/line,
combining partial cache line prefetching, 2 cycles primary cache line hit latency, 3
cycles affiliated cache line hit latency, and the L2 cache is 1MB 8-way associative
and 64B/line, as described in the paper.

• Higher Capacity Cache (HCC): The L1 D-cache and L1 I-cache is uncompressed
64K 4-way set-associative and 64B/line. The L2 cache is uncompressed 2M 8-way
set-associative and 64B/line.

4.2 Result

In this section, we evaluated the increase of the L1 D-cache effective capacity with
varying the cache line size. For each simulation run, we computed the increase of
effective capacity every 10000 cycles. In this paper, the increase rate of the effective

 A Unified Compressed Cache Hierarchy Using Simple Frequent Pattern Compression 151

capacity in L1 D-cache equal to the ratio of the number of all valid words in the L1
D-cache and the number of all words in all primary lines. Fig. 6 shows the percentage
increase in cache capacity for 32KB 4-way set-associative L1 D-cache with varying
cache line size from 32B to128B.

In our compressed cache design, the effective capacity of L1 compressed D-cache
increase 33% for 64B cache line size, on average. When cache line size growing, the
effective capacity of the L1 compressed D-cache decreases. This is because the possi-
bility of a store instruction writing a value to a cache line will increase, when cache
line size growing. Writing a value to affiliated cache line will make it move to its
primary location, this decreasing the increase rate of effective capacity of L1 D-cache
consequently.

The L1 D-cache and L2 cache miss rate comparisons of four different cache con-
figurations, normalized with respect to BC, are shown in Fig.7 and Fig.8 respectively.
The performance comparisons of these cache configurations, normalized with respect
to BC, are shown in Fig.9. From Fig.9, we can see that BL2C configuration (i.e. stor-
ing compression data only in L2 cache) can improve the performance for some
benchmarks (vpr, parser, bzip2, twolf and art), but for the other benchmarks, BL2C
will hurt the performance. Because for some benchmarks such as vpr, parser, bzip2,
twolf and art, their data working sets size during simulation is between 1MB and
[

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

vp
r

mc
f

pa
rs
er

bz
ip
2

gc
c

tw
ol
f

eq
ua
ke

am
mp ar

t

sw
im

wu
pw
is
e

me
sa av

g

t
h
e

i
n
c
r
e
a
s
e

p
e
r
c
e
n
t

(
%
)

32B

64B

128B

0%

20%

40%

60%

80%

100%

120%

vp
r

mc
f

pa
rs
er

bz
ip
2

gc
c

tw
ol
f

eq
ua
ke

am
mp ar

t

sw
im

wu
pw
is
e

me
sa av

g

BC

BL2C

UCCH

HCC

Fig. 6. The increase percent of L1 D-cache
capacity for different cache line size

Fig. 7. Percentage reduction in L1 D-cache
miss rate for four different cache configure

2MB, compression can decrease distinctly cache misses. But for the other bench-
marks, compression can not decrease distinctly cache misses, decompression latency
increase the hit latency, so compression hurts the performance of these benchmarks.
Our unified compressed cache hierarchy can increase decompression latency balance
point thD , so for almost all benchmarks but ammp, our compressed cache can im-

prove the performance. This is because our compressed cache hierarchy can benefit
from both compression and partial cache line prefetching. For vpr, art, parser, bzip2,
and twolf, as shown in Fig. 8, the L2 cache miss rate of HCC is far less than that of
BC, so increasing cache capacity can distinctly decrease L2 cache miss, our scheme
can benefit from compression. For mcf, equake, swim, wupwise, mesa, gcc and so on,
our scheme can benefit from partial cache line prefetching. Only for ammp, the bene-
fit from compression and partial cache line prefetching can not compensate the over-
head caused by decompression latency, so performance is degraded by 2.5%. But
partial cache line prefetching can reduce the importance of cache misses, so the per-
formance of UCCH is better than BL2C for ammp.

152 X. Tian and M. Zhang

0%

20%

40%

60%

80%

100%

120%

vp
r

mc
f

pa
rs
er

bz
ip
2

gc
c

tw
ol
f

eq
ua
ke

am
mp ar

t

sw
im

wu
pw
is
e

me
sa av

g

BC

BL2C

UCCH

HCC

0%

50%

100%

150%

200%

250%

300%

350%

vp
r

mc
f

pa
rs
er

bz
ip
2

gc
c

tw
ol
f

eq
ua
ke

am
mp ar

t

sw
im

wu
pw
is
e

me
sa av

g

BC

BL2C

UCCH

HCC

Fig. 8. Percentage Reduction in L2 cache for
four different cache configure

Fig. 9. Performance (IPC) Comparison of four
different cache configure

In short, relative to a baseline cache hierarchy that does not support data compres-
sion in cache, on average, our cache hierarchy design increases the average L1 cache
capacity(in terms of the average number of valid words in cache per cycle) by about
33%, reduces the data cache miss rate by 21%, and speeds up program execution by
13%, with the performance degraded by less than 2.5%.

5 Conclusion

in this paper, we propose a unified compressed cache hierarchy which holds com-
pressed data in L1 D-cache and L2 cache based on S-FPC encoding scheme. We pro-
pose to combine partial cache line prefetching and compression in L1 compressed
cache in order to increase decompression latency balance point thD of the com-

pressed cache hierarchy. We show that our unified compressed cache design, on aver-
age, increases the average L1 cache capacity(in terms of the average number of valid
words in cache per cycle) by about 33%, reduces the data cache miss rate by 21%,
and speeds up program execution by 13%, with the performance degraded by less
than 2.5%.

References

1. John Hennessy and David Patterson, “Computer Architecture: A Quantitative Approach”.
Morgan Kaufmann Publishers, 1996.

2. A. Alameldeen and D. Wood, “Adaptive Cache Compression for High-Performance Proc-
essor”, Proc. ISCA-31, 2004.

3. David Chen, Enoch Peserico, and Larry Rudolph. “A Dynamically Partitionable Com-
pressed Cache.” In Proceeding of the Singapore-MIT Alliance Symposium, January 2003.

4. Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. “Design and Evaluation of a Selective
Compressed Memory System.” In proceedings of International Conference on Computer
Design (ICCD’99), pages 184-191, October 1999.

5. Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. “Adaptive Methods to Minimize De-
compression Overhead for Compressed On-chip Cache.” International Journal of Com-
puters and Application, 25(2), January 2003.

 A Unified Compressed Cache Hierarchy Using Simple Frequent Pattern Compression 153

6. Jun Yang, Youtao Zhang, and Rajiv Gupta. “Frequent Value Compression in Data
Caches.” In Proceedings of the 33rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pages 258-265, December 2000.

7. E. Hallnor, S. Reinhardt, “A Unified Compressed Memory Hierarchy”, Proceedings of the
11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)

8. P. Franaszek, J. Robinson, and J. Thomas, “Parallel Compression with Cooperative Dic-
tionary Construction”, Proc. Data Compression Conf., 1996, pp. 200–209.

9. B. Abali, H. Franke, S. Xiaowei, et.al., “Performance of Hardware Compressed Main
Memory”, Proc. 7th Int’l Symp. on High-Performance Computer Architecture, 2001, pp.
73-81.

10. D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0,” Computer Arch.
News, 1997.

11. Alameldeen A. R. and Wood D. A. “Frequent Pattern Compression: A Significance-Based
Compression Scheme for L2 Caches”. Technical Report 1500, Computer Sciences De-
partment, University of Wisconsin-Madison, April 2004.

12. M. Kjelso, et. al., ”Design and Performance of a Main Memory Hardware Data Compres-
sor”, Proc. EUROMICRO Conference, 1996.

13. Y. Zhang, et. al., ”Frequent Value Locality and Value Centric Data Cache Design”, Proc.
ASPLOS, 2000.

14. P. Pujara and A. Aggarwal. Restrictive Compression Techniques to Increase Level 1
Cache Capacity. International Conference on Computer Design, 2005.

15. Youtao Zhang, Rajiv Gupta: Enabling Partial Cache Line Prefetching Through Data Com-
pression. ICPP 2003: 277-285

16. Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. Design and Evaluation of a Selective
Compressed Memory System. In Proceedings of International Conference on Computer
Design (ICCD’99), pages 184–191, October 1999.

17. S. Arramreddy, D. Har, K. Mak, et al., “IBM X-Press Memory Compression Technology
Debuts in a ServerWorks NorthBridge”, Hot Chips 12, 2000.

18. J.S. Lee, W.K. Hong, and S. D. Kim, “An on-chip cache compression technique to reduce
decompression overhead and design complexity,” Journal of Systems Architecture, vol.
46, Dec. 2000, pp. 1365-1382.

19. S. Roy, R. Kumar, and M. Prvulovic, “Improving System Performance with Compressed
Memory”, Proc. 15th Int’l Parallel and Distributed Processing Symp., Apr 2001, pp.
630–636.

20. S. Kumar, et. al., ”Bit-Sliced Datapath for Energy-Efficient High Performance Microproc-
essors”, Workshop on Power-Aware Computer Systems(PACS’04), 2004.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 154–161, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Function Inlining in Embedded Systems with Code Size
Limitation

Xinrong Zhou1, Lu Yan2, and Johan Lilius3

1 ZTE Corp., Zhongxing Telecom, Shenzhen, China
2 University College London, Dept. of Computer Science, London, UK

3 Åbo Akademi University, Dept. of Information Technologies, Turku, Finland

Abstract. Function inlining is a widely known technique that has been adopted
in compiler optimization research domain. Inlining functions can eliminate the
overhead resulted from function calls, but with inlining, the code size also
grows unpredictably; this is not suitable for embedded processors whose mem-
ory size is relatively small. In this paper, we introduce a novel function inlining
approach using the heuristic rebate_ratio, functions to be inlined are selected
according to their rebate_ratios in a descending way. This kind of code optimi-
zation operation works at the source code level. Comparing with other
algorithms, it is easier to implement. Our target is to get an optimal result of
function inlining which can achieve the maximum performance improvement
while keeping the code size within a defined limit.

1 Introduction

Nowadays, more and more people prefer to use C compiler rather than assembly one
for programming embedded processors. Every C program is made of at least one
function, the most frequently accessed parts are often put together into functions, it
makes the programs more dependent and more readable, but an excessive use of func-
tions may degrade program performance. When calling a function, the system should
save all the values of current registers, pass the parameters and allocate stack for local
variables. In processors which support pipeline, the actual function call and return
may result a significant number of instruction pipeline stalls.

Function inlining replaces a function call with the body of function; it has the ef-
fect of removing all the overheads mentioned above. [2,3,4,8] Obviously, the per-
formance of the system can be improved in some ways, but inlining functions does
not come for free, one of its negative effects is the unpredictable code size, this is
intolerable for embedded processors whose memory space is limited.

During the past years, lots of code optimization techniques have been developed.
Many of them are low level optimizations, which are dependent on processor archi-
tecture. For example, code selection, register allocation [7, 10], and memory access
optimization [12]. These works focus on how to get a performance enhancement, less
attention was put on the code size. Leupers brought out a machine-independent
source-level code optimization algorithm, named OptinlineVector, which aims at
embedded processors and employs function inlining to achieve higher performance
[7, 9]. In OptinlineVector algorithm the element bi in the inline vector IV is used to

 Function Inlining in Embedded Systems with Code Size Limitation 155

indicate whether function fi is inlined or not, all the functions in program are checked.
OptinlineVector algorithm can find the optimal solution of function inlining, but the
time and memory space it needs are huge. The worse case complexity of Opt-
inlineVector algorithm is exponential to N, where N is the total number of functions
in a program. In this paper, we present a new approach to function inlining which
works at the source code level as well. The time and memory space needed in worst
case is the cube of N.

The remainder of this paper is organized as follows. Section 2 illustrates the system
model of function inlining, our new algorithm is explained in detail in section 3. Sec-
tion 4 makes a brief analysis of our algorithm; the last section concludes this paper
and points out our future work.

2 System Model for Function Inlining

In normal systems, performance enhancement is the main target, the negative effect
code expansion which is brought by function inlining does not attract more attention,
but in embedded processors, code expansion becomes a serious problem. An over-
sized code is intolerable. In order to control the code bloating problem of inlining, we
should inline selectively. Leupers used branch-and-bound algorithm to determine
which function to inline [3]. Although the result they got is an optimal one, the time
and space the algorithm needs are too huge. In our method, we use heuristic to do the
same job. The benefit using heuristic depends on the execution frequency of the
inlined function. The more it is called, the better improvement it will achieve. We
introduce a concept, named rebate_ratio, it is used as an inlining heuristic variable.
Inlining a function with a high rebate_ratio will get a better performance than inlining
a low rebate_ratio function.

The definition of rabate_ratio is:

increasedsizecode

frequencycallingfunction
ratiorebate

__

__
_ = (1)

The function calling frequency is direct proportion to performance improvement
while code size expansion is the other way round. Note that, in some case,
code_size_increased may equal to zero, which means when inlining that function, the
code size does not change. We assign a maximum value to the rebate_ratio of this
function and inline them before inlining other functions.

The system model of function inlining is described as follows:
For a given C program, we use a graph G=(V,E) to represent the function call

structure inside it. Each node in V represents one function fi and each edge e=(vi,vj)
∈ E means function fi calls fj. Each node vi has a two-tuple attributes vi: (Bi, Ri), Bi
denotes the real size of function fi, Ri is the rebate_ratio of function fi . Attribute Ri is
used as a priority indicator of our queue operating, the smaller Ri is the higher possi-
bility it will be at the head of a queue, which means the higher possibility to be
inlined. Each edge ei has a weight wi which denotes the times fi calls fj.

The total sum of all the nodes’ weight in V is the estimation of total code size of
the given C program. As you can see, the code size calculated in this way is not
precise since the detailed code size is only known after code generation. Algorithms

156 X. Zhou, L. Yan, and J. Lilius

using similar method to calculate code size have already shown that this estimation
appears to be sufficiently accurate in practice. [7, 8, 9] The function inlining problem
is now translated to a graph operation problem, what we will do is to present a method
to realize the following work:

Input: G= (V,E) and a global code size limit L

Output: G’=(V’,E’) which 'V reaches its minimum value while
'

1

()
V

i
i

B v L
=

≤∑ ,

where 'V is the number of nodes in Graph G’.

3 Minimizing Function Calls

As the number of function calls in a program decreases, the performance increases.
Once a function is inlined, the corresponding operation in graph is that the node repre-
senting that function is deleted. When the code size of the inlining function increases,
the change in graph is that the weight of deleted node’s parent node increases also.
Since the code size has an upper bound and we wish to inline as many function calls as
possible, the operation to the graph is trying to delete as many nodes as possible while
keeping the total sum of all the remained nodes’ weight not larger than the limit value.

We inline the function calls in a rebate_ratio decreasing way, in another word, we
inline first the function whose rebate_ratio is the largest and then inline the second
largest and so on. When no more function call can be inlined with the total code size
smaller than the upper bound, the work is done.

Before we start inlining functions, there are some preparation works to do. First,
we must use a source code tool to find out the number of calls w(e(vi,vj)) from func-
tion fi to fj. Next, to compile the source code without function inlining to determine
the code size B(vi) of each function.

Usually there are lots of loops in a program, if an inlined function is in a loop, the
amount of code size increased is equal to the code size of this inlined function, not n
times of code size (suppose n is the number of loop repetition), i.e. rebate_ratio is
n/code_size not n/(n*code_size).

The benefit of inlining a function in the loop is the same as inlining n times of a
function whose code size is n times smaller. So in our algorithm, we assign an equal
priority to the two functions, which means their rebate_ratios are the same.

If a function calls another one fk both in loops and outside loops, we derive a new
node vn, where B(vn)=B(vk), R(vn)=R(vk)/n, here n is the iteration of the loops, the new
node is connect with all of node vk’s parent and child nodes. The weights of the new
derived edges are defined as follows.

()

((,)) 1

p k

p n

v p aren t v

w e v v

∀ ∈
=

()

((,)) ((,))

c k

n c k c

v child v

w e v v w e v v

∀ ∈
=

where the function that the new node represents is a copy of the function in loops.
The weight w(e(vp,vk)) is also reduced to the number of calls outside loop. Thus, we
change the nodes for functions in loops into normal ones. Figure 1 is an example of
node deriving for functions in loop. Function f1 calls f3w3 times, w’3 = w3 - n times are
not in loops, the algorithm derives a new node v’3, derives also an edge e(v1,v’3), the
edge’s weight is 1.

 Function Inlining in Embedded Systems with Code Size Limitation 157

w3
w2

v 3
v 2

w4

v 4

v1

w'3 w2

v 3
v 2

w4

v 4

v1

v '3

1

Fig. 1. Node deriving for functions in loops

There are two different situations when function fi inlines function fj, first, vj is a

leaf in the graph shown in figure 2, we delete both the node vj and the edge e(vi,vj), the
weight of node vi changes to a new value B’(vi) =B(vi)+ W(e(vi,vj))*B(vj), if more than
two functions call fj, the weight values of all these functions should also be modified
and the edges be deleted.

Fig. 2. Deleting a leaf node

Second, function fj is not a leaf in the graph, node vj is deleted, all its parent nodes’

weights are also updated, the edges connected with vj are deleted, vj’s parent nodes are
connected with vj’s children nodes. The newly appeared edges also have new weights.
For example, when root function inlines f1, , as shown in figure 3, node v1 is deleted,
so do all the edges connecting with v1, node v3,v4’s parents are changed to the root,
two new edges are derived, the weight values are w1*w3 and w1*w4 respectively.

Fig. 3. Deleting a non-leaf node

root (main())

w1 w2

v 1 v 2

w3 w4

v 3 v 4

root (main())

w1 w2

v '1 v 2

w 4

v 4

 B(v'1)=B(v1) +w3*B(v3)

root (main())

w1*w3 w2

v 3
v 2

w1 *w4

v 4

B'(root) =B(root) +w1*B(f1)
root (main())

w1 w2

v 1 v 2

w3
w 4

v 3 v 4

158 X. Zhou, L. Yan, and J. Lilius

Our method to inline functions consists of two steps. First, we process the func-
tions in loops using algorithm Loop_Node_Process. We search the whole program
and find out the functions in loops, and then change the corresponding nodes to new
ones which are the same as the nodes representing outside loop functions, when the
changing work finishes, we set up a queue and sort the queue.

Second, we inline the functions according to algorithm Mini_Func_Call. Since the
queue has already been sorted in a rebate_ratio decending way, the most suitable
function to be inlined is the one which is represented by the node in the head of the
queue. We inline the function and delete the node from the queue. After inlining, the
rebate_ratio values of its parent nodes are also changed, so we sort the queue again
and ensure the first node in the queue has the largest rebate_ratio. When all the nodes
in the queue are deleted, the operation finishes.

Algorithm Loop_Node_Process (V,E)

1. V’ ← Find_Nodes_in_Loop(V)
2. for (vi in V’) do
3. create a new node vk
4. B(vk) ← B(vi)
5. R(vk) ← R(vi)/n {increase the rebate_ratio of the new node}
6. insert_queue (Q, vi) {insert the new node into queue Q}
7. for (vj in child (vi)) do
8. E ← E + e(vk, vj) {add edge e(vk, vj) to E}
9. w(e(vk, vj)) ← w(e(vi, vj))
10. end for
11. for (vj in parent (vi)) do
12. E ← E + e(vj, vk)
13. w(e(vj, vk)) ← 1
14. w(e(vj, vi)) ← w(e(vj, vi)) – n

 {update the number vj, calls vi }

15. update R(vi)
16. if (w(e(vj, vi)) = 0) then
17. V ← V -vi

 {delete node vi from the graph}

18. delete_queue (Q, vi)
 {get rid of the node from queue Q}

19. for (vc in child (vi)) do
20. E ← E - e(vi, vc) {delete edges connected to the child nodes}
21. end for
22. end if
23. end for
24. end for
25. sort_queue (Q)
26. return (V+V’,E)

 Function Inlining in Embedded Systems with Code Size Limitation 159

Algorithm Mini_Func_Call (V, E, L)

1. G(V,E) ← Loop_Node_Process(V,E)

2. Q ← create a queue, {queue Q(v1,v2,…vn), vi∈V, V =n}

sort_queue (Q), { ,vi vj∀ ∈Q, (i<j), R(vi) >R(vj)}

3. while (Q is not empty)) do
4. vi ← first element in Q
5. delete vi from Q
6. if

(
1 ()

() (((,)) ())
p i

V vi

k p i i
k v parent v

B v w e v v B v L
−

= ∈

+ × ≤∑ ∑)

 then

 {if code size is within constraint after inlining function fi}

7. V ← V -vi {delete node vi from the graph}
8. for (vc in child (vi)) do
9. E ← E - e(vi, vc) {delete edges connected to the child nodes}
10. end for
11. for (vp in parent(vi)) do
12. B(vp) ← B(vp)+ w(e(vp, vi))*B(vi);

 { modify parent node’s code size}

13. update R(vp)
14. for (vc in child (vc)) do
15. E ← E + e(vp, vc) { derive new edges}
16. w(e(vp, vc)) ← w(e(vp, vi))* w(e(vi, vc))
17. update R(vc)
18. end for
19. end for
20. sort_queue(Q)
21. end if
22. end while
23. return (V,E)

4 Algorithm Analysis

Although we also use heuristics aiding to find the optimal result of function inlining,
unlike other ones, the value of the heuristic parameter – rebate_ratio in our algorithm
is not fixed. When we inline a function call, the benefit we get is that we eliminate the

160 X. Zhou, L. Yan, and J. Lilius

overhead which is brought by setting up the call stack, passing parameter etc. The
side-effect is the expansion of code size. Heuristic parameter – rebate_ratio is an
indicator of the combination of the benefit and the side-effect. As shown in the algo-
rithm, when we inline a function call, we select the one whose rebate_ratio value is
the largest, it means we can get more performance improvement than inlining other
function calls. If a function call has inlined other function calls, its code size changes,
which means the side-effect of being inlined enlarges, so it is wise to alter its re-
bate_ratio to a smaller value, gives the priority of selection to other function calls.

Inside our algorithm, n represents the number of function calls. There are 3 level
iteration inside our algorithm, the worst case of the time and space complexity of our
algorithm is 3()nΟ , if there are no circles in the graph, i.e. the graph is a family tree ,
the numbers of parent and child nodes are (log)nΟ , the time we need reduces to

2(log)n nΟ . In most ideal situation, when the graph degenerates to a line, the com-
plexity is equal to ()nΘ .

The exception of our algorithm is described as following.
If there exists two adjacent nodes vi and vj in queue Q, function fi has a larger re-

bate_ratio, when inlining function fi , the code size is over the limit,

 i.e.
1 ()

() (((,)) ())
p i

V vi

k p i i
k v parent v

B v w e v v B v L
−

= ∈

+ × >∑ ∑ (2)

so we give up function fi and select function fj , and we go on running until it
reaches the final, but the total performance enhancement gained from inlining func-
tion fj to end is not as good as inlining function fi in part of its parent nodes’ calls, this
phenomena may occur in nest. One solution to this problem is that we derive as many
sibling nodes as possible when the above situation is detected, the newly born nodes
have a same rebate_ratio, and they join the queue Q waiting for selection.

5 Conclusion and Future Work

The small memory space of embedded processors requires applications keep a sophis-
ticated tradeoff between the program code size and system performance. Nowadays’
heuristics inlining techniques do not meet such a demand. In this paper we present a
code optimization technique which works at the source level, it can minimize the
number of function calls by inlining proper subset of functions under a code size
constraint.

Like other algorithms, we need profiling to get the exact number of functions to
inline. The repetition times in recursive loops, repeat/until and while statements are
uncertain, when processing these loops, we give a rough estimation. Sometimes inlin-
ing functions in these loops can give significant savings; one of our future works is to
handle this situation precisely. Some functions which are small in size but have many
local variables may have a negative effect on the execution time when inlined, more
work will also need to focus on solving these problems in the near future.

 Function Inlining in Embedded Systems with Code Size Limitation 161

References

1. Araujo G. and Malik S., “Timal Code Generation for Embedded Memory Non-
Homogenerous Register Architecture.” Proc. 8th Int. Symp. On Synthesis, pp.36-41, 1995

2. Ayers A., Gottlieb R. and Schooler, “Aggressive inlining. ” In ACM SIGPLAN Conf. on
Programming Language Design and Implementation, May, 1997

3. Davidson J.W. and Holler A.M., “Subprogram inlining:A study of its effects on program
execution time” IEEE Transanctions on Software Engineering, vol. 18 no.2, pp. 89-102,
1992.

4. Davidson J.W. and Holler A.M., “A Study of a C Function Inliner” Software Practice Ex-
perience, pp. 775-790, 1988.

5. Liao S., Devadas S., Keutzer K. and TJiang S. “Instruction Selection Using Binate Cover-
ing for Code Size Optimization” Int. Conf. on Compuer-Aided Design, pp.393-399, 1995.

6. Liao S., Devadas S., Keutzer K., Tjiang S. and Wang A. “Storage Assignment to Decrease
Code Size”, In Proc. Programming Language Design and Implementation, 1995.

7. Leupers R., Code Optimization Technniques for Embedded Processors, Kluwer Academic
Publishers, 2000.

8. Leupers R. and Marwedel P. “Algorithms for Address Assignment in DSP Code Genera-
tion” Proc. IEEE/ACM Int. Conf. On Computer-Aided Design, 1996

9. Leupers R. and Marwedel P. “Function Inlining under Code Size Constraints for Embed-
ded Processors” Proc. IEEE/ACM Int. Conf. On Computer-Aided Design, 1999

10. Liem C., May T. and Paulin P. “Instruction-Set Matching and Selection for DSP and ASIP
Code Generation” European Design and Test Conference,pp. 31-37, 1994.

11. Muchnik S.S. Advanced Compiler Design and Implementation, Morgan Kaufmann Pub-
lishers, 1997

12. Sudarsanam A. and Malik S. “Memory Bank and Register Allocation in Software Synthe-
sis for ASIPs”, Int. Conf. on Computer-Aided Design, pp.388-392, 1995

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 162–173, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Performance Characteristics of Flash Memory: Model
and Implications*,**

Seungjae Baek1, Jongmoo Choi1, Donghee Lee2, and Sam H. Noh3

1 Division of Information and Computer Science, Dankook University, Korea,
Hannam-Dong, Yongsan-Gu, Seoul, 140-714 Korea, +82-2-799-1367

{ibanez1383,choijm}@dankook.ac.kr
2 Department of Computer Science, University of Seoul, Korea,

Jeonnong-Dong, Dongdaemun-Gu, Seoul, 130-743 Korea +82-2-2210-5615
dhlee@venus.uos.ac.kr

3 School of Computer and Information Engineering, Hongik University, Korea,
Sangsu-Dong, Mapo-Gu, Seoul, 121-791, Korea, +82-2-320-1470

samhnoh@hongik.ac.kr

Abstract. In this paper, we propose a model to identify the cost of block clean-
ing of Flash memory. The model defines three performance parameters,
namely, utilization, invalidity, and uniformity and presents a formula for esti-
mating the block cleaning cost based on these parameters. Then, we design a
new modification-aware (MODA) page allocation scheme which can improve
the block cleaning cost by enhancing uniformity of Flash memory. Real imple-
mentation experiments conducted on an embedded system show that the
MODA scheme can reduce block cleaning time by up to 43 seconds (with an
average of 10.2 seconds) compared to the traditional sequential allocation
scheme that is used in YAFFS.

1 Introduction

Characteristics of storage media have been the key driving force behind the develop-
ment of file systems. The introduction of cylinder groups in Fast File System (FFS)
and the log-unit large sequential writes in Log-structured File System (LFS) were,
essentially, to reduce seek time, which is the key bottleneck for user perceived disk
performance [1, 2]. Similarly, various scheduling algorithms that consider physical
characteristics of MEMS devices such as the disparity of seek distances in the x and y
dimensions have been suggested [3].

In this paper, we explore and identify the characteristics of Flash memory and ana-
lyze how they influence the latency of data access. We identify the cost of block
cleaning as the key characteristic that influences latency. A performance model for
analyzing the cost of block cleaning is presented based on three parameters that we
derive, namely, utilization, invalidity, and uniformity, which we define clearly later.

* This work was supported in part by grant No. R01-2004-000-10188-0 from the Basic Re-
search Program of the Korea Science & Engineering Foundation.

** This work was supported in part by MIC & IITA through IT Leading R&D Support Project.

 Performance Characteristics of Flash Memory: Model and Implications 163

The model reveals that the cost of block cleaning is strongly influenced by uni-
formity just like seek is a strong influence for disk based storage. We observe that
most previous algorithms that try to improve block cleaning time in Flash memory
are, essentially, trying to maintain high uniformity of Flash memory. Our model gives
the upper bound on the performance gain expected by developing a new algorithm.
To validate the model and to analyze our observations in real environments, we de-
sign a new modification-aware (MODA) page allocation scheme that strives to main-
tain high uniformity by grouping files based on their update frequencies.

We implement the MODA page allocation scheme on an embedded system that has
64MB of NAND Flash memory running the Linux kernel 2.4.19. The NAND Flash
memory is managed by YAFFS (Yet Another Flash File System) [4] supported in
Linux. We modify the page allocation scheme in YAFFS to MODA and compare its
performance with the original scheme. Experimental results show that, by enhancing
uniformity, the MODA scheme can reduce block cleaning time up to 43 seconds with
an average of 10.2 seconds for the benchmarks considered.

The rest of the paper is organized as follows. In Section 2, we elaborate on the
characteristics of Flash memory and explain the need for cleaning, which is the key
issue that we deal with. Then, we present a model for analyzing the cost of block
cleaning in Section 3. In Section 4, we present the new page allocation scheme, which
we refer to as MODA, in detail. The implementation details and the performance
evaluation results are discussed in Section 5. We conclude the paper with a summary
and directions for future works in Section 6.

2 Flash Memory and Block Cleaning

2.1 General Characteristics of Flash Memory

Flash memory as a storage medium has characteristics that are different from tradi-
tional disk storage. These characteristics can be summarized as follows .

 Access time in Flash memory is location independent similar to RAM. There is
no “seek time” involved.

 Overwrite is not possible in Flash memory. Flash memory is a form of EEPROM
(Electrically Erasable Programmable Read Only Memory), so it needs to be
erased before new data can be overwritten.

 Execution time for the basic operations in Flash memory is asymmetric. Tradi-
tionally, three basic operations, namely, read, write, and erase, are supported. An
erase operation is used to clean used pages so that the page may be written to
again. In general, a write operation takes an order of magnitude longer than a
read operation, while an erase operation takes another order or more magnitudes
longer than a write operation [5].

 The unit of operation is also different for the basic operations. While the erase
operation is performed in block units, read/write operations are performed in
page units.

 The number of erasures possible on each block is limited, typically, to 100,000
or 1,000,000 times.

164 S. Baek et al.

These characteristics make designing software for Flash memory challenging and
interesting [6].

2.2 The Need for Block Cleaning

Reading data or writing totally new data into Flash memory is simply like read-
ing/writing to disk. A page in Flash is referenced/allocated for the data and data is
read/written from/to that particular page. The distinction from a disk is that all
reads/writes take a (much shorter) constant amount of time (though writes take longer
than reads).

However, for updates of existing data, the story is totally different. As overwriting
updated pages is not possible, various mechanisms for non-in-place update have been
developed [4, 7, 8, 9]. Though specific details differ, the basic mechanism is to allo-
cate a new page, write the updated data onto the new page, and then, invalidate the
original page that holds the (now obsolete) original data. The original page now be-
comes a dead or invalid page.

Note that from the above discussions a page can be in three different states. That is,
a page can be holding legitimate data making it a valid page; we will say that a page
is in a valid state if the page is valid. If the page no longer holds valid data, that is, it
was invalidated by being deleted or by being updated, then the page is a dead/invalid
page, and the page is in an invalid state. Note that a page in this state cannot be writ-
ten to until the block it resides in is first erased. Finally, if the page has not been writ-
ten to in the first place or the block in which the page resides has just been erased,
then the page is clean. In this case, we will say that the page is in a clean state. Note
that only pages that are in a clean state may be written to. Figure 1 shows the state
transition diagram of pages in Flash memory. Recall that in disks, there is no notion
of an invalid state as in-place overwrites to sectors is always possible.

Note from the tri-state characteristics that the number of clean pages diminishes
not only as new data is written, but also as existing data is updated. In order to store
more data and even to make updates to existing data, it is imperative that invalid
pages be continually cleaned. Since cleaning is done via erase operation, which is
done in block units, valid pages in the block to be erased must be copied to a clean
block. This exacerbates the already large overhead incurred by the erase operation
needed for cleaning a block.

Fig. 1. Page state transition

 Performance Characteristics of Flash Memory: Model and Implications 165

3 Analysis of Block Cleaning Cost

3.1 Performance Parameters

Two types of block cleaning are possible in Flash memory. The first is when valid
and invalid pages coexist within the block that is to be cleaned. Here, the valid pages
must first be copied to a clean page in a different block before the erase operation on
the block can happen. We shall refer to this type of cleaning as ‘copy-erase cleaning’.
The other kind of cleaning is where there are no valid pages in the block to be erased.
All pages in this block are either invalid or clean. This cleaning imposes only a single
erase operation, and we shall refer to this type of cleaning as ‘erase-only cleaning’.
Note that for the same number of cleaning attempts, more erase-only cleaning will
result in lower cleaning cost.

Observe that for copy-erase cleaning the number of valid pages in the block to be
cleaned is a key factor that affects the cost of cleaning. The more valid pages there are
in the block to be cleaned, more copy operations need to be performed. Also observe
that for more erase-only cleaning to happen, the way in which the invalid pages are
distributed plays a key role. Distribution of invalid pages skewed towards particular
blocks will increase the chance of having only invalid pages in blocks, increasing the
possibility of erase-only cleaning.

From these observations, we identify three parameters that affect the cost of block
cleaning. They are defined as follows:

 Utilization (u): the fraction of valid pages in Flash memory
 Invalidity (i): the fraction of invalid pages in Flash memory
 Uniformity (p): the fraction of blocks that are uniform in Flash memory, where a

uniform block is a block that does not contain both valid and invalid blocks si-
multaneously.

Figure 2 shows three page allocation situations where utilization and invalidity are
the same, but uniformity is different. Since there are eight valid pages and eight inva-
lid pages among the 20 pages for all three cases, utilization and invalidity are both
0.4. However, there is one, three, and five uniform blocks in Figure 2(a), (b), and (c),
respectively, hence uniformity is 0.2, 0.6, and 1, respectively.

Fig. 2. Situation where utilization (u=0.4) and invalidity (i=0.4) remains unchanged, while uni-
formity (p) changes (a) p = 0.2 (b) p = 0.6 (c) p = 1

166 S. Baek et al.

Cost of Block Cleaning
= Cost of copy-erase cleaning + Cost of erase-only cleaning
= (# of non-uniform blocks * et)+(# of valid pages in non-uniform blocks * (rt + wt)) +

(# of uniform blocks with invalid pages * et)
where

rt : read operation execution time
wt: write operation execution time
et : erase operation execution time

of non-uniform blocks = (1 - p) * B
of valid pages in non-uniform blocks
= # of non-uniform blocks * # of valid pages in a block
= (1 - p) * B * (P/B) * (u /(u + i))

of uniform blocks with invalid pages
= (# of invalid pages - # of invalid pages in non-uniform blocks) / (# of pages in a block)
= ((i * P) – ((1 - p) * B * (P/B) * (i /(u + i)))) / (P/B)

where
u: utilization (0 ≤ u ≤ 1)
i : invalidity (0 ≤ i ≤ 1- u)
p: uniformity (0 ≤ p ≤ 1)
P: # of pages in Flash memory (P=capacity/size of page)
B: # of blocks in Flash memory (P/B: # of pages in a block)

Utilization determines, on average, the number of valid pages that need to be cop-
ied for copy-erase cleaning. Invalidity determines the number of blocks that are can-
didates for cleaning. Finally, uniformity refers to the fraction of blocks that are
uniform blocks. A uniform block is a block with zero or more clean pages and the
remainder of the pages in the block are uniformly valid or uniformly invalid pages.
Another definition of uniformity would be “1 – the fraction of blocks that have both
valid and invalid pages.” Of all the uniform blocks, only those blocks containing inva-
lid pages are candidates for erase-only cleaning.

From these observations, we can formulate the cost of block cleaning as follows:

3.2 Implication of the Parameters on Block Cleaning Costs

Figure 3 shows the analytic results of the cost of block cleaning based on the derived
model. In the figure, the x-axis is utilization, the y-axis is uniformity, and the z-axis is
the cost of block cleaning. For this graph, we set invalidity as 0.1 and use the raw data
of a small block 64MB NAND Flash memory [10]. The execution times for the read,
write, and erase operation is 15us, 200us, and 2000us, respectively.

The main observation from Figure 3 is that the cost of cleaning increases dramati-
cally when utilization is high and uniformity is low. We also conduct analysis with
different values of invalidity and with the raw data of a large block 1GB NAND Flash
memory[10], which shows similar trends observed in Figure 3.

We now discuss the implication of each parameter. Utilization is determined by the
amount of useful data that the user stores. From the file system’s point of view, this is
almost an uncontrollable parameter, though compression techniques with a hardware
accelerator [11] may be used to maintain low utilization.

Invalidity is determined by the data update frequency and cleaning frequency. If
updates (including deletions of stored data) are frequent, invalidity will rise. How-
ever, since invalidity will be decreased with each block cleaning, frequent cleaning
will keep invalidity low. Update frequency is controllable by delaying the updates
using the buffer cache. However, mobile appliances such as cellular phones, MP3
players, and digital cameras that use Flash memory as its storage device are prone to
sudden power failures. Hence, delayed writes can be applied only if some form of

 Performance Characteristics of Flash Memory: Model and Implications 167

Fig. 3. Block cleaning costs

power failure recovery mechanism is present. Cleaning frequency is also controllable,
but we need to consider carefully how to balance the benefit caused by decreasing
invalidity and the cost caused by frequent cleaning.

Finally, uniformity is a parameter that may be controlled by the file system as the
file system is in charge of allocating particular pages upon a write request. The redis-
tribution policy that determines where the valid data in reclaimed blocks should be
written out to also influences this parameter. By judiciously allocating and reorganiz-
ing pages, we may be able to maintain high uniformity.

4 Page Allocation Scheme That Strives for Uniformity

In the previous section, we found that among the three parameters, uniformity is a
parameter that strongly influences the cost of block cleaning. In this section, we pre-
sent a new page allocation scheme that strives to maintain high uniformity so that the
cost of block cleaning may be kept low.

4.1 Modification-Aware Allocation Scheme

When pages are requested in file systems, in general, pages are allocated sequentially
[4, 8]. Flash file systems tend to follow this approach and simply allocate the next
available clean page when a page is requested, not taking into account any of the
characteristics of the storage media.

We propose an allocation scheme that takes into account the file modification char-
acteristics such that uniformity may be maximized. The allocation scheme is modifi-
cation-aware (MODA) as it distinguishes data that are hot-modified, that is, modified
frequently and data that are cold-modified, that is, modified infrequently. Allocation
of pages for the distinct type of data is done from distinct blocks.

The motivation behind this scheme is that by classifying hot-modified pages and
allocating them to the same block, we will eventually turn the block into a uniform
block filled with invalid pages. Likewise, by classifying cold-modified pages and
allocating them together, we will turn this block into a uniform block filled with valid

168 S. Baek et al.

pages. Pages that are neither hot-modified nor cold-modified are sequestered so that
they may not corrupt the uniformity of blocks that hold hot and cold modified pages.

Specifically, two levels of modification-aware classifications are used in MODA to
classify hot/cold-modified data. At the first level, we make use of static properties,
and dynamic properties are used at the second level. This classification is based on the
skewness in page modification distribution [14, 15].

As static property, we distinguish system data and user data as the modification
characteristics of the two are quite different. The superblock and inodes are examples
of system data, while data written by users are examples of user data. We know that
inodes are modified more intensively than user data, since any change to the user data
in a file causes changes to its associated inode.

User data is further classified at the second level, where its dynamic property is
used. In particular, we make use of the modification count. Keeping the modification
count for each page, however, may incur considerable overhead. Therefore, we
choose to monitor at a much larger granularity and keep a modification count for each
file, which is updated when the modification time is updated.

For classification with the modification count, we adopt the MQ (Multi Queue) al-
gorithm [12]. Specifically, it uses multiple LRU queues numbered Q0, Q1,…, Qm-1.
Each file stays in a queue for a given lifetime. When a file is first written (created), it
is inserted into Q0. If a file is modified within its lifetime, it is promoted from Qi to
Qi+1.On the other hand, if a file is not modified within its lifetime, it is demoted from
Qi to Qi-1. Then, we classify a file promoted from Qm-1 as hot-modified data, while a
file demoted from Q0 as cold-modified data. Files within queues are defined as un-
classified data. In our experiments, we set m as 2 and lifetime as 100 times (time is
virtual that ticks at each modification request). In other words, a file modified more
than 2 is classified as hot, while a file that has not been modified within the recent
100 modification requests is classified as cold. We find that MODA with different
values of m = 3 and/or lifetime = 500 show similar behavior.

Figure 4 shows the structure of the MODA scheme. There are 4 managers, each
named the hot block, cold block, unclassified block and clean block manager. The
first three managers govern hot-classified files, cold- classified files, and unclassified

Fig. 4. Managing mechanism for MODA

 Performance Characteristics of Flash Memory: Model and Implications 169

files, respectively. When blocks are reclaimed, they are given to the clean block man-
ager, while clean blocks are requested by the other three managers dynamically to
serve write requests.

5 Implementation and Performance Evaluation

5.1 Platform and Implementation

We have implemented the MODA scheme on an embedded system. Hardware com-
ponents of the system include a 400MHz XScale PXA CPU, 64MB SDRAM, 64MB
NAND Flash memory, 0.5MB NOR Flash memory, and embedded controllers [16].
The same NAND Flash memory that was used to analyze the cost of block cleaning in
Figure 3 is used here.

The Linux kernel 2.4.19 was ported on the hardware platform and YAFFS is used
to manage the NAND Flash memory [4]. We modify the page allocation scheme in
YAFFS and compare the performance with the native YAFFS. We will omit a de-
tailed discussion regarding YAFFS, but only describe the relevant parts below. Inter-
ested readers are directed to [4] for details of YAFFS.

The default page allocation scheme in YAFFS is the sequential allocation scheme.
We implemented the MODA scheme in YAFFS and will refer to this version of
YAFFS, the MODA-YAFFS or simply MODA. In MODA-YAFFS, we modified
functions such as yaffs_WriteChunkDataToObject(), yaffs_UpdateObjectHeader(),
yaffs_FlushFile() in yaffs_guts.c and init_yaffs_fs(), exit_yaffs_fs() in yaffs_fs.c.

The block cleaning scheme in YAFFS is invoked at each write request. There are
two modes of cleaning: normal and aggressive. In normal mode, YAFFS chooses the
block that has the largest number of invalid pages among the predefined number of
blocks (default setting is 200). If the chosen block has less than 3 valid pages, it re-
claims the block. Otherwise, it gives up on the reclaiming. If the number of clean
blocks is lower than a predefined number (default setting is 6), the mode is converted
to aggressive. In aggressive mode, YAFFS chooses a block that has invalid pages and
reclaims the block without checking the number of valid pages in it. The block clean-
ing scheme in MODA-YAFFS is exactly the same. We do add a new interface for
block cleaning that may be invoked at the user level for ease of measurement.

5.2 The Workload

To gather sufficient workloads for evaluating our scheme, we survey Flash memory
related papers as many as possible and choose the following 7 benchmarks for our
implementation experiments, namely, Camera, Movie, Phone, Recorder, Fax, Post-
mark and Andrew benchmark [9].

These benchmarks can be grouped into three categories: sequential read/write in-
tensive workloads, update intensive workloads, and multiple files intensive work-
loads. The first group includes Camera and Movie benchmark that access large files
sequentially. Phone and Recorder benchmark are typical examples of the update in-
tensive workloads that manipulate a small number of files and update them inten-
sively. The Fax, Postmark and Andrew benchmark are embraced as the final category
that accesses multiple files with different access probabilities.

170 S. Baek et al.

5.3 Performance Evaluation

5.3.1 Performance Results
Table 1 shows performance results both measured by executing benchmarks and es-
timated by the model. Before each execution the utilization of Flash memory is set to
0, that is, the Flash memory is reset completely. Then, we execute each benchmark on
YAFFS and MODA-YAFFS and measure its execution time reported in the ‘Bench-
mark Running Time’ column. Note that the only difference between YAFFS and
MODA-YAFFS is the page allocation scheme. Also, after executing the benchmark,
we measure the performance parameters, namely utilization, invalidity, and uniform-
ity of Flash memory denoted as ‘U’, ‘I’, ‘P’ in the Table 1.

Using the measured performance parameters and the model proposed in Section 3.1,
we can estimate the number of erase and copy operations required to reclaim all the
invalid pages. Also, the model gives us the expected cleaning time. These estimated
results are reported in the ‘Estimated Results’ column. Finally, we actually measure the
number of erase and copy operations and cleaning times to reclaim all invalid pages,
which are reported in the ‘Measured Results’ column. The measured results reported
are averages of three executions for each case unless otherwise stated.

5.3.2 Model Validation
Table 1 shows that the number of erase and copy operations estimated by the model
are similar to those measured in the real implementation, though the model tends to
overestimate the copy operations when invalidity is low. These similarities imply that
the model is fairly effective in predicting how many operations are required under a
given status of Flash memory.

However, there are noticable differences between the measured and estimated
block cleaning times. Through sensitive analysis, we find two main reasons behind
these differences. The first reason is that the model requires the read, write, and erase

Table 1. Performance comparison of YAFFS and MODA-YAFFS for the benchmarks when
utilization at start of execution is 0 (The unit of time measurement is in seconds)

Performance
Parameters Estimated Results Measured Results

Benchmark Scheme

Bench
mark

Running
Time U I P # of

Erase
of

Copy
Cleaing

Time
of

Erase
of

Copy
Cleaning

Time
YAFFS 37 0.3 0.0006 0.98 62 1916 2.46 60 1504 9.97

Camera
MODA 37 0.3 0.0006 0.99 7 159 0.20 5 62 7.58

YAFFS 564 0.99 0.0001 0.99 10 319 0.41 10 17 24.64
Movie

MODA 564 0.99 0.0001 0.99 1 31 0.04 1 3 24.54

YAFFS 88 0.05 0.32 0.62 1398 6047 9.87 1398 6047 13.40
Phone

MODA 88 0.05 0.22 0.72 1010 6052 9.20 1011 6063 12.08

YAFFS 31 0.005 0.16 0.83 626 692 1.94 626 699 2.17
Recorder

MODA 31 0.005 0.08 0.90 233 692 1.44 344 690 1.91

YAFFS 97 0.86 0.0087 0.73 1023 31710 40.78 1001 30996 67.50Fax
machine MODA 97 0.86 0.0087 0.97 107 2407 3.14 76 1383 23.47

YAFFS 16 0.08 0.0107 0.90 357 10158 13.11 357 10147 18.39
Postmark

MODA 16 0.08 0.0107 0.93 260 7057 9.13 248 6652 12.84

YAFFS 33 0.09 0.0008 0.90 348 10174 13.12 345 10060 18.51
Andrew

MODA 32 0.09 0.0008 0.98 87 1828 2.40 62 1004 3.86

 Performance Characteristics of Flash Memory: Model and Implications 171

times to estimate the block cleaning time. The simplest way to determine these values
is by using the data sheet provided by the Flash memory chip vendor. However,
through experiments we observe that the values reported in the datasheet and the ac-
tual time seen at various levels of the system differ considerably. The second reason is
that block cleaning causes not only copy and erase overheads, but also software ma-
nipulating overheads. Specifically, YAFFS does not manage block and page status
information in main memory to minimize RAM footprint. Hence, it needs to read
Flash memory to detect blocks and pages to be cleaned. Due to this overhead, there
are gaps between the measured and estimated cleaning times.

5.3.3 Effects of Uniformity
By comparing the results of YAFFS and those of MODA, we make the following
observations.

 The benchmark execution time is the same for YAFFS and MODA. This implies
that there is minimal overhead for the additional computation that may be in-
curred for data classification.

 The MODA scheme maintains high uniformity, which reduces the block clean-
ing time up to 43 seconds (for Fax machine benchmark) with an average of 10.2
seconds for the benchmarks considered.

 The performance gains of MODA for Movie and Camera benchmarks are trivial.
Our model reveals that the original sequential page allocation scheme used in
YAFFS also keeps high uniformity, makes making it difficult to obtain consider-
able gains.

 The gains of MODA for the Phone and Recorder benchmarks are also trivial,
even though there is still room for enhancing uniformity. Careful analysis shows
that MODA classifies hot/cold data on the file-level granularity, but these
benchmarks access a small number of files; six files for Phone and two files
for Recorder. These experiments disclose the limitation of the MODA scheme
and suggest that page-level classification may be used effectively for the
benchmarks.

We also perform experiments with two or more benchmarks running simultane-
ously by combining benchmarks, such as ‘Camera + Phone’ simulating recent cellular
phones with digital camera capabilities and ‘Movie + Recorder + Postmark’ simulat-
ing a PMP player that uses an embedded database to maintain movie titles, actor
library and digital rights. Experiments show that the trends of multiple benchmark
executions are similar to those of the Postmark benchmark as reported in Table 1. For
example, for ‘Movie + Recorder + Postmark’, the block cleaning time of YAFFS and
MODA are 34.82 and 22.58 seconds, while uniformity are 0.73 and 0.84, respec-
tively. We also find that interferences among benchmarks drive uniformity low, even
for large sequential multimedia files.

5.3.4 Effects of Utilization
In real life, utilization of Flash memory will rarely be 0. Hence, we conduct similar
measurements as was done for Table 1, but varying the initial utilization value. Figure 5
shows the results of executing Postmark under the various initial utilization values.
Utilization was artificially increased by executing the Andrew benchmark before each

172 S. Baek et al.

Fig. 5. Results reported under various initial utilization values

of the measurements. Exact same experiments were conducted with utilization adjusted
by pre-executing the Postmark benchmark, but the result trend is similar, hence we only
report one set of these results.

For the moment, ignore the results reported when utilization is 0.9, which shows
somewhat different behavior. We come back to discuss these results shortly. The re-
sults in Figure 5 show that block cleaning time increases as utilization increases. Our
model predicts, as shown in Figure 3, that when utilization is high, improved uniform-
ity results in greater reduction of cleaning time. Figure 5 substantiates the expectation
by showing that the difference in block cleaning time between YAFFS and MODA-
YAFFS increases as utilization increases.

Let us now discuss results reported when the initial utilization is 0.9. Observe that
the results are different from the results with lower utilization values, in that the
benchmark running time is much higher, more so for YAFFS. This is because YAFFS
is confronted with a lack of clean blocks during execution, and hence, turns the block
cleaning mode to aggressive. As a result, on-demand block cleaning occurs frequently
increasing the benchmark running time to 72 seconds, four times the running time
compared to when utilization is lower. Note that in MODA-YAFFS, the running time
does increase, but not as significantly. This is because the MODA allocation scheme
allows for more blocks to be kept uniform, and hence aggressive on-demand block
cleaning is invoked less.

6 Conclusion

Two contributions are made in this paper. First, we identify the cost of block cleaning
as the key performance bottleneck for Flash memory analogous to the seek time in
disk storage. We derive three performance parameters from features of Flash memory
and present a formula for block cleaning cost based on these parameters. We show
that, of these parameters, uniformity is the key controllable parameter that has a
strong influence on the cost. This leads us to our second contribution, which is a new
modification-aware (MODA) page allocation scheme that strives to maintain high
uniformity. Using the MODA scheme, we validate our model and evaluate the
performance characteristics in light of uniformity, utilization and periodic cleaning.

 Performance Characteristics of Flash Memory: Model and Implications 173

References

[1] M. McKusick, W. Joy, S. Leffler, and R. Fabry, "A Fast File System for UNIX", ACM
Transactions on Computer Systems, 2(3), pp. 181-197, Aug., 1984.

[2] M. Rosenblum and J. K. Ousterhout, "The design and implementation of a log-structured
file system", ACM Transactions on Computer Systems, vol. 10, no. 1, pp. 26-52, 1992.

[3] H. Yu, D. Agrawal, and A. E. Abbadi, “Towards optimal I/O scheduling for MEMS-
based storage,” Proceedings of the 20th IEEE/11th NASA Goddard Conference on Mass
Storage Systems and Technologies (MSS’03), 2003.

[4] Aleph One, "YAFFS: Yet another Flash file system", www.aleph1.co.uk/yaffs/.
[5] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, Y. Cho, "A space-efficient Flash translation

layer for CompactFlash systems", IEEE Transactions on Consumer Electronics, vol. 48,
no. 2, pp. 366-375, 2002.

[6] E. Gal and S. Toledo, "Algorithms and Data Structures for Flash Memories", ACM Com-
puting Surveys, vol. 37, no. 2, pp 138-163, 2005.

[7] D. Woodhouse, "JFFS: The journaling Flash file system", Ottawa Linux Symposium,
2001, http://source.redhat.com/jffs2/jffs2.pdf.

[8] A. Kawaguchi, S. Nishioka and H. Motoda, "A Flash-memory based file system", Pro-
ceedings of the 1995 USENIX Annual Technical Conference, pp. 155-164, 1995.

[9] E. Gal and S. Toledo, "A transactions Flash file system for microcontrollers", Proceed-
ings of the 2005 USENIX Annual Technical Conference, pp. 89-104, 2005.

[10] Samsung Electronics, “NAND Flash Data Sheet”, www.samsung. com/Products/Semi-
conductor/NANDFlash.

[11] K. Yim, H. Bahn, and K. Koh "A Flash Compression Layer for SmartMedia Card Sys-
tems”, IEEE Transactions on Consumer Electronics, Vol. 50, No. 1, pp. 192-197, Feb.
2004.

[12] Y. Zhou, P. M. Chen, and K. Li, “The Multi-Queue Replacement Algorithm for Second-
Level Buffer Caches, Proceeding of the 2001 USENIX Annual Technical Conference,
June, 2001.

[13] J. Wang and Y. Hu, "WOLF - a novel reordering write buffer to boost the performance of
log-structured file system", Proceedings of the USENIX Conference on File and Storage
Technologies (FAST), pp. 46-60, 2002.

[14] W. Wang, Y. Zhao, and R. Bunt, "HyLog: A High Performance Approach to Managing
Disk Layout", Proceedings of the USENIX Conference on File and Storage Technologies
(FAST), pp. 145-158, 2004.

[15] M-L. Chiang, P. C. H. Lee, and R-C. Chang, "Using data clustering to improve cleaning
performance for Flash memory", Software: Practice and Experience, vol. 29, no. 3, pp.
267-290, 1999.

[16] EZ-X5, www.falinux.com/zproducts.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 174–180, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A New Type of Embedded File System Based on SPM

Tianzhou Chen, Feng Sha, Wei Hu, and Qingsong Shi

College of Computer Science, Zhejiang University, Hangzhou, Zhejiang, China, 310027
{tzchen,zhaoyi,ehu,zjsqs}@zju.edu.cn

Abstract. Commonly, embedded file systems reside in main memory to
manage the external memory such as flash memory in embedded systems. With
the progress of hardware of embedded systems, the gap of speed between main
memory and CPU is becoming larger and larger. The traditional embedded file
systems can not be able to support real-time response enough for their main
memory management policy. A new type of embedded file system is presented
to provide more real-time performance. This new embedded file system, SPM
file system, is based on the internal SRAM on chip and is able to reduce
response time.

Keywords: Embedded System, File System, Scratched-Pad Memory.

1 Introduction

Scratch-pad Memory (SPM) has played an important role in embedded systems by
collaborating with cache. SPM has many advantages for embedded systems such as
lower energy consumption. Though the size of SPM is much smaller compared with
the DRAM, it has been used in many high-end embedded microprocessors. The Intel
PXA 27x family is the processor covered this new feature. The performance of the
whole embedded systems can be improved by using SPM when developing systems.
SPM has more potential than DRAM. SPM is at least 10 times faster than the normal
DRAM. And the speed of SPM will be increased faster than DRAM: the speed of
SPM is increasing by 60% a year versus only 7% a year for DRAM [1].

Embedded systems have to provide real-time, fast speed and power-aware features
to the users. But the memory references in the embedded system are always
bottleneck of the whole systems. Though Cache has been popular in embedded
systems, the only use of cache is not sufficient. Programmers can not utilize Cache
unrestricted to improve the performance because of the security of the systems. The
utilization of SPM can provide performance improvement to the embedded systems.
A detailed recent study compares the tradeoffs of a cache as compared to a SPM.
Their results show that a SPM has 34% smaller area and 40% lower power
consumption than a cache memory of the same capacity [2].

In tradition, the embedded file systems, which are mostly based on flash memory,
do not care the SPM on chip. Commonly the main target of embedded file systems is
to manage a large capacity flash memory. eNVy [2] proposed a large non-volatile
main memory storage system built primarily with Flash memory. eNVy uses a copy-
on-write scheme, page remapping, a small amount of battery backed SRAM, and high

 A New Type of Embedded File System Based on SPM 175

bandwidth parallel data transfers for Flash memory. A hybrid cleaning algorithm
(combining FIFO and greedy algorithms) for large Flash arrays is used to reclaim
space. The algorithm is designed to evenly wear the array, thereby extending its life
time. And more other excellent works have been done on Flash memory [4-7]. These
are all static table-driven schemes and operate on Flash arrays and it is not efficient to
manage large-scale flash memory.

As we know from above, there are no embedded file systems concerning the use of
SPM to improve the performance of response time. SOC [9] is also the direction of
embedded systems in the future. Thus the software for embedded systems should be
more efficient. In this paper, we present a new type of embedded file system named
SPMFS (SPM File System) to take advantage of the SPM on chip.

The rest of the paper is organized as follows. Section 2 describes the architecture of
SPMFS. Section 3 covers the experimental results. Section 4 concludes.

2 Architecture of SPM File System

Commonly the embedded file systems are stored in the flash or some other external
storage according to the storage hierarchy. These embedded file systems have many
functions to manage the flash, provide access response and so on. Thus these file
systems do not need to take their size into accounts. The SPMFS is designed for SOC
chip to improve the performance of the file system.

The traditional embedded file systems integrate many functions together. The
SPMFS is not same to these file systems. It has to be fit for the size of the SPM on
chip. The SPM can not hold so many data and instructions simultaneously for its
small size. Thus we design a MFSC (Micro File System Component) for our new file
system architecture.

MFSC is main component of the SPMFS. It will run in SPM from the start of the
system. There are many other functions, which are reduced from MFSC and should be
provided by file system. They will reside in main memory. In our design, SPMFS
consists of three parts: MFSC, BFSM (Basic File System Management) and ComM
(Communication Management). The architecture is shown in Figure 1.

MFSC: this part is stored in internal Flash memory on chip. To get short response
time, MFSC will be not altered to avoiding writing to flash memory. If and only if the
MFSC has been a new version, the MFSC in internal Flash memory will be updated.
When the system starts, the MFSC will execute with the whole file system. When the
MFSC executes, it will maintain an open file table for files used continually and the
data area for these files. The data area can be considered as a buffer of the data in
main memory.

SPMFS must ensure that this MFSC can run in SPM. Because of the size limitation
of SPM, the MFSC has to be designed as small as possible. Thus some parts in
traditional embedded file system must be taken from the MFSC and the remainders
have to be cut down or modified in order to make all necessary functionalities of
SPMFS can be able to be contained in SPM. The most design principle is minimum
and optimal. According to the foregoing design principle, we only provide necessary
functions in MFSC to manage SPM.

176 T. Chen et al.

SPM: Micro File System Component

DRAM: Basic File System
Management

Communication Management

Basic I/O Layer

Driver Layer

Flash Memory

Fig. 1. Architecture of SPMFS

ComM: this part has a buffer in which data is provided by BFSM. The requested
data will be stored in this buffer and when MFSC needs, it will fetch data block to
SPM. And ComM should provide security such as data protection, data
synchronization, concurrent control, mutual exclusion and so on to this buffer. The
detail of ComM is shown in Figure 2.

BFSM: in this part, the common functions of embedded file system are provided
such as data structure management, allocation management, garbage collection and so
on. The BFSM will always reside in main memory. The inode is used to represent a
number of data blocks, which could be attached to a file or a directory. Every directory
has its own properties such as owner, time information as well as linkage information
of its items. The directory item is either directory or file. Because of the block erase
feature of NAND flash memory, the blocks are divided into two types: Data Blocks
and Pointer Blocks. Data Blocks are used to store the date of files and Pointer Blocks
are used to store the pointers which index to the correlative Data Blocks.

Now there are only small SPM provided by the processors. Thus SPM
Management must provide finely management for MFSC. Different from common
memory management, we divide SPM into different Sections which are allocated to
instructions and data. Two Sections are divided: Kernel Section, Data Section as
shown in Figure 3. Kernel Section is allocated to the MFSC. MFSC runs in this part
of SPM to ensure the security of MFSC data and instructions. Data Section is
allocated to the data fetched from buffer of ComM.

Further, different Memory Banks of SRAM are divided into pages to manage as
shown in Figure 5.

 A New Type of Embedded File System Based on SPM 177

Micro File System Component

Basic File System Management

ComM

R
ead

W
rite

R
ead/

W
rite

Security:
data protection

data synchronization
concurrent control
mutual exclusion

...

Buffer

Fig. 2. ComM

Fig. 3. Section division

SRAM
Memory
Bank0

Memory
Bank1

Memory
Bank2

Memory
Bank3

Memory Bank1
Memroy
Page0

Memroy
Page1

Memroy
Page2

Memroy
Page3

Memroy
Page...

Fig. 4. Divide memory into pages

178 T. Chen et al.

3 Experimental Results

Now more and more microprocessors support SPM on chip. As an introduction, we
will describe the Intel 27x family, which is our experimental hardware. Intel 27x
processor is owned by Intel Company and it is an integrated system-on-a-chip
microprocessor designed for mobile devices.

High-performance and low-power is the main target for this processor. The
architecture is in accordance with ARM 10 but it does not support all of ARM
Instructions (V5TE) in which floating point instructions are excluded. The ARM
programmer’s model is complied by the Intel PXA27x processors. In additional, Intel
provides extra supports to PXA27x family which is added by Intel techniques: Intel®
Wireless MMX™ integer instructions in applications such as those that accelerate
audio and video processing.

PXA27x provides extra 256K cache which is considered as internal memory. This
cache is internal memory-mapped SRAM which consists of four banks in which then
capacity is 64K. The SRAM array module consists of four banks of 8-K x 64-bit
memory arrays. Each memory bank has a dedicated single-entry queue and 8 K x 64
bits for data storage. If a memory bank is in standby mode, the access request is
stored in the queue while the memory bank is placed in run mode. The access is
completed when the memory bank has entered run mode. If a memory bank is in run
mode and the queue does not contain any pending access requests, the queue is
bypassed and the memory is accessed normally.

This piece of SRAM is placed on chip and thus PXA27x can provide extra power
management which is bank-by-bank management for this cache and thus can reduce
the power consumption. In addition, this cache can support Byte Write Operation and
are not associated with any I/O signals.

Six parts are consisted of this cache: the four SRAM banks, queues, the system-bus
interface, control and status registers, power management block, and memory-bank
multiplexing and control.

We used the Linux Trace Toolkit (LTT) and Kernel Function Trace (KFT) to
obtain the experimental results. LTT is used to examine the flow of execution
(between processes, kernel threads, and interrupts) in a Linux system. This is useful
for analyzing where delays occur in the system, and to see how processes interact,
especially with regard to scheduling, interrupts, synchronization primitives, etc. The
KFT system provides for capturing these callouts and generating a trace of events,
with timing details. KFT is excellent at providing a good timing overview of kernel
procedures, allowing you to see where time is spent in functions and sub-routines in
the kernel. We evaluate the SPMFS file system on an Intel-XScale PXA272 platform
running the latest patch version of Linux Kernel2.6, with 64M SDRAM and 64M
NAND flash and there are 256K SPM on chip. We run a data access program on both
SPMFS and YAFFS2 because they are both file system based on NAND flash. Then
we compare our parameters with those of YAFFS2. As a result from Figure 5,
SPMFS is more effective than YAFFS2. The results are as follows in Figure 6.

From the performance of file system is improved to some extent especially when
the file is small than 256KB. We think this result is correlative to the capacity of SPM

 A New Type of Embedded File System Based on SPM 179

on chip of XScale PXA272. If more SPM can be used, such as the Monahans series
chipset, on which there will be 768KB SPM at most, the performance should be better
than now.

The benchmark is presented in Figure 6 for three configurations: all-DRAM, file
data in cache and in SPM with optimization. The optimization means that we modify
the kernel of the operating system to adapt to the SPMFS. We gain 26% (cache) and
33% (SPM) speedup. But if we put the data in cache, it will influence the performance
of the whole system. It is better to place the file data into SPM.

0

1

2

3

4

5

6

7

8

YAFFS2 SPMFS YAFFS2 SPMFS YAFFS2 SPMFS YAFFS2 SPMFS

8K 64K 256K 8M

M
b/

s

Writing

Reading

Deletion

Fig. 5. Performance of SPMFS

0

10

20

30

40

50

60

70

80

90

100

Patricia Mad Ispell Pgp FFT Average

DRAM

Cache

SPM

Fig. 6. Comparison of DRAM, Cache and SPM

4 Conclusions and Future Work

In this paper, a new type of embedded file system is presented. This embedded file
system, named SPMFS (Scratch-Pad Memory File System), is based on the SPM on
chip. It provides a new concept to design embedded file systems. Because the SPM

180 T. Chen et al.

support for embedded file system will be more popular with the advance of hardware
of embedded system, it will be more useful for embedded file systems. And there will
be also more work to do to satisfy the requirements of embedded systems.

References

[1] J. Hennessy and D. Patterson. Computer Architecture A Quantitative Approach. Morgan
Kaufmann, Palo Alto, CA, second edition, 1996.

[2] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad
Memory: A Design Alternative for Cache On-chip memory in Embedded Systems. In
Tenth International Symposium on Hardware/Software Codesign (CODES), Estes Park,
Colorado, May 6-8 2002. ACM.

[3] Michael Wu, Willy Zwaenepoel. eNVy: A Non-Volatile, Main Memory Storage System.
Proceedings of the sixth international conference on Architectural support for
programming languages and operating systems. Pages: 86 – 97, San Jose, California,
United States, 1994.

[4] F. Douglis, R. Caceres, F. Kaashoek, K. Li, B. Marsh, and J.A. Tauber, “Storage
Alternatives for Mobile Computers”, Proceedings of the USENIX Operating System
Design and Implementation, 1994.

[5] L. P. Chang and T. W. Kuo,“A Real-time Garbage Collection Mechanism for Flash
Memory Storage System in Embedded Systems,” The 8th International Conference on
Real-Time Computing Systems and Applications, 2002.

[6] L. P. Chang, and T. W. Kuo, “An Adaptive Striping Architecture for Flash Memory
Storage Systems of Embedded Systems,” The 8th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2002.

[7] A. Kawaguchi, S. Nishioka, and H. Motoda,“A flash-memory based File System,”
Proceedings of the USENIX Technical Conference, 1995.

[8] Intel, Intel® PXA27x Processor Family Developer’s Manual, http://www.intel.com/
design/pca/prodbref/253820.htm

[9] JoAnn M. Paul, Programmers' views of SoCs, Proceedings of the 1st
IEEE/ACM/IFIP international conference on Hardware/software codesign and
system synthesis, October 01-03, 2003, Newport Beach, CA, USA

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 181–192, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Efficient Buffer Management Scheme for
Implementing a B-Tree on NAND Flash Memory*

Hyun-Seob Lee1, Sangwon Park2, Ha-Joo Song3, and Dong-Ho Lee4,**

1,4 Dept. of Computer Science and Engineering, Hanyang University, Korea
{hyunseob,dhlee72}@cse.hanyang.ac.kr

2 ICE, Hankuk University of Foreign Studies, Korea
swpark@hufs.ac.kr

3 Division of Computer, Pukyong National University, Korea
hajusong@pknu.ac.kr

Abstract. Recently, NAND flash memory has been used for a storage device in
various mobile computing devices such as MP3 players, mobile phones and
laptops because of its shock-resistant, low-power consumption, and none-
volatile properties, However, due to the very distinct characteristics of flash
memory, disk based systems and applications may result in severe performance
degradation when directly adopting them on flash memory storage systems.
Especially, when a B-tree is constructed, intensive overwrite operations may be
caused by record inserting, deleting, and its reorganizing, This could result in
severe performance degradation on NAND flash memory because of its distinct
characteristics. In this paper, we propose an efficient buffer management
scheme, called IBSF, which eliminates redundant index units in the index buffer
and then delays the time that the index buffer is filled up. Consequently, IBSF
significantly reduces the number of write operations to a flash memory when
constructing a B-tree. We also show that IBSF yields a better performance on a
flash memory by comparing it to the related technique called BFTL through
various experiments.

Keywords: Flash Memory, BFTL, Index, B-Tree, Buffer Management Scheme.

1 Introduction

In recent years, with the dramatic growth of various mobile computing technologies,
embedded systems such as PDAs, MP3 players, and mobile phones have required
more efficient and portable storage devices. NAND flash memory is becoming one of
the best storage medium for these embedded systems because of its shock-resistant,
low-power consumption, and non-volatile properties.

A NAND flash memory chip usually consists of a fixed number of blocks, where
each blocks typically has 32 pages. Each page in turn is composed of 512 bytes of the
main area and 16 bytes of the spare area. The main area is usually used for storing

* This work was supported in part by MIC & IITA through IT Leading R&D Support Project.

** Corresponding author.

182 H.-S. Lee et al.

data, while the spare area is often used to store management information and error
correction code (ECC) to correct errors when reading and writing[6]. NAND flash
memory also provides three basic operations such as read, write (program), and
erase. The read operation fetches data from a target page, while the write operation
writes data to a page. The erase operation resets all values of a target block to 1[6].

The main characteristic of NAND flash memory is that it does not support in-place
updates. Once a page is written, it should be erased before the subsequent write
operation is performed on the same pages. Moreover, the read/write operations are
executed on a page basis, while the erase operation is performed on a block basis.
This characteristic is sometimes called erase-before-write architecture. Therefore, an
intermediate software layer called a flash translation layer (FTL) is usually employed
to hide the limitation of erase-before-write [5]. FTL achieves this by remapping each
write request to an empty location that has been erased in advance, and by
maintaining a mapping table to record the mapping information from the logical
pages number to the physical location. The other characteristic of NAND flash
memory is an asymmetric read/write/erase speed. Unlike a magnetic disk, the
write/erase operations require a relatively long latency compared to the read
operation. Thus, in order to improve the overall performance, the number of write or
erase operations should be minimized. The main role of FTL is to provide an efficient
mapping from the logical page number to the physical location to improve the overall
performance.

However, although FTL supports the reduction of write/erase operations by an
efficient mapping algorithm from the logical page number to the physical location, it
could not avoid performance degradation when implementing index structures that
tend to generate so many overwrite operations at the same logical address.

In order to address problem, C. H. Wu and et. al. proposed BFTL[3] that is a
software module for efficiently implementing a B-tree[2] on NAND flash memory.
BFTL employs two main data structures such as reservation buffer and node
translation table to handle intensive overwrite operations caused by record inserting,
deleting, and B-tree reorganizing. The reservation buffer is only used to hold a fixed
amount of records. And, in order to reduce the number of write operations, the records
in the buffer are packed into a few pages when flushing them to flash memory. The
node translation table is used to map a B-tree node to a collection of logical page
numbers where the information of the B-tree index resides. Thus, if a B-tree node is
accessed, the node is constructed through the help of the node translation table.
However, it has several drawbacks as follows: First, since the data in one node could
be scatted over flash memory, it needs so many read when accessing the B-tree.
Second, BFTL uses additional overheads to manage the node translation table.
Finally, BFTL may have redundant data in the reservation buffer. This may yield
performance degradation when committing data from the buffer to flash memory.

In this paper, we propose a buffer management scheme, called IBSF, which
efficiently eliminates redundant data in the buffer by new insertion and deletion
policies. This leads to the effect of delaying the time that index buffer is filled up.
Consequently, the write/erase operations can be significantly reduced in our method.
Moreover, since IBSF stores each B-tree node in one page, it needs not the node
translation table that is an additional overhead because it has to be maintained in
RAM.

 An Efficient Buffer Management Scheme for Implementing a B-Tree 183

The rest of this paper is organized as follows. Section 2 introduces an overview of
NAND flash memory and FTL. Section 3 briefly reviews BFTL for B-tree on flash
memory and its disadvantages. Section 4 describes the key idea and the detailed
buffer management policies of IBSF. Section 5 shows the experimental results.
Finally, we conclude our work and discuss our future plan in Section 6.

2 Background

2.1 Overview of NAND Flash Memory and Flash Translation Layer

NAND flash memory usually consists of a number of blocks, where each block
typically has 32 pages. Each page is composed of 512 bytes of the main area and 16
bytes of the spare area.

Fig. 1. Structure of NAND Flash Memory

Fig. 1 shows the typical structure of the storage system using FTL on NAND flash
memory. As depicted in Fig. 1, the read/write operations are performed on a page
basis, but the erase operation is performed on a block basis. Each cost of the
read/write/erase operations is about 10㎲, 100㎲, and 2㎳ respectively.

FTL is used to directly implement disk based applications on NAND flash
memory. It can help to directly implement disk based applications on NAND the flash
memory by providing several functions such as logical to physical address mapping,
power-off recovery, and wear-leveling. As shown in Fig. 1, NAND flash memory-
based storage system usually consists of FTL algorithm, the mapping table, the
controller, and the flash memory. The mapping table holds logical/physical address
mapping information. The basic scheme for FTL is as follow. By using the logical to
physical address mapping table, if the physical address location that being mapped to
a logical address is previously written, the input data is written to an empty physical
location to which no data have ever been previously written and then the mapping
table is updated due to newly changed logical/physical address mapping [1].

184 H.-S. Lee et al.

2.2 Problem of Index Structure on Flash Memory

The capacity of NAND flash memory has been increased to deal the large data due to
the improved technologies. The B-tree is an efficient data structure to speed up data-
access in the large storage devices. When accessing the data, the B-tree helps to
efficient search the data according to its the index structure and the rule. It is
composed by a root node, internal node, and leaf node. The root node is the root of a
B-tree. The leaf node is the node of a B-tree that has zero child nodes. The internal
node means the node of a B-tree that has child nodes and is thus not a leaf node.

Fig. 2. Structure of Application using B-tree over Flash Memory

Fig. 2 shows the structure of application which adopting a B-tree over flash
memory. As depicted in Fig. 2, each node can hold the fixed number of data and link.
The data is called by an entry in B-tree and has a key value or data pointer. The links
point left and right child node. Since the size of an entry is smaller than a page, each
page can hold a number of entries. For example, if assume the size of a entry is 10
bytes and a node consists of 50 entries, a node is stored to a page in NAND flash
memory because the page can hold 512 bytes.

Since the B-tree needs a number of split and redistribution operations as inserting
and deleting the records, it tends to generate so many overwrite operations at the same
logical address. Although FTL supports an efficient mapping algorithm from the
logical page number to the physical location, frequent overwrite operations may
degrade the performance of NAND flash memory. For example, as depicted in Fig. 2,
if the data having 13 and 14 as the key values are inserted, it will yield overwrite
operations to a page which holds node H. If split and redistribution operations are
generated, it will yield much more overwrite operations on NAND flash memory.

3 Related Work

3.1 B-Tree Layer on Flash Memory (BFTL)

BFTL is a software module over the original flash translation layer (FTL). Fig. 3
illustrates the architecture of a system which adopts BFTL. BFTL is composed a
reservation buffer and a node translation table. When the applications insert, delete,

 An Efficient Buffer Management Scheme for Implementing a B-Tree 185

Fig. 3. The architecture of a system which adopts BFTL

or modify a B-tree node, the index unit which contains the information of modified
records would be temporarily held by the reservation buffer.

Since the reservation buffer only holds an adequate amount of index units, index
units in the buffer should be timely flushed to flash memory. The index unit is
relatively smaller than the size of a page. Therefore, many index units are smartly
packed into a few pages to reduce the number of pages physically written. As a result,
the index units of a B-tree node may exist in different pages over flash memory, and
the physical representation of a B-tree node would be different from the original one.
Since the index units of a B-tree node might be scattered over flash memory due to
the commit policy, a node translation table maintains page numbers which have index
units of the corresponding B-tree node to efficiently collect index units. For example,
as we see in Fig. 3, the index units are packed in page 20 and 21 when inserting the
data which have 1, 7, 9, 17, 21, and 24 as the key value. Like this, since the index
units can be stored each other pages for a node, the node translation table is needed.
In order to form a correct logical view of a B-tree node, BFTL visit all pages where
related index units reside and then construct an up-to-date logical view of the B-tree
node. For example, in order to form the logical view of node E in Fig. 3, BFTL has to
reference page 13 and 20.

As depicted in Fig. 3, If BFTL has not been adopted, up to six writes might be
needed to handle the modification of the index structure when inserting 1, 7, 9, 17, 21,
and 24. However, since BFTL packages the index units in page 20 and 21, two write
operations are needed when a B-tree is built.

186 H.-S. Lee et al.

3.2 Disadvantages of BFTL

BFTL has several drawbacks as follows: First, since the data of one node may be
scattered in different pages over flash memory, BFTL would visit all pages where the
related index units reside to reorganize a B-tree node. It may generate so many read
operations to access a B-tree node. For example, BFTL has to read 13 and 20 pages to
re-build node E in Fig. 3

Second, the node translation table and its list have to be maintained in RAM and
their sizes may rapidly grow. In BFTL, the author also proposed a method for
compressing the list of the node translation table when its length grows beyond a
threshold. However, since all related index units have to be written back to flash
memory to compact a list, it needs additional write operations.

Fig. 4. An Example of BFTL’s drawback

Finally, since BFTL stores index units in the buffer by sequential order, the buffer
may hold the redundant data when a node in the B-tree is split. Fig. 4 shows the
process of the split operation in BFTL. The index units are expressed by [key value,
node identifier, operation]. Operation ⓘ and ⓓ mean the insert and delete type of a
index unit, respectively. For example, [13, C, ⓘ] means that the data having 13 as the
key value must be inserted in node C. As depicted in Fig. 4, we can see redundant
index units which have 13 as the key value in the reservation buffer. If redundant data
exist in the buffer, than only a latest data is valid. Therefore, these may result in
additional write operations when committing index units.

4 The Design and Implementation of IBSF

4.1 Key Idea

As mentioned in section 3, BFTL has several drawbacks. In this section, we introduce
a new buffer management scheme, called IBSF. The key ideas of IBSF are as follows:
First idea is to store all index units associated with a B-tree node into a page. If do so,

 An Efficient Buffer Management Scheme for Implementing a B-Tree 187

IBSF does not need the node translation table which is an additional overhead.
Second idea is to eliminate redundant index units in the index buffer. This leads to the
effect of delaying the time that the buffer is full. Consequently, IBSF is able to
significantly reduce the number of write operation to a flash memory when
constructing a B-tree.

Fig. 5. Overall Architecture of IBSF

Fig. 5 shows the architecture of IBSF which consists of index buffer, insertion
policy, deletion policy and commit policy. The index buffer keeps index units which
reflect modified B-tree nodes when inserting, deleting, or modifying the records.
According to the insertion and deletion policies, IBSF handles index units in the index
buffer. If the index buffer is filled, it may generate the commit operation by the commit
policy. Since IBSF stores the index units for one node of the B-tree in one page, it
needs not the node translation table which is an additional overhead. This may improve
the read performance of B-tree as compared to BFTL because IBSF visits one page to
re-build one node. For example, BFTL has to visit page 1, 7, and 9 to re-build node A
in Fig. 3. However, IBSF can re-build node A by one page accessing because the index
units related to one node are stored in one page. Moreover, since IBSF eliminates
redundant index units in the index buffer, it can delay the commit time. As described in
previous section, Fig. 4 shows the process that 13, 15, 17, and 19 are inserted in a B-
tree node. Since BFTL does not use any special buffer management scheme, it has to
hold all index units without processing of the index unit in the index buffer when
records are inserted in a B-tree node. For example, [13, C, ⓘ], [13, C, ⓓ], and [13, D,
ⓘ] are redundant index units for a record which has 13 as the key value. If the same
index units are existed in the index buffer at the same time, only the latest index unit is
valid. Therefore, if we can eliminate the invalid index units in the buffer, we can also
delay the time that the buffer is full. Consequently, we can reduce the number of write
operations by delaying the commit time.

188 H.-S. Lee et al.

As depicted in Fig. 4, if the size of the reservation buffer of BFTL is 6, it is not
enough to hold all index units when a B-tree node is split by inserting 13, 15, 17, and
19. Therefore, the commit operation is generated. However, IBSF can hold all index
units without the commit operation because it eliminates redundant index units when
inserting the index units to the index buffer. Therefore, IBSF is able to delay the
commit time efficiently.

Fig. 6. An Example of the Index Buffer Management in IBSF

Fig. 6 describes an example of the index buffer management in IBSF when
inserting index units in Fig. 5. The index units are inserted in the buffer to reflect the
split operation in Fig. 5. Namely, [13, C, ⓘ], [11, C, ⓓ], and [11, A, ⓘ] are
sequentially inserted in the index buffer without any special processing. However,
when [13, C, ⓓ] is inserted, there is already redundant index unit that is [13, C, ⓘ] in
the index buffer. If redundant index unit exists in the buffer, only a latest index unit is
valid. Therefore, IBSF eliminates the old index unit and replaces it with the latest
index unit. IBSF eliminates redundant index units as follows: When [13, C, ⓓ] is
inserted in the buffer, it means that the data having 13 as the key value must be
deleted in node C. At this time, the index buffer has [13, C, ⓘ] to insert the data in
node C. This is redundant index unit for a record which has 13 as the key value.
Therefore, IBSF eliminates [13, C, ⓘ]. And then, [13, C, ⓓ] updates [, C, ⓓ]
because these are the index units for deleting a record at node C. The detailed policies
for insertion and deletion will be explained in the following section.

4.2 The Insertion Policy

In IBSF, newly created index units are inserted into the index buffer to reflect
insertion when inserting a record. This processing is done as follows: First, when a

 An Efficient Buffer Management Scheme for Implementing a B-Tree 189

record is inserted into a B-tree, IBSF creates the new index unit to reflect it. Then,
IBSF inspects the redundant index unit which has the same primary key in the index
buffer. If the index unit which has the same key value is already existed in the index
buffer, IBSF updates this with the new index unit. On the other hand, if redundant
index unit does not exist in the index buffer, IBSF allocates a resource for the new
index unit. Namely, IBSF dons not permit the duplicated index units in the buffer. For
example, as depicted Fig. 7, if the index unit which has 2 as the key value is newly
created to reflect insertion of a B-tree node, IBSF first finds the index unit which has
the same primary key in the index buffer. The index buffer has three index units, and
each index unit has 2, 9, and 3 as the key value, respectively. Since IBSF can find the
index unit which has 2 as the key value at first, it updates the first index unit which
has 2 as the key value with the new index unit.

Fig. 7. Insertion Policy

Since IBSF can prevent the index buffer being wasted by eliminating redundant
index units, it can delay the commit time. This may lead to the reduction of write
operations on NAND flash memory.

4.3 The Deletion Policy

In IBSF, newly created index units are inserted into the index buffer to reflect deletion
when a B-tree node is deleted. The deletion policy processing is similar to the
insertion policy. However, it has characteristics unlike the insertion policy as follows:
First, the index units having a delete-type need only the location of the entry to reflect
the deletion of a record in the B-tree node. Since the locations of entries can be
expressed as a few bits, the index unit of a delete-type maintains a bit flag set that
marks the entries to be deleted. Second, if the index buffer keeps a redundant index
unit which is a insert-type as inserting the new index unit of a delete-type, IBSF
eliminates it and inserts a new index unit into the buffer. Therefore, IBSF eliminates it
and inserts the new index unit into the buffer. Finally, if the index buffer has another
index unit of the deletion type which has the same node identifier when it is inserted
in the buffer, IBSF updates flag of the new index unit in the existing index unit. On
the other hand, if redundant index unit does not exist in the index buffer, IBSF
allocates a resource for the new index unit.

190 H.-S. Lee et al.

Fig. 8. Deletion Policy

Fig. 8 shows how to use the deletion policy over the index buffer. The newly
created index unit has the information that is to delete the record which has 7 as the
key value in node 9, and it has flag-set [1, 0, 0, 0, 0, 0] which means the information of
the deletion to eliminate entry 0. IBSF finds the index unit which has the same key and
identifier in the index buffer to process it. The index buffer has three of the index units
in Fig 8. IBSF can find it which has 7 as the key value at first. IBSF eliminates it. And
than, it can find a index unit which has delete-information for node 9. Therefore, IBSF
updates from [0, 0, 0, 1, 0, 1] to [1, 0, 0, 1, 0, 1] by adding a new flag.

Since the deletion policy could eliminate the redundant index units which have the
same key value in the index buffer and maintain a number of the delete-information in
the one index unit, IBSF can efficiently reduce the number of index units.

4.4 The Commit Policy

When the index buffer is filled by the fixed number of index units, IBSF has to
commit index units from the index buffer to flash memory. The commit policy is
processed by FIFO (first in first out) rules. Fig. 9 shows how to use the commit policy
in IBSF.

When there is no free space for newly created index unit, IBSF choices the first
index unit in the index buffer and collects the index units which have been related to
the first index unit. And then, these index units are committed into a page in flash
memory. As depicted Fig. 9, when the index buffer is full, the index units are
committed according to the commit policy. The first index unit is related with node 1,
and the index units which are related the first index unit are second and sixth index
units. Therefore, the first, second, and sixth index units are selected as the victim.
IBSF writes these index units into a page in the flash memory.

Since IBSF stores all index units which are related to a B-tree node into a page, it
needs not the node translation table that is used in BFTL.

 An Efficient Buffer Management Scheme for Implementing a B-Tree 191

Fig. 9. Commit Policy

5 Experiments

In order to evaluate the performance of IBSF, we developed a simulator for each
scheme. In the experiment, the size of NAND flash memory was configured 64
Mbytes and the size of the index buffer is fixed to hold 30 index units. For each
experiment, we inserted 24,000 records, and used FAST-FTL [4].

Fig. 10. Performance evaluation: Results

Fig. 10 shows the result of the experiments. In Fig. 10(a) through Fig. 10(d), the Y-
axes denote the value of the number of pages read, written, erased, and consumed
time, respectively and the X-axes denote the value of RS when B-tree was built. The
RS (ratio of sequence) is used to manipulate the distribution of inserted keys. When
RS equals to 0, it means that the key values were in ascending order. If RS equals to 1,
it means that the key values were randomly generated. As shown Fig. 10, regardless

192 H.-S. Lee et al.

the value of RS, the performance of IBSF significantly outperforms that of BFTL in
all cases. Especially, when the keys were sequentially generated (RS = 0), the
performance gains of IBSF are increased slightly. When RS is 0, the number of the
read operations is reduced about 77.76% than that of BFTL and the number of the
write operations is reduced about 66.21% than that of BFTL. The number of the erase
operations is also reduced about 74.3% than that of BFTL. Finally, the total consumed
time is reduced about 68.87% as compared to BFTL. Through the experiments, we
can see that IBSF yields a better performance than BFTL in all cases.

6 Conclusion

In this paper we proposed a new index buffer management scheme called IBSF. Since
IBSF delays the commit time by eliminating redundant index units in the index
buffer, it could efficiently reduce the number of the write/erase operations. Moreover,
IBSF eliminates the node translation table which is additional overheard. Therefore, it
could reduce the number of the read operations. Finally, though the experiments, we
shown that IBSF yields a better performance than BFTL.

In this work, we used FIFO scheme for selecting a victim in the index buffer. In the
future, we will exploit an efficient buffer replacement scheme that considers the
asymmetric cost of read/write/erase operations on NAND flash memory.

References

1. Tae-Sun Chung, Dong-Joo Park, Sangwon Park, Dong-Ho Lee, Sang-Won Lee, Ha-Joo
Song, “System Software for Flash Memory: A Survey.”, International Conference on
Embedded and Ubiquitous Computing, pp394-404, 2006.

2. D. S. Batory, "B+trees and indexed sequential files: a performance comparison", ACM
SIGMOD international conference on Management of data, pp30 - 39, 1981.

3. Chin-Hsien Wu, Li-Pin Chang, Tei-Wei Kuo, "An Efficient B-Tree Layer for Flash-
Memory Storage Systems", Real-Time and Embedded Computing Systems and Applications
(RTCSA), pp409-430, 2003.

4. Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung., Dong-Ho Lee, Sangwon Park, Ha-Joo
Song, "A Log Buffer based Flash Translation Layer using Fully Associative Sector
Translation", ACM Transactions on Embedded Computing Systems(accepted for
publication).

5. Intel Corporation, "Understanding the Flash Translation Layer(FTL) Specification".
Technical report.

6. Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee, "A Superblock-based Flash
Translation Layer for NAND Flash Memory," Proceedings of the 6th Annual ACM
Conference on Embedded Software (EMSOFT 2006), pp161-170, 2006.

A Code Generation Framework for

Actor-Oriented Models with Partial Evaluation

Gang Zhou, Man-Kit Leung, and Edward A. Lee

University of California, Berkeley
{zgang,jleung,eal}@eecs.berkeley.edu

Abstract. Embedded software requires concurrency formalisms other
than threads and mutexes used in traditional programming languages
like C. Actor-oriented design presents a high level abstraction for com-
posing concurrent components. However, high level abstraction often in-
troduces overhead and results in slower system. We address the problem
of generating efficient implementation for the systems with such a high
level description. We use partial evaluation as an optimized compilation
technique for actor-oriented models. We use a helper-based mechanism,
which results in flexible and extensible code generation framework. The
end result is that the benefit offered by high level abstraction comes
with (almost) no performance penalty. The code generation framework
has been released in open source form as part of Ptolemy II 6.0.1.

1 Introduction

Embedded software has been traditionally written with assembly language to
maximize efficiency and predictability. Programming languages like C are used
to improve productivity and portability. These imperative programming lan-
guages essentially abstract how a Von Neumann computer operates in a sequen-
tial manner. They are good matches for general-purpose software applications,
which are essentially a series of data transformations. However, in the embedded
world, the computing system constantly engages the physical system. Thus the
physical system becomes an integral part of the design and the software must
operate concurrently with the physical system. The basic techniques for doing
concurrent programming on top of traditional programming languages like C
use threads, complemented with synchronization mechanisms like semaphores
and mutual exclusion locks. These methods are at best retrofits to the original
fundamentally sequential formalism. Therefore they are difficult to reason about
and guarantee correctness [1]. In fact, according to a survey [2] conducted by the
Microsoft Windows Driver Foundation team, the top reason for driver crashes is
concurrency and race conditions. This is not acceptable for embedded applica-
tions that are real-time and often safety-critical. We need alternative concurrency
formalisms to match the abstractions with the embedded applications.

A number of design frameworks have emerged over the years that offer differ-
ent concurrency models for the applications they support. For example, StreamIt
[3] has a dataflow formalism nicely matched to streaming media applications.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 193–206, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

194 G. Zhou, M.-K. Leung, and E.A. Lee

Simulink [4] has roots in control system modeling, and time is part of its formal
semantics. All these frameworks have formal concurrent models of computa-
tion (MoCs) that match their application spaces. They often use block diagram
based design environments and the design usually starts with assembling pre-
existing components in the library. Such design style has been called domain
specific design, model based design or component based design, each empha-
sizing different aspects of the design. Many of them employ an actor-oriented
approach, where actor is an encapsulation of parameterized actions performed on
input data and produce output data. Input and output data are communicated
through well-defined ports. Ports and parameters form the interface of an actor.
Actor-oriented design hides the state of each actor and makes it inaccessible from
other actors. The emphasis of data flow over control flow leads to conceptually
concurrent execution of actors. Threads and mutexes become implementation
mechanism instead of part of programming model.

A good programming model with abstraction properties that match the ap-
plication space only solves half of the problem. For it to succeed, it is impera-
tive that an efficient implementation be derived from a design described in the
programming model. In component based design (we use the terms ”actor” and
”component” interchangeably in this paper), modular components make systems
more flexible and extensible. Different compositions of the same components can
implement different functionality. However, component designs are often slower
than custom-built code. The cost of inter-component communication through
the component interface introduces overhead, and generic components are highly
parameterized for the reusability and thus less efficient.

To regain the efficiency for the implementation, the users could write big
monolithic components to reduce inter-component communication, and write
highly specialized components rather than general ones. Partial evaluation [5]
provides an alternative mechanism that automates the whole process. Partial
evaluation techniques have recently begun to be used in the embedded world,
e.g, see [6]. We use partial evaluation for optimized code generation, transform-
ing an actor-oriented model into target code while preserving the model’s se-
mantics. However, compared with traditional compiler optimization, our partial
evaluation works at the component level and heavily leverages domain-specific
knowledge. Through model analysis, the tool can discover data types, buffer
sizes, parameter values, model structures and model execution schedules, and
then partially (pre)evaluate all the known information to reach an efficient imple-
mentation. The end result is that the benefit offered by the high level abstraction
comes with (almost) no performance penalty.

1.1 Related Work

There have been a few design frameworks with code generation functionality.
Simulink with Real-Time Workshop (RTW), from the Mathworks, is probably
in the most widespread use as a commercial product [4]. It can automatically
generate C code from a Simulink model and is quite innovative in leveraging an
underlying preemptive priority-driven multitasking operating system to deliver

A Code Generation Framework for Actor-Oriented Models 195

real-time behavior based on rate-monotonic scheduling. However, like most de-
sign frameworks, Simulink defines a fixed MoC: continuous time is the under-
lying MoC for Simulink, with discrete time treated as a special case (discrete
time signal is piecewise-constant continuous time signal in Simulink). It can be
integrated with another Mathworks product called Stateflow, used to describe
complex logic for event-driven systems. The platform we are working on, Ptolemy
II, is a software lab for experimenting with multiple concurrency formalisms for
embedded system design. It does not have a built-in MoC. The code generation
framework built on Ptolemy II is flexible and extensible. It is capable of generat-
ing code for multiple MoCs. In particular, we are most interested in generating
code for those MoCs for which schedulability is decidable.

Partial evaluation has been in use for many years [5]. The basic idea is that
given a program and part of this program’s input data, a partial evaluator can
execute the given program as far as possible producing a residual program that
will perform the rest of computation when the rest of the input data is supplied.
It usually involves a binding-time analysis phase to determine the static parts
and the dynamic parts of a program, followed by an evaluation phase. The de-
rived program is usually much more efficient by removing computation overhead
resulting from the static parts. Partial evaluation has been applied in a variety
of programming languages including functional languages [7], logic languages [8],
imperative languages like C [9] and object-oriented languages [10]. Its use in em-
bedded software has been more recent. Click is a component framework for PC
router construction [6]. It builds extensible routers from modular components
which are fine-grained packet processing modules called elements. Partial eval-
uations are applied at the level of components using optimization tools called
click-fastclassifier, click-devirtualize, click-xform, click-undead, etc. For example,
classifiers are generic elements for classifying packets based on a decision tree
built from textual specifications. The click-fastclassifier tool would generate new
source code for a classifier based on the specific decision tree and replace the
generic element with this more specific element. The click-devirtualize tool ad-
dresses virtual function call overhead. It changes packet-transfer virtual function
calls into conventional function calls by finding the downstream component and
explicitly calling the method on that component. Again this involves transform-
ing the source code so that method binding can be done in the compile time. The
Koala component model for consumer electronics software is another example
of applying partial evaluation for generating more efficient implementation [11].
Compared with previous examples, Ptolemy II does not focus on specific appli-
cations. Its emphasis is on choosing appropriate concurrent MoCs for embedded
system design and generating efficient code for the chosen MoCs.

There has been previous work on code generation for Ptolemy II [12]. The ap-
proach there involves transformation of the existing source code (i.e. Java code)
in each actor of a system, which results in simplified and hence more efficient
Java code. Then a generic Java-to-C converter is used to produce compilable
C code. The generated code is not efficient enough to be useful for embedded
application. However, the techniques developed there such as specializing token

196 G. Zhou, M.-K. Leung, and E.A. Lee

declarations, assigning static offsets to input and output token buffers, static
scheduling of SDF actors are useful and can be equally applied in our context.

1.2 Overview of the Code Generation Framework

Ptolemy II is a graphical software system for modeling, simulation, and design
of concurrent, real-time, embedded systems. Ptolemy II focuses on assembly of
concurrent components with well-defined MoCs that govern the interaction be-
tween components. Many features in Ptolemy II contribute to the ease of its
use as a rapid prototyping environment. For example, domain polymorphism
allows one to use the same component in multiple MoCs. Data polymorphism
and type inference mechanisms automatically take care of type resolution, type
checking and type conversion, and make users unaware of their existence most
of the time. A rich expression language makes it easy to parameterize many as-
pects of a model statically or dynamically. However, these mechanisms add much
indirection overhead and therefore cannot be used directly in an implementation.

The code generation framework takes a model shown to meet certain design
specifications through simulation and/or verification. Through model analysis—
the counterpart of binding-time analysis in traditional use of partial evaluation
for general purpose software, it can discover the execution context for the model
and the components (called actors in Ptolemy terminology) contained within. It
then generates the target code specific to the execution context while preserving
the semantics of the original model. See Fig. 1, which follows notions used in [5].

execution context:
data types, buffer sizes,
schedules, parameters,
model structures, etc.

model
(actor-oriented program)

input

partial evaluator
(code generator)

monolithic and
efficient executable output

model analysis

highly optimized
target code blocks

co
d

e
g

en
eratio

n

target code execution

: data

: program

Fig. 1. Code generation with partial evaluation for actor-oriented programs

In this paper, C is our primary target language. In the generated target code,
the variables representing the buffers in the input ports of each actor are defined
with the data types discovered through type resolution. At the same time, if the
model has a static schedule, then buffer sizes can be predetermined and defined

A Code Generation Framework for Actor-Oriented Models 197

too (as arrays), thus eliminating the overhead of dynamic memory allocation.
Through model analysis, the framework can also classify parameters into either
static or dynamic. Static parameters have their values configured by users and
stay constant during execution. Therefore there is no need to allocate memory
for them and every time a static parameter gets used in the generated code, the
associated constant gets substituted in. On the other hand, dynamic parame-
ters change their values during execution. Therefore a corresponding variable is
defined for each of them in the generated code. Most of models have static struc-
tures. The code generation framework takes advantage of this and eliminates the
interfaces between components. In the generated code, instead of using a dozen
or so indirection function calls to transfer data between components, a simple
assignment is used, resulting in very efficient execution. For the MoCs that have
static schedules, instead of dispatching actors based on the schedule, the sched-
ule is hard-coded into the generated code, i.e., the code flow directly reflects
the execution sequence, thus making it run much faster. Finally, for each actor
that supports code generation, there is a corresponding helper which reads in
pre-existing code blocks written in the target language. These target code blocks
are functionally equivalent to the actor written in Java, the language used for
Ptolemy II. The helper mechanism is elaborated in the next section.

2 A Helper-Based Architecture

A helper is responsible for generating target code for a Ptolemy II actor. Each
Ptolemy II actor for which code will be generated in a specific language has one
associated helper. An actor may have multiple helpers to support multiple target
languages (C, VHDL, etc.), although we are concentrating on C in this paper.

To achieve readability and maintainability in the implementation of helpers,
the target code blocks (for example, the initialize block, fire block, and wrapup
block) of each helper are placed in a separate file under the same directory. So
a helper essentially consists of two files: a java class file and a code template
file. This not only decouples the writing of Java code and target code, but also
allows using a target language specific editor while working on the target code,
such as the C/C++ Development Toolkit in Eclipse.

For each helper, the target code blocks contained in the code template file are
hand-coded, verified for correctness (i.e., semantically equivalent to the behavior
of the corresponding actor written in Java) and optimized for efficiency. They
are stored in the library and can be reused to generate code for different models.
Hand-coded templates also retain readability in the generated code. The code
generation kernel uses the helper java class to harvest code blocks. The helper
java class may determine which code blocks to harvest based on actor instance-
specific information (e.g., port types, parameter values). The code template file
contains macros that are processed by the kernel. These macros allow the kernel
to generate customized code based on actor instance-specific information.

198 G. Zhou, M.-K. Leung, and E.A. Lee

2.1 What Is in a C Code Template File?

A C code template file has a .c file extension but is not C-compilable due to its
unique structure. We use a CodeStream class to parse and use these files. Below
are the C code template files for the Pulse and CountTrues actors (see Fig. 2).

// Pulse.c
/***preinitBlock***/
int $actorSymbol(iterationCount) = 0;
int $actorSymbol(indexColCount) = 0;
unsigned char $actorSymbol(match) = 0;
/**/

/***fireBlock***/
if ($actorSymbol(indexColCount) < $size(indexes)

&& $actorSymbol(iterationCount) == $ref(indexes, $actorSymbol(indexColCount))) {
$ref(output) = $ref(values, $actorSymbol(indexColCount));
$actorSymbol(match) = 1;

} else {
$ref(output) = 0;

}
if ($actorSymbol(iterationCount) <= $ref(indexes, $size(indexes) - 1)) {

$actorSymbol(iterationCount) ++;
}
if ($actorSymbol(match)) {

$actorSymbol(indexColCount) ++;
$actorSymbol(match) = 0;

}
if ($actorSymbol(indexColCount) >= $size(indexes) && $val(repeat)) {

$actorSymbol(iterationCount) = 0;
$actorSymbol(indexColCount) = 0;

}
/**/

// CountTrues.c
/*** preinitBlock ***/
int $actorSymbol(trueCount);
int $actorSymbol(i);
/**/

/*** fireBlock ***/
$actorSymbol(trueCount) = 0;
for($actorSymbol(i) = 0; $actorSymbol(i) < $val(blockSize); $actorSymbol(i)++) {

if ($ref(input, $actorSymbol(i))) {
$actorSymbol(trueCount)++;

}
}
$ref(output) = $actorSymbol(trueCount);
/**/

A C code template file consists of C code blocks. Each code block has a
header and a footer. The header and footer tags serve as code block separators.
The footer is simply the tag “/**/”.The header starts with the tag “/***” and
ends with the tag “***/”. Between the header tags are the code block name
and optionally an argument list. The argument list is enclosed by a pair of
parentheses “()” and multiple arguments in the list are separated by commas
“,”. A code block may have arbitrary number of arguments. Each argument is
prefixed by the dollar sign “$” (e.g., $value, $width), which allows easy searching
of the argument in the body of code blocks, followed by straight text substitution
with the string value of the argument. Formally, the signature of a code block is

A Code Generation Framework for Actor-Oriented Models 199

defined as the pair (N, p) where N is the code block name and p is the number
of arguments. A code block (N, p) may be overloaded by another code block
(N, p′) where p �= p′.1 Furthermore, different helpers in a class hierarchy may
contain code blocks with the same (N, p). So a unique reference to a code block
signature is the tuple (H, N, p) where H is the name of the helper.

A code block can also be overridden. A code block (H, N, p) is overridden
by a code block (H̃, N, p) given that H̃ is a child class of H . This gives rise to
code block inheritance. Ptolemy II actors have a well-structured class hierarchy.
The code generation helpers mirror the same class hierarchy. Since code blocks
represent behaviors of actors in the target language, the code blocks are inherited
for helpers just as action methods are inherited for actors. Given a request for
a code block, a CodeStream instance searches through all code template files
of the helper and its ancestors, starting from the bottom of the class hierarchy.
This mirrors the behavior of invoking an inherited method for an actor.

2.2 What Is in a Helper Java Class File?

Helper classes are inherited from CodeGeneratorHelper. The CodeGenerator-
Helper class implements the default behavior for a set of methods that return
code strings for specific parts of the target program (init(), fire(), wrapup(),
etc.), using the default code block names (initBlock, fireBlock, wrapupBlock,
etc.). Each specific helper class can either inherit the behavior from its parent
class or override any method to read code blocks with non-default names, read
code blocks with arguments, or do any special processing it deems necessary.

2.3 The Macro Language

The macro language allows helpers to be written once, and then used in a differ-
ent context where the macros are expanded and resolved. All macros used in code
blocks are prefixed with the dollar sign “$” (as in “$ref(input)”, “$val(width)”,
etc.). The arguments to the macros are enclosed in parentheses. Macros can
be nested and recursively processed by the code generation helper. The use of
the dollar sign as prefix assumes that it is not a valid identifier in the target
language. The macro prefix can be configured for different target languages. Dif-
ferent macro names specify different rules for text substitutions. Since the same
set of code blocks may be shared by multiple instances of one helper class, the
macros mainly serve the purpose of producing unique variable names for differ-
ent instances and generating instance-specific port and parameter information.
The following is a list of macros used in C code generation.

$ref(name). Returns a unique reference to a parameter or a port in the global
scope. For a multiport which contains multiple channels, use $ref(name#i)
where i is the channel number. During macro expansion, the name is replaced
by the full name resulting from the model hierarchy.

1 All arguments in a code block are implicitly strings. So unlike the usual overloaded
functions with the same name but different types of arguments, overloaded code
blocks need to have different number of arguments.

200 G. Zhou, M.-K. Leung, and E.A. Lee

$ref(name, offset). Returns a unique reference to an element in an array pa-
rameter or a port with the indicated offset in the global scope. The offset
must not be negative. $ref(name, 0) is equivalent to $ref(name). Similarly,
for multiport, use $ref(name#i, offset).

$val(parameter-name). Returns the value of the parameter associated with
an actor in the simulation model. The advantage of using $val() macro in-
stead of $ref() macro is that no additional memory needs to be allocated.
$val() macro is usually used when the parameter is constant during the
execution.

$actorSymbol(name). Returns a unique reference to a user-defined variable
in the global scope. This macro is used to define additional variables, for
example, to hold internal states of actors between firings. The helper writer
is responsible for declaring these variables.

$size(name). If the given name represents an ArrayType parameter, it returns
the size of the array. If the given name represents a port of an actor, it
returns the width of that port.

2.4 The CountTrues Example

Fig. 2 shows a very simple model named CountTrues (notice it has the same name
as one actor used in the model) in the synchronous dataflow (SDF) domain (In
Ptolemy II, a domain realizes an MoC). In the model the Pulse actor produces
“true” or “false” token and the CountTrues actor counts the “true” tokens. The
CountTrues actor has its “blockSize” parameter set to 2, which means in each
firing it reads 2 tokens from its input port and sends out a token recording
the number of “true” tokens. When the model is simulated in the Ptolemy II
framework, the produced result is shown on the right hand side of the figure (the
model is fired 4 times because the SDFDirector’s “iterations” parameter is set
to 4). Below is the main function of the generated stand-alone C program.

Simulation result

Fig. 2. The CountTrues model and its simulation result

......
static int iteration = 0;
main(int argc, char *argv[]) {

init();
/* Static schedule: */
for (iteration = 0; iteration < 4; iteration ++) {

A Code Generation Framework for Actor-Oriented Models 201

/* fire Composite Actor CountTrues */
/* fire Pulse */
if (_CountTrues_Pulse_indexColCount < 2

&& _CountTrues_Pulse_iterationCount == Array_get(_CountTrues_Pulse_indexes_ ,
_CountTrues_Pulse_indexColCount).payload.Int) {

_CountTrues_CountTrues_input[0] = Array_get(_CountTrues_Pulse_values_ ,
_CountTrues_Pulse_indexColCount).payload.Boolean;

_CountTrues_Pulse_match = 1;
} else {

_CountTrues_CountTrues_input[0] = 0;
}
if (_CountTrues_Pulse_iterationCount

<= Array_get(_CountTrues_Pulse_indexes_ ,2 - 1).payload.Int) {
_CountTrues_Pulse_iterationCount ++;

}
if (_CountTrues_Pulse_match) {

_CountTrues_Pulse_indexColCount ++;
_CountTrues_Pulse_match = 0;

}
if (_CountTrues_Pulse_indexColCount >= 2 && true) {

_CountTrues_Pulse_iterationCount = 0;
_CountTrues_Pulse_indexColCount = 0;

}
/* fire Pulse */
// The code for the second firing of the Pulse actor is omitted here.
.....
/* fire CountTrues */
_CountTrues_CountTrues_trueCount = 0;
for(_CountTrues_CountTrues_i = 0; _CountTrues_CountTrues_i < 2;

_CountTrues_CountTrues_i++){
if (_CountTrues_CountTrues_input[(0 + _CountTrues_CountTrues_i)%2]) {

_CountTrues_CountTrues_trueCount++;
}

}
_CountTrues_Display_input[0] = _CountTrues_CountTrues_trueCount;
/* fire Display */
printf("Display: %d\n", _CountTrues_Display_input[0]);

}
wrapup();
exit(0);

}

In the code the $ref() and $actorSymbol() macros are replaced with unique
variable references. The $val() macro in the CountTrues actor’s code block is
replaced by the parameter value of the CountTrue instance in the model. When
the generated C program is compiled and executed, the same result is produced
as from the Ptolemy II simulation.

3 Software Infrastructure

Our code generation framework has the flavor of code generation domains in
Ptolemy Classic [13]. However, in Ptolemy Classic, code generation domains and
simulation domains are separate and so are the actors (called stars in Ptolemy
Classic terminology) used in these domains. In Ptolemy Classic, the actors in the
simulation domains participate in simulation whereas the corresponding actors in
the code generation domains participate in code generation. Separate domains
(simulation vs. code generation) make it inconvenient to integrate the model
design phase with the code generation phase and streamline the whole process.

202 G. Zhou, M.-K. Leung, and E.A. Lee

Separate actor libraries make it difficult to maintain a consistent interface for a
simulation actor and the corresponding code generation actor.

In Ptolemy II, there are no separate code generations domains. Once a model
has been designed, simulated and verified to satisfy the given specification in the
simulation domain, code can be directly generated from the model. Each helper
does not have its own interface. Instead, it interrogates the associated actor to
find its interface (ports and parameters) during the code generation. Thus the
interface consistency is maintained naturally. The generated code, when exe-
cuted, should present the same behavior as the original model. Compared with
the Ptolemy Classic approach, this new approach allows the seamless integration
between the model design phase and the code generation phase.

In addition, our code generation framework takes advantage of new technolo-
gies developed in Ptolemy II such as the polymorphic type system, richer variety
of MoCs including hierarchical concurrent finite-state machines [14] which are
well suited for embedded system design and discussed in Sect. 4.

To gain an insight into the code generation software infrastructure, it is worth-
while to take a look at how actors are implemented for simulation purposes. In
Ptolemy II, the Executable interface defines how an actor can be invoked. The
preinitialize() method is assumed to be invoked exactly once during the life-
time of an execution of a model and before the type resolution. The initialize()
method is assumed to be invoked once after the type resolution. The prefire(),
fire(), and postfire() methods will usually be invoked many times, with each se-
quence of method invocations defined as one iteration. The wrapup() method
will be invoked exactly once per execution at the end of the execution.

The Executable interface is implemented by two types of actors: AtomicActor,
which is a single entity, and CompositeActor, which is an aggregation of actors.
The Executable interface is also implemented by the Director class. A Director
class implements an MoC and governs the execution of actors contained by an
(opaque) CompositeActor.

The classes to support code generation are located in the subpackages un-
der ptolemy.codegen (In Ptolemy II architecture, all the package paths start
with “ptolemy”). The helper class hierarchy and package structure mimic those
of regular Ptolemy II actors. The counterpart of the Executable interface is
the ActorCodeGenerator interface. This interface defines the methods for gen-
erating target code in different stages corresponding to what happens in the
simulation. These methods include generatePreinitializeCode(), generateInitial-
izeCode(), generateFireCode(), generateWrapupCode(), etc.

CodeGeneratorHelper, the counterpart of AtomicActor, is the base class im-
plementing the ActorCodeGenerator interface. It provides common functions
for all actor helpers. Actors and their helpers have the same names so that the
Java reflection mechanism can be used to load the helper for the correspond-
ing actor during code generation. For example, there is a Ramp actor in the
package ptolemy.actor.lib. Correspondingly, there is a Ramp helper in the pack-
age ptolemy.codegen.c.actor.lib. Here c represents the fact that all the helpers
under ptolemy.codegen.c generate C code. Assume we would like to generate

A Code Generation Framework for Actor-Oriented Models 203

code for another target language X, the helpers could be implemented under
ptolemy.codegen.x. This results in an extensible code generation framework. De-
velopers can not only contribute their own actors and helpers, but also extend
the framework to generate code for a new target language.

Generate Include files

Generate shared code

Collect modified variables

Generate preinitialize code

Generate offset variables

Generate initialize code

Generate body code

Generate wrapup code

Generate type conversion code

Generate variable definitions

These files include, e.g., math.h, stdio.h,
needed by some actors in their generated code.

The shared code includes macro defini-
tions, new data type definitions, function defi-
nitions, etc.

These are variables that are directly modi-
fied by actors, e.g., during mode transitions.

New variables other than those resulting
from ports and parameters could be defined
here.

These offset variables are used to record
the circular buffer positions during code gener-
ation.

Variables are initialized here. Make sure
the code generated here can be executed multi-
ple times,e.g.,after a reset transition in an FSM.

The code generated here performs major
functions, corresponding to actor firings.

The code generated here does some wra-
pup work, e.g., closing open files.

These variables are those resulting from
ports and parameters. Some can only be deter-
mined towards the end of the code generation.

The code generated here is necessary to
support dynamic type conversion.

Fig. 3. The flow chart of the code generation process

To generate code for hierarchically composed models, helpers for composite
actors are also created. For example, the most commonly used composite actor
is TypedCompositeActor in the package ptolemy.actor. A helper with the same
name is created in the package ptolemy.codegen.c.actor. The main function of
this helper is to generate code for the data transfer through the composite ac-
tor’s interface and delegate the code generation for the composite actor to the
helper for the local director or the helpers for the actors contained by the com-
posite actor. Since a director implements an MoC (called a domain in Ptolemy
terminology), a helper is created for each director that supports code genera-
tion. These director helpers generate target code that preserves the semantics of
MoCs. Currently, the synchronous dataflow domain (SDF), finite state machines
(FSM), and heterochronous dataflow domain (HDF) support code generation
(see Sect. 4 for more details).

204 G. Zhou, M.-K. Leung, and E.A. Lee

Finally the StaticSchedulingCodeGenerator class is used to orchestrate the
whole code generation process. An instance of this class is contained by the top
level composite actor (represented by the blue rectangle in Fig. 2). The code
generation starts at the top level and the code for the whole model is generated
hierarchically, much similar to how a model is simulated in Ptolemy II.

The flow chart in Fig. 3 shows the whole code generation process step by
step. The details of some steps are MoC-specific. Notice that the steps outlined
in the figure do not necessarily follow the order the generated codes are assem-
bled together. For example, only those parameters that change values during
the execution need to be defined as variables. Therefore those definitions are
generated last after all the code blocks have been processed, but placed at the
beginning of the generated code. Our helper based code generation framework
actually serves as a coordination language for the target code. It not only lever-
ages the huge legacy code repository, but also takes advantage of many years
and many researchers’ work on compiler optimization techniques for the target
language, such as C. It is accessible to a huge base of programmers. Often new
language fails to catch on not because it is technically inferior, but because it
is very difficult to penetrate the barrier established by the languages already
in widespread use. With the use of the helper class combined with target code
template written in a language programmers are familiar with, there is much
less of a learning curve to use our design and code generation environment.

4 Domains

SDF: The synchronous dataflow (SDF) domain [15] is a mature domain in
Ptolemy II. Under SDF, the execution order of actors is statically determined
prior to execution. This opens the door for generating some very efficient code.
In fact, the SDF software synthesis has been studied extensively. Many opti-
mization techniques have been designed according to different criteria such as
minimization of program size, buffer size, or actor activation rate. We built the
support for SDF code generation to test our framework and use it as a starting
point to explore code generation for other domains.

FSM: Finite state machines (FSMs) have a long history. We use hierarchical
concurrent finite state machines [14]. In Ptolemy II, an FSM actor can do tra-
ditional FSM modeling or specify modal models. In traditional FSM modeling,
an FSM actor reacts to the inputs by making state transitions and sending
data to the output ports like an ordinary Ptolemy actor. The FSM domain also
supports the *charts formalism with modal models. In Fig. 4, M is a modal
model with two modes. Modes are represented by states (rendered as circles in
the figure) of an FSM actor that controls mode switching. Each mode has one
or more refinements that specify the behavior of the mode. A modal model is
constructed in a ModalModel actor having the FSMDirector as the local direc-
tor. The ModalModel actor contains a ModalController (inherited from FSMAc-
tor) and a set of Refinement actors that model the refinements associated with

A Code Generation Framework for Actor-Oriented Models 205

states and possibly a set of transition refinements. The FSMDirector mediates
the interaction with the outside domain, and coordinates the execution of the
refinements with the ModalController. We created helpers for FSMDirector, FS-
MActor, ModalController, ModalModel, Refinement and TransitionRefinement
and are capable of generating C code for both traditional FSM modeling and
modeling with modal models.

A B

M
Top-level Domain

Refinement A Refinement B

Fig. 4. A modal model example

HDF: In Fig. 4, if the top level domain and the domains inside the refinements
are all SDF, then we get the very interesting heterochronous dataflow (HDF)
domain. An HDF model allows changes in port rates (called rate signatures)
between iterations of the whole model. Within each iteration, rate signatures
are fixed and an HDF model behaves like an SDF model. This guarantees that
a schedule can be completely executed. Between iterations, any modal model
can make a state transition and therefore derives its rate signature from the
refinement associated with the new state. The HDF domain recomputes the
schedule when necessary. Since it is expensive to compute the schedule during
the run time, all possible schedules are precomputed during code generation.

The HDF domain can be used to model a variety of applications that SDF
cannot easily model. For example, in control application, the controlled plant
can be in a number of operation states, requiring a number of control modes. In
communication and signal processing, adaptive algorithms are used to achieve
optimal performance with varying channel conditions. In all these applications,
the HDF domain can be used to model their modal behaviors, leading to imple-
mentations that can adjust operation modes according to the received inputs,
while still yielding static analyzability due to finite number of schedules.

5 Conclusion

This paper describes a code generation framework for actor-oriented models us-
ing partial evaluation. It uses a helper-based mechanism to achieve modularity,
maintainability, portability and efficiency in code generation. It demonstrates
design using high level abstraction can be achieved without sacrificing perfor-
mance. The code generation framework is part of Ptolemy II 6.0.1 release. It can

206 G. Zhou, M.-K. Leung, and E.A. Lee

be downloaded from the Ptolemy project website at EECS, UC Berkeley. The
software release includes various demos to highlight the features of the code gen-
eration framework. We are currently exploring code generation for other MoCs
suited to embedded system design. We are also testing the capabilities of the
code generation framework with more complicated applications.

Acknowledgements. This paper describes work that is part of the Ptolemy
project, which is supported by the National Science Foundation (NSF award
number CCR-00225610), and Chess (the Center for Hybrid and Embedded Soft-
ware Systems), which receives support from NSF, the State of California Micro
Program, and the following companies: Agilent, Bosch, DGIST, General Motors,
Hewlett Packard, Microsoft, National Instruments and Toyota.

References

1. E. A. Lee. The Problem with Threads. IEEE Computer, 39(5):33-42, May 2006.
2. http://www.microsoft.com/whdc/driver/wdf/WDF facts.mspx
3. W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A Language for Stream-

ing Applications. In Proceedings of the 2002 International Conference on Compiler
Construction, 2002 Springer-Verlag LNCS, Grenoble, France, April, 2002.

4. http://www.mathworks.com/products/simulink/
5. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic

Program Generation. Prentice-Hall, June 1993.
6. E. Kohler, R. Morris, and B. Chen. Programming language optimizations for mod-

ular router configurations. In Proceedings of the Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 251-263, October 2002.

7. C. K. Gomard and N. D. Jones. A partial evaluator for the untyped lambda-
calculus. Journal of Functional Programming, vol.1, no.1, Jan. 1991, pp. 21-69.

8. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. Jour-
nal of Logic Programming, vol.11, no.3-4, Oct.-Nov. 1991, pp. 217-42.

9. L. O. Andersen. Partial evaluation of C and automatic compiler generation. In 4th
International Conference CC’92 Proceedings. Springer-Verlag. 1992, pp. 251-7.

10. U. Schultz. Partial evaluation for class-based object-oriented languages. In Proceed-
ings of Symposium on Programs as Data Objects (PADO), number 2053 in Lecture
Notes in Computer Science. Springer-Verlag, May 2001.

11. R. V. Ommerling. The Koala component model for consumer electronics software.
IEEE Computer, 33(3):7885, March 2000.

12. J. Tsay. A Code Generation Framework for Ptolemy II. ERL Technical Memoran-
dum UCB/ERL No. M00/25, Dept. EECS, University of California, Berkeley, CA
94720, May 19, 2000.

13. J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck. Software Synthesis for DSP Using
Ptolemy. Journal on VLSI Signal Processing, vol. 9, no. 1, pp. 7-21, Jan., 1995.

14. A. Girault, B. Lee, and E. A. Lee. Hierarchical Finite State Machines with Multiple
Concurrency Models. IEEE Transactions On Computer-aided Design Of Integrated
Circuits And Systems, Vol. 18, No. 6, June 1999.

15. E. A. Lee and D. G. Messerschmitt. Synchronous Data Flow. Proc. of the IEEE,
September, 1987.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 207–218, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Power-Aware Software Prefetching*

Juan Chen, Yong Dong, Huizhan Yi, and Xuejun Yang

School of Computer, National University of Defense Technology, P.R. China
{juanchen,yongdong,huizhanyi,xjyang}@nudt.edu.cn

Abstract. Some traditional optimizations improve the performance of pro-
cessors, but consume the higher power dissipation. We study this trade-off
using software prefetching as performance-oriented optimization technique. We
first demonstrate that software prefetching provides a significant performance
boost with the higher power on several memory-intensive benchmarks.
However, when we combine software prefetching with dynamic
voltage/frequency scaling (DVFS), the performance gain can be achieved
without power increase, which is called a power-aware approach. Besides
reducing power dissipation through DVFS, we also improve the performance
through adjusting the prefetch distance. A modified SimpleScalar/Wattch is
used to evaluate our power-aware software prefetching. Experimental results
show this optimization approach is effective to guarantee no power increase due
to prefetching and improve the performance of software prefetching.

1 Introduction

Power/energy consumption has already started to dominate the execution time as the
critical metric in system design. In the portable and embedded devices, power is
restricted by the limited battery life [1][9]. Unfortunately, some traditional compiler
optimization techniques bring the power increase when improving program
performance. One natural question is whether we can improve the performance
without power increase through combining traditional performance-oriented
optimization and low-power technique. In other word, it is significant to transfer the
original performance-oriented optimization to a power-aware optimization, where
“power-aware” means significant performance boost is achieved with no power
increase.

Although dynamic voltage/frequency scaling (DVFS) can greatly reduce power
dissipation, the performance degradation is inevitable. We explore the opportunities to
obtain further performance boost, so it can obtain better performance than simple
DVFS. In this paper, we study this using software prefetching as the performance-
oriented optimization. We call it power-aware software prefetching.

Prefetching is a latency tolerance technique, which is generally used to reduce the
gap between processor speed and memory access speed. In prefetching, cache miss

* This work was supported by the Program of Nature Science Fund under Grant No. 60633050

and was supported by the National High Technology Development 863 Program of China
under Grant No. 2002AA1Z2101 and No. 2004AA1Z2210.

208 J. Chen et al.

penalty is eliminated by generating prefetch requests to the memory system to bring the
data into the cache before the data is actually used. It can be triggered either by a
hardware mechanism, or by a software instruction or by a combination of both. Several
prefetching techniques [5][6][10] have been proposed in the past solely to increase the
performance. Hardware prefetching needs the extra hardware resource; software
prefetching approaches rely on data access pattern, which can be determined by static
program analysis so that prefetching can be done selectively and effectively.

Dynamic voltage/frequency scaling (DVFS) has become an important power-
management technique to save power or energy consumption. DVFS can obtain
significant power reduction by varying the supply voltage and clock frequency of one
processor: fCVPower dd

2∝ , where C is the load capacitance, Vdd is the supply voltage

and f is the clock frequency. The “dynamic” in DVFS means it allows supply voltage
and clock frequency to be adjusted during the execution.

However, in CMOS technology the circuit delay increases as the supply voltage
decreases [14]: α)/(tdddd VVVdelay −∝ , where Vt is the threshold voltage, and α is a

technology-dependent factor (between 1 and 2). Thus, reducing voltage will result in
performance degradation because the clock frequency f needs to be decreased to account
for the increased circuit delay [9].

codes with
prefetching

step1: DVFS

step2: adjusting
prefetch distance

step4: scale up
frequency

step3: achieve
power reduction? Yes

No

codes with our
approach

Power-aware
Software Prefetching

Fig. 1. The framework of our power-aware software prefetching

To reduce such performance degradation due to DVFS, we explore performance
improvement opportunities through readjusting prefetch distance. Furthermore, such
adjustment probably can achieve further power and performance gain. If it is, we can
transfer this power reduction to performance boost through scaling up frequency. Here
frequency scaling represents voltage scaling because the frequency and voltage are
adjusted together. Figure 1 gives the whole framework, which is divided into four steps.
In the first step, DVFS is applied to eliminate power increase due to prefetching. But
clock frequency reduction results in performance degradation. In the second step, we
exploit performance boost through readjusting prefetch distance because we observe
the original prefetch distance is no longer accurate under new clock frequency.

 Power-Aware Software Prefetching 209

Furthermore, if such a re-adjustment achieves some power reduction, we will scale up
clock frequency again to get the more performance improvement with no power
increase. That is what step 3 and step 4 do.

For any DVFS algorithm, it focuses only DVFS but not analyzing the detailed
optimization method. We feel it is more significant to do the tradeoff between power
and performance. Our power-aware software prefetching combines prefetching
algorithm with voltage/frequency scaling and explores the performance improvement
opportunities even after DVFS.

The remainder of this paper is organized as follows. In section 2, we analyze the
power increase due to software prefetching. Section 3 illustrates our power-aware
software prefetching approach. Section 4 shows the experimental methodology and
experimental results in detail. Section 5 shows the related works. Section 6 gives the
conclusions.

2 Power Increase Due to Software Prefetching

2.1 Software Prefetching

Software prefetching relies on the programmer or compiler to insert the explicit
prefetch instructions into the codes for memory references that are likely to miss in
the cache. At run time, the inserted prefetch instructions bring the data into the
processor’s cache in advance of its use, thus overlapping the memory access with the
processor computation. Software prefetching has been shown to be effective in
reducing memory stalls for both sequential and parallel applications, particularly for
scientific programs making regular memory access [5][6].

// 3D Jacobi Kernel
A(N,N,N), B(N,N,N)
do k=1, N-2
 do j=1, N-2
 do i=1, N-2
 B[k][j][i]=0.167*(A[k][j][i-1]+
 A[k][j-1][i]+
 A[k][j][i+1]+
 A[k][j+1][i]+
 A[k-1][j][i]+
 A[k+1][j][i]);

A(N,N,N), B(N,N,N)
do k=1, N-2
 do j=1, N-2
 do i=1, PD, step=4 // Prologue Loop
 prefetch(&A[k][j][i]);
 prefetch(&A[k][j+1][i]);
 prefetch(&A[k][j-1][i]);
 prefetch(&A[k-1][j][i]);
 prefetch(&A[k+1][j][i]);
 prefetch(&B[k][j][i]);
 end do
 do i=1, N-PD-2, step=4 // Unrolled Loop
 prefetch(&A[k][j][i+4+D]);
 prefetch(&A[k][j+1][i+4+D]);
 prefetch(&A[k][j-1][i+4+D]);
 prefetch(&A[k-1][j][i+4+D]);
 prefetch(&A[k+1][j][i+4+D]);
 prefetch(&B[k][j][i+4+D]);
 B[k][j][i]=0.167*(A[k][j][i-1]+A[k][j-1][i]+A[k][j][i+1]+A[k][j+1][i]+A[k-1][j][i]+A[k+1][j][i]);
 B[k][j][i+1]=0.167*(A[k][j][i]+A[k][j-1][i+1]+A[k][j][i+2]+A[k][j+1][i+1]+A[k-1][j][i+1]+A[k+1][j][i+1]);
 B[k][j][i+2]=0.167*(A[k][j][i+1]+A[k][j-1][i+2]+A[k][j][i+3]+A[k][j+1][i+2]+A[k-1][j][i+2]+A[k+1][j][i+2]);
 B[k][j][i+3]=0.167*(A[k][j][i+2]+A[k][j-1][i+3]+A[k][j][i+4]+A[k][j+1][i+3]+A[k-1][j][i+3]+A[k+1][j][i+3]);
 end do
 do i=N-PD-1,N-2 // Epilogue Loop
 B[k][j][i]=0.167*(A[k][j][i-1]+A[k][j-1][i]+A[k][j][i+1]+A[k][j+1][i]+A[k-1][j][i]+A[k+1][j][i]);
 end do
end do

(a) Original codes for 3D
Jacobi kernel

(b) Affine array perfetching for 3D Jacobi kernel using Mowry algorithm [6]

Fig. 2. Code examples for 3D Jacobi kernel before and after using Mowry’s prefetching
algorithm

210 J. Chen et al.

In this paper, we use software prefetching algorithm proposed by Todd Mowry.
Mowry’s algorithm [6] exploits the precise access pattern information available through
static analysis of array references to insert prefetches for only the data needed by the
processor. Mowry’s prefetch algorithm involves three steps. More details can be found
in [6]. To illustrate, Figure 2(a) and Figure 2(b) show the 3D Jacobi kernel before and
after prefetch algorithm is applied, respectively. Software prefetching requires
computing a prefetch distance, PD, to properly schedule prefetches. Recall that

⎥⎥
⎤

⎢⎢
⎡=

w

l
PD , where w is the work (the latency) per loop iteration, and l is the memory

latency. Hence, PD must be calculated for every loop. In this example, PD is equal to
16. Locality analysis is performed to determine where to insert perfetch instructions.
Prefetching is usually combined with loop unrolling.

2.2 Power Increase Due to Prefetching

Figure 3 compares the power and performance before and after software prefetching.
Although software prefetching improves program performance effectively (Figure
3(b)), power dissipation is greatly increased due to prefetching (Figure 3(a)). The
description about these memory-intensive benchmarks is given in the later
experimental section. Each group of bars include the original version without
prefetching and the version optimized with software prefetching. This simulation
results use Wattch power model [4], and applying aggressive, non-ideal clock gating,
where power dissipation of active units is scaled linearly with the port or unit usage.
And the unused units dissipate 10% of their maximum power rather than zero.

0

2

4

6

8

10

12

R
B

JA
C

O
B

I

M
M

IR
R

E
G

M
O

L
D

Y
N

N
B

F

A
v
e
ra
g
e
 P
o
w
e
r
(W
)

orig

pref

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

R
B

JA
C

O
B

I

M
M

IR
R

E
G

M
O

L
D

Y
N

N
B

F

E
x
e
c
u
ti
o
n
 T
im
e

orig

pref

 (a) Power dissipation (b) execution time

Fig. 3. Power increase and performance improvement due to software prefetching

To illustrate each unit attribution for power increase, the power dissipation for MM
bar is broken down into the following eleven parts: Rename Logic Power (rename),
Branch Predictor Power (bpred), Instruction Window Power (window), Load/Store
Queue Power (lsq), Register File Power (regfile), Instruction Cache Power (icache),

 Power-Aware Software Prefetching 211

Data Cache Power (dcache), Level 2 Cache Power (dcache2), Integer ALU Power
(alu), Result Bus Power (resultbus), Write Buffers Power (write_buffers). Note that
the average clock power increases to 5.1165W from 2.2848W due to software
prefetching, which is not plotted in the Figure 4 because this figure is too big to show
together with other power values.

Fig. 4. Power dissipation breakdown for MM (or MATMULT) benchmark

From the above statistics, nearly all the function units show the power increase due
to software prefetching. Specially for instruction window, instruction cache, register
file and ALU, power increases are more obvious. The major causes about power
increase probably are: (1) a number of prefetch instructions are inserted, which
increases the number of instructions; (2) The overlap of memory access and CPU
computation increases the density of instruction execution, which leads to power
increase.

3 Power-Aware Software Prefetching

First, we make the following assumptions about the program, microarchitecture, and
circuit implementation:

(1) The program’s logical behavior does not change with the frequency.
(2) The relationship between the frequency and voltage is

ddtdd VVVf /)(α−∝

where Vdd is the supply voltage, Vt is the threshold voltage, and α is a
technology-dependent factor (≈ 2).

(3) There are the energy and delay penalties associated with switching between
different (fVdd ,) pairs.

(4) Computation can be assigned to different frequencies at an arbitrarily fine
grain. That is, a continuous partitioning of the computation and its assignment
to different voltage/frequency levels are possible. Also an instruction can run
at different frequency.

While the first three assumptions are realistic, the last one is optimistic in the sense
that allows for higher energy savings than may be achievable in practice.

With DVFS, we can obtain the results as Figure 5 shows. Figure 5(a) shows the
power increase due to prefetching and power reduction by DVFS. In the original

212 J. Chen et al.

version, all the benchmarks run at 1GHz. Prefetching greatly increases the power
dissipation. Using simulation-based profiling execution, we adopt the optimal clock
frequency level for each benchmark. So, power dissipation is reduced to less than the
original level. Specially, frequency scaling instructions are only inserted at the entry and
exit of prefetching loop nests. From the left to right in Figure 5, the optimal clock
frequencies are 686MHz, 720MHz, 664MHz, 722MHz, 750MHz and 848MHz. Figure
5(b) gives the performance penalty due to DVFS.

0

2

4

6

8

10

12

R
B

JA
C

O
B

I

M
M

IR
R

E
G

M
O

L
D

Y
N

N
B

F

orig

pref

DVS

0%

20%

40%

60%

80%

100%

R
B

JA
C

O
B

I

M
M

IR
R

E
G

M
O

L
D

Y
N

N
B

F

orig

pref

DVS

(a) Power dissipation comparison (b) execution time comparison

Fig. 5. Power reduction due to dynamic voltage/frequency scaling (DVFS) and performance
penalty

 X1(M), X2(M), index(N)
 setfreq(700);
 do i=1, PD, step=2 // Prologue Loop
 prefetch(&index(i));
 do i=1, PD, step=2
 prefetch(&index(i+PD));
 prefetch(&X1(index(i))) ;
 ...
 do i=1, N-2*PD-1, step=2 // Unrolled Loop
 prefetch(&index(i+2*PD));
 prefetch(&X1(index(i+PD))) ;
 ...
 d=X1(index(i))-X2(index(i));
 force=d**(-7)-d**(-4);
 X1(index(i+1))+=force;
 X2(index(i+1))+=-force;
 ...
 do i=N-2*PD-1,N-PD-1 // Epilogue Loop
 prefetch(&X1(index(i+PD)));
 d=X1(index(i))-X2(index(i));
 force=d**(-7)-d**(-4);
 X1(index(i+1))+=force;
 do i=N-PD-1, N
 d=X1(index(i))-X2(index(i));
 force=d**(-7)-d**(-4);
 X1(index(i+1))+=force;
 X2(index(i+1))+=-force;
 setfreq(1000);
 ...

Fig. 6. Illustration of frequency scaling instruction setfreq()

 Power-Aware Software Prefetching 213

Since power increase is mainly from the loop nests including prefetch instructions,
our DVFS policy is to scale down the frequency of these loop nests. Our
implementation approach is to add frequency scaling instruction, setfreq(), at the entry
of these loop nests in the C program. It is also necessary to scale frequency back to the
original level at the end of these loop nests so that the later program execution runs at
the normal clock frequency. Figure 6 gives the clear illustration.

During the codes in Figure 6, at first program keeps running at 1GHz clock
frequency until meeting setfreq(700). Then clock frequency is changed to 700MHz.
After setfreq(1000) the program runs at 1GHz again.

As Figure 1 illustrates, our approach exploits further performance boost
opportunities. We use RB benchmark as our example to illustrate our approach. Using
DVFS, loop nests including prefetch instructions runs at 686MHz instead of 1GHz. At
this time, average power dissipation is 4.7285W (less than the original level) while
remaining 1.62 performance speedup. Compared with no DVFS, power reduces 49%.

Fig. 7. Prefetch distance adjustment illustration for RB benchmark

Figure 7 explains why the prefetch distance must be adjusted. Reducing the clock
frequency prolongs the time of each cycle. To maintain memory access latency as a
fixed time in second, prefetch distance must be reduced. In Figure 7, solid line
represents CPU computation and dash line is memory access operation due to
prefetching. PD is prefetch distance.

With the clock frequency 686MHz, prefetch distance for RB is changed to 16 from
24. Table 1 gives some detailed profiling data about prefetch distance adjustment.

Table 1. Result comparisions between DVFS and ours for RB bechmark

Items original prefetch
DVFS(686MHz),

PD=24
686MHz,
PD=16

700MHz,
PD=16

Power (W) 4.7408 9.2768 4.7285 4.5218 4.7315
Time (ms) 13.9911 4.0332 5.3377 5.0708 4.9798

In Table 1, the fourth column shows simple DVFS results. According to the
analysis of prefetch distance, we adjust PD (prefetch distance) to 16 and get the fifth
column data. That shows the prefetch distance adjustment obtains performance boost
and power reduction. Recall that our objective is to limit the power dissipation under
the original level (for RB, that is 4.7408W), so that this part of power savings can be

214 J. Chen et al.

completely transferred to the further performance boost through scaling clock
frequency a little up as the last column shows. Although power dissipation is a little
larger than 4.7285W, but still lower than the demand level (4.7408W). And
performance is better. Our approach achieves 6.7% better performance than simple
DVFS.

4 Experimental Methodology and Results

We use software prefetching to improve application performance. All the benchmarks
are instrumented with our power-aware software prefetching. The performance and
power of these optimized codes are then meansured on a detailed architectural
simulator.

4.1 Experimental Methodology

As shown in Figure 1, our approach is based on the DVFS in step 1. This optimal
frequency setting is done by simulation-based program profiling. First we estimate a
suitable frequency level to profile performance result and later scale up or down
frequency so as to guarantee no power increase. We use SimpleScalar sim-outorder, a
detailed simulator supporting out-of-order issue and execution [3], and Wattch, an
architectural level power analysis tool [4], to track different units accessed per cycle,
record the power of each unit and the total power consumed for a given application.
Some necessary modifications are made for our simulation.

SimpleScalar tool set [3] models a 1GHz 4-way issue dynamic-scheduled processor.
The simulator models all aspects of the processor including the instruction fetch unit,
the branch predictor, register renaming, the functional unit pipelines, the reorder buffer,
and write buffers. It also models the memory system in detail. We assume a split 8-
Kbyte direct-mapped L1 cache with 32-byte cache blocks, and a unified 256-Kbyte 4-
way set-associative L2 cache with 64-byte cache blocks. SimpleScalar simulator is
modified to accurately model bus contention across the L2-memory bus. For 1GHz
clock frequency, L2-memory latency is 160 cycles and the L2-memory bus width is 8
bytes/cycle. That is, memory access time overhead is 160ns. To fix memory access time
overhead as 160ns even after DVFS, the number of memory access cycles is adjusted in
terms of DVFS. In addition, to enable software prefetching, a perfetch instruction has
been added to the ISA of the processor model [7].

Wattch [4] power model is based on 0.1μm (instead of default 0.35μm) process
technology parameter, which is closer to the current embedded systems process
technology. Aggressive, non-ideal clock gating is used. In this kind of clock gating,
power of active units is scaled linearly with the port or unit usage, and the unused units
consume 10% of their maximum power rather than zero. We also add the write buffers
energy model to Wattch. We use 1GHz as the baseline processor frequency. Wattch has
been modified to support DVFS by inserting one clause “setfreq(900)” in the original C
program. This clause scales the clock frequency to 900MHz. This frequency scaling
instruction is implemented using “inline asm”. With this directive clause, the later
program runs under this new voltage/frequency level until meeting another new
frequency scaling instruction.

 Power-Aware Software Prefetching 215

During the voltage switching from V1 to V2, there are time and energy overhead. We
use the formula (1) and formula (2) to calculate them [2].

 ||
2

),(2121 VV
I

c
VVt

MAX
switch −⋅= (1)

 ||)1(),(2
2

2
121 VVcuVVEswitch −⋅⋅−= (2)

where c is the voltage regulator capacitance and u is the energy-efficiency of the voltage
regulator. IMAX is the maximum allowed current. Here we use c=10 fμ , IMAX=1A,

u=90%.
To drive our simulations, our experimental evaluation employs six benchmarks,

representing two classes of data-intensive applications. Table 2 lists the benchmarks
along with their problem sizes and memory access patterns. The first three applications
in Table 2 perform affine array accesses. MM (or MATMULT) represents the multiply
of two matrices. RB performs a 3D red-black successive-over-relaxation, and JACOBI
performs a 3D Jacobi relaxation. Both JACOBI and RB are frequently found in
multigrid PDE solvers, such as MGRID from the SPEC/NAS benchmark suite. The next
three applications perform indexed array accesses. IRREG is an iterative PDE solver for
an irregular mesh, MOLDYN is abstracted from the non-bonded force calculation in
CHARMM, a key molecular dynamics application used at NIH to model macro-
molecular systems, and NBF (Non Bonded Force kernel), is a molecular dynamics
simulation. NBF is taken from the GROMOS benchmark [11].

Table 2. Summary of benchmark applications

Application Problem Size Access Pattern
RB

JACOBI
MM

200*200*8 grid
200*200*8 grid

200*200 matrics

Affine array
Affine array
Affine array

IRREG
MOLDYN

NBF

141K node mesh
128K molecules

141K nodes

Indexed array
Indexed array
Indexed array

4.2 Experimental Results

For each application, we apply software prefetching by hand. We follow the approach
described in Section 3, then measure the performance and power of the optimized codes
on our detailed architectural simulator. Here, all the programs are built with –O2 option.

Table 3 reports the computed prefetch distances for all the benchmarks. Here we fix
memory access latency as sμ16.0 (160 cycle when 1GHz) and memory bandwidth is

8GBytes/sec. The second line “Original” shows the prefetch distances without DVFS;

Table 3. Prefetch distances for loops in all benchmarks versus different approaches

RB JACOBI MM IRREG MOLDYN NBF
24 16, 68 44 12, 40, 40, 80 2, 2, 3 4
16 12, 52 32 10, 38, 30, 68 2, 2, 3 3

Approaches
Original

Our approach

216 J. Chen et al.

the third line “Our approach” gives the new prefetch distances after using our power-
aware prefetching approach.

Table 4 lists the detailed power and performance results for all the benchmarks. The
fourth column shows the significant power increases due to prefetching. In average,
power dissipation increases by 75.43% due to prefetching! DVFS can achieve
significant power reduction shown in the fifth column. Applied with our power-aware
prefetching, the performance is better than simple DVFS as the last column shows.

Table 4. Power and performance comparisons versus different approaches

Items original prefetch DVFS Power-aware Prefetching

Power (W) 4.7408 9.2768
4.7285

(686MHz, PD=24)

4.7315

(700MHz, PD=16)

Time (ms) 13.9911 4.0332 5.3377 4.9798

Power (W) 5.0432 8.6812
5.0416

(720MHz,PD=16,PD1=68)

5.0365

(735MHz, PD=12,PD1=52)

Time (ms) 13.4944 4.6895 5.1922 4.9326

Power (W) 4.6012 9.8058
4.5920

(664MHz, PD=44)

4.6003

(680MHz, PD=32)

Time (ms) 178.7044 40.0004 56.1918 54.6336

Power (W) 4.5936 8.0231

4.5889

(722MHz,

PD=12,PD1=40,PD2=40,PD3=80)

4.5930

(735MHz,

PD=10,PD1=38,PD2=30,PD3=68)

Time (ms) 114.5986 38.6705 48.2146 46.2860

Power (W) 4.5380 7.5423
4.5287

(750MHz, PD=2,PD1=2,PD2=3)

4.5287

(750MHz, PD=2,PD1=2,PD2=3)

Time (ms) 465.9938 148.4808 178.4281 178.4281

Power (W) 4.4246 5.7879
4.4207

(848MHz, PD=4)

4.4200

(861MHz, PD=3)

Time (ms) 126.8474 64.0246 71.2434 69.8190

Benchmark

RB

JACOBI

MM

IRREG

MOLDYN

NBF

DVFS effectively reduce nearly half of power dissipation from the above results.
And our power-aware prefetching can obtain the average 4.09% performance
improvement compared with simple DVFS except for MOLDYN. MOLDYN can not
obtain the gain from re-adjusting prefetch distance is that because three prefetch
distances in MOLDYN benchmark is too small.

In the future work, we also can do the tradeoffs between performance and power
from the following three aspects:

(1) Considering reducing the number of prefetch instructions to reduce part of power
consumption.

(2) Allow power increase no more than an upper, such as allowing 5% power
increase. This can increase the performance boost opportunities while power increase is
acceptable.

(3) Build an accurate analytical model to do the tradeoff between power and
performance.

5 Related Works

In the previous work, we presented an energy-constrained prefetching optimization
approach [12]. This approach can limit the energy consumption under a given energy
budget through reducing main memory or CPU stalls. We evaluated this approach

 Power-Aware Software Prefetching 217

using an analytical model. We also extent this energy-constrained prefetching
optimization to meet two performance objectives [13]. In this article, our optimization
objective is to obtain the performance boost as much as possible without any power
increase. The main difference of this work and the previous works is that the previous
works are mainly based on analysis model, and consider the whole energy
consumption of both CPU and main memory. While this current work tries to find the
suitable voltage value through simulation experiments and only refers to CPU power
dissipation. During the voltage/frequency scaling, we also consider the impact of
voltage/frequency scaling on prefetch distance.

Deepak et al. transferred the performance gain from software prefetching to energy
reduction through combining prefetching with a dynamic voltage/frequency scaling
technique [8]. Experiments approved that their dynamic DVFS algorithm achieves a
38% energy saving without any performance loss. There are two major differences
between their work and ours. (1) One difference is that optimization objective is
different. Deepak’s objective is to reduce energy consumption without performance
loss. But many high-performance computing systems and portable systems, “fast
enough” is still end user’s desire. We cannot sacrifice the whole optimization
performance gain to obtain energy reduction. So our objective is to improve the
performance as much as possible without power increase; (2) The other difference is
that the DVFS algorithm is different. Deepak’s online DVFS algorithm periodically
conducts real time profiling to estimate the performance gain by prefetching, then this
DVFS algorithm can guide the selection of voltage to simultaneously achieve low
power and performance guarantee. While our approach improves the performance
through readjusting prefetch distance after DVFS.

6 Conclusions

In this paper, we study a power-aware software prefetching approach. We first
demonstrate software prefetching provides a significant performance boost with the
higher power on several memory-intensive benchmarks. However, when we combine
prefetching with DVFS technique, performance gain can be achieved with no power
increase. Our approach is different from simple DVFS, which improves the
performance through adjusting prefetch distance after DVFS. A modified
SimpleScalar/Wattch is used to evaluate our power-aware software prefetching.
Experimental results show our optimization can obtain the better performance than
the simple DVFS with the same power dissipation.

Acknowledgements

The authors are grateful to Dr. Abdel-Hameed Badawy (at Electrical and Computer
Engineering Dept., University of Maryland, College Park, USA) for providing much
assistance on this paper, including simulator and most of the benchmarks.

218 J. Chen et al.

References

[1] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Compilation Techniques for Low
Energy: An Overview. In the Proceedings of the 1994 Symposium on Low-Power
Electronics, San Diego, CA, October 1994.

[2] T. Burd and R. Brodersen. Design issues for dynamic voltage scaling. In the Proceedings
of International Symposium on Low Power Electronics and Design (ISLPED-00), June
2000.

[3] Doug Burger, and Todd M. Austin. The SimpleScalar Tool Set, Version 2.0.
[4] David Brooks, Vivek Tiwari and Margaret Martonosi. Wattch: A Framework for

Architectural-Level Power Analysis and Optimizations. In the Proceedings of the 27th
International Symposium on Computer Architecture (ISCA 00), pages 83-94, June 2000.

[5] D. Callahan, K. Kennedy, and A. Porterfield. Software Prefetching. In the Proceedings of
the 4th International Conference on Architectural Support for Programming Languages
and Operating Systems, Santa Clara, CA, April 1991.

[6] Todd C. Mowry. Tolerating Latency through Software-Controlled Data Prefetching.
Doctor dissertation. Stanford University, March 1994.

[7] Abdel-Hameed Badawy, Aneesh Aggarwal, Donald Yeung, and Chau-Wen Tseng. The
Efficacy of Software Prefetching and Locality Optimizations on Future Memory Systems.
Journal of Instruction-Level Parallelism. Vol 6, 2004.

[8] Deepak N. Agarwal, Sumitkumar N. Pamnani, Gang Qu, and Donald Yeung. Transferring
Performance Gain from Software Prefetching to Energy Reduction. In Proceedings of the
2004 International Symposium on Circuits and Systems (ISCAS2004). Vancouver,
Canada. May 2004.

[9] Fen Xie, Margaret Martonosi and Sharad Malik. Intraprogram Dynamic Voltage Scaling:
Bounding Opportunities with Analytic Modeling. ACM Transactions on Architecture and
Code Optimization. Vol.1, No.3, September 2004. pages 323-367.

[10] T. Chen and J. Baer. Effective Hardware-Based Data Prefetching for High-Performance
Processors. Transactions on Computers, Vol.44, No. 5, pages 609-623, May 1995.

[11] W. F. van Gunsteren and H. J. C. Berendsen. GROMOS: GROningen MOlecular
Simulation software. tech. rep., Laboratory of Physical Chemistry, University of
Groningen, Netherlands, 1988.

[12] Juan Chen, Yong Dong, Huizhan Yi and Xuejun Yang. Energy-Constrained Prefetching
Optimization in Embedded Applications. In Proceedings of International Conference of
Embedded and Ubiquitous Computing (EUC 2005). Nagasaki, Japan, December 2005.

[13] Juan Chen, Huizhan Yi, Yong Dong and Xuejun Yang. Study on Energy-Constrained
Software Prefetching Optimization. In Journal of Software, ISSN 1000-9825, Vol. 17,
No. 7, July 2006, p.1650-1660.

[14] Sakurai T. and Newton A. Alpha-power model, and its application to CMOS inverter
delay and other formulas. IEEE Journal Solid-State Circ. Vol. 25, 1990. p.584-594.

Fast Initialization and Memory Management

Techniques for Log-Based Flash Memory File
Systems

Junkil Ryu and Chanik Park

Department of Computer Science and Engineering
Pohang University of Science and Technology (POSTECH), Republic of Korea

{lancer,cipark}@postech.ac.kr

Abstract. Flash memory’s adoption in the mobile devices is increasing
for various multimedia services such as audios, videos, and games. The
traditional research issues such as out-place update, garbage collection,
and wear-leveling are important, the fast initialization and response time
issues of flash memory file system are becoming much more important
than ever because flash memory capacity is rapidly increasing. In this
paper, we propose a fast initialization technique and an efficient memory
management technique for fast response time in log-based flash memory
file systems. Our prototype is implemented based on a well-known log-
based flash memory file system YAFFS2 and the performance tests were
conducted by comparing our prototype with YAFFS2. The experimen-
tal results show that the proposed initialization technique reduced the
initialization time of the log-based flash memory file system regardless
of unmounting the file system properly. Moreover our prototype outper-
forms YAFFS2 in the read I/O operations and the forward/backward
seek I/O operations by way of our proposed memory management tech-
nique. This technique is also able to be used to control the memory size
required for address mapping in flash memory file systems.

Keywords: flash memory, log-based file system, file system initializa-
tion, high performance, efficient memory management.

1 Introduction

Flash memory has been widely adopted as a storage media in the mobile devices
because it is non-volitle, shock-resident, and power-economic. However the data
page in the flash memory cannot be re-used without a block erase operation and
the flash memory’s page size is not equal to its block size. Note that I/O oper-
ations are performed on a page in the flash memory. Thus, additional functions
must be implemented to store files in the flash memory. There are two major ap-
proaches to provide the file service in flash memory. One is the native file system
approach ([1], [2]) which is aware of the characteristics of the flash memory, that
the native file system applies to provide efficient file system service. The other is
the block-device emulation approach ([3], [4]) and it creates generic block device
environments (translation layer) for the existing file systems to use the flash

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 219–228, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

220 J. Ryu and C. Park

memory. The two approaches’ goal is to have applications accessing data on the
flash memory transparently using standard file system APIs. In its early stages,
most of the research topics on the flash memory focused on harnessing the flash
memory such as out-place update, garbage collection, and wear-leveling. But
the performance, reliability, and low power comsumption have become much
interested research topics on the flash memory in recent years.

In this paper, the initialization time, performance, and efficient memory man-
agement for the flash memory file systems will be handled. When a log-based
flash memory file system is mounted, any data areas and all spare areas of
the used pages in the flash memory must be scanned to reconstruct its house-
keeping data structures (meta-data and data address mapping) in the system
memory. This procedure is time consuming while maintaining the stored files’
house-keeping data (meta data and data address mapping) in the system mem-
ory is memory consuming and impractical because the size of the flash memory
is becoming larger and the system memory size in the mobile device does not
follow the trend of the flash memory size. [Fig. 1]’s experiment shows that the
initialization time of the log-based flash memory file system (YAFFS2) increases
linearly as the data stored in the flash memory is increased. [Fig. 2]’s experiment
shows that the system memory used for data address mapping and meta-data
in YAFFS2 increases as the data stored in the flash memory increases. The ex-
perimental setup is as follows: Processor is Intel Burlverde PXA270 (520Mhz),
system memory is SAMSUNG SDRAM 64MB, and flash Memory is SAMSUNG
1GB NAND flash memory. Hence, the issues of the initialization time and mem-
ory management for the flash memory are very important.

The growth of quality and quantity in the multimedia data has cause the mobile
device to store many multimedia data and process the multimedia data encoded
in high quality. The existing log-based flash memory file system (ex, YAFFS2)
has been focusing on applying the physical characteristics of the flash memory to

Usage (%) vs. Mount time

0

50

100

150

200

250

300

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Usage (%)

ti
m

e
 (

s
e

c
)

1GB Flash Memory Usage (%) vs. Mount Time

1GB Flash Memory Usage (%)

M
ou

nt
 T

im
e

(S
ec

)

Fig. 1. YAFFS2 Mount Time

Fast Initialization and Memory Management Techniques 221

0

2000

4000

6000

8000

10000

12000

14000

16000

0% 10% 20% 30% 40% 50% 60%

M
em

or
y

U
sa

ge
 (

KB
)

The size of data stored in YAFFS2 (% of 1GB flash memory)

Fig. 2. System Memory used for YAFFS2

provide the file system service. Currently, the high performance flash memory file
system is needed to process many high quality and quantity multimedia files.

In this paper, a method for fast initialization, high performance and memory
management is proposed for flash memory log-based file systems. For the fast
initialization, we allocated the startup area seperately in the flash memory, which
is managed by SyncManager. For high performance, a page in the flash memory
is addressed directly. For the memory management, the B-Tree technique is
used instead of Tnode Tree in YAFFS2 and the data addressing mapping can
be unloaded in the system memory when it is unused.

The remainder of this paper is organized as follows: Section 2 introduces
the related work and motivations. Section 3 introduces the proposed methods
and section 4 provices the performance evaluation of the proposed method over
YAFFS2. Finally, section 5 draws conclusion.

2 Related Work

There are two approaches in the file system implementation to provide data ac-
cessing transparently in the flash memory. One is the native flash memory file
system and the other is the block device emulation. The existing disk file systems
can be used with these block device emulations. This paper discusses the flash
memory file system, which manages raw flash memory directly (ex, JAFFS2
and YAFFS/YAFFS2). These flash memory file systems are closely related to

222 J. Ryu and C. Park

log-structured file system ([7]) because a page in the flash memory cannot be
done in-place updates. When updating the data in a page, the data is moved from
a page to another page. Unlike disks, we cannot know where the data is. Hence,
the data-stored pages must be tracked and managed in the flash memory file
system. In order to resolve this problem, the mapping concept of logical address
space and physical addresss space is adopted, where the logical address space is
indexed by logical page address (chunkId in YAFFS2) and the physical address
space is indexed by physical page address in the flash memory. This mapping
can be either one-to-one mapping or one-to-many mapping. The former is used
under the block device emulation and the latter is used mainly under the native
flash memory file system. However, the YAFFS2 flash memory file system uses
one-to-one mapping. A page in the flash memory contains a user data area and
a spare area, where the user data area is for the storage of user data in a logical
page and the spare area is for ECC, the corresponding logical page address, and
other house-keeping data. When flash memory systems (flash memory file sys-
tems or block device emulations) are mounted, these mappings are constructed
in the system memory to provide efficient file service. If these mappings are not
constructed in the system memory when mounting the flash memory file sys-
tem, then all pages in the flash memory must be scanned whenever accessing
data. The log scanning proceduere conducted by a native file system will be-
come a serious issue in the near future because flash memory’s size is becoming
larger. If the flash memory’s size is becoming larger (2GB, 3GB,...), then the
existing flash memory file systems (YAFFS2 and JFFS2) will be impractical. To
reduce the initialization time of the log-based flash memory file systems, [5]’s
and [6]’s method were proposed. [5]’s method is to commit the snapshot of the
data structure for the flash memory when the file system is unmounted. This
method does not operate well when the file system is not unmounted properly.
The old snapshots are not useful in the reconstruction of the file system image
in the system memory for the flash memory management and the updated areas
are not addressed easily. Snapshotting a file system image when unmounting,
elongates the shutdown time regardless of unmounting improperly. To resolve
[5]’s problems, [6]’s method was proposed. [6]’s method records the changes of
the file system image in the runtime. But when the system crashes, the changed
portions in the flash memory cannot be addressed easily because their method
records READ/WRITE I/O operations to track the change of the file system
image. In this paper, we propose our method to reduce the log-based flash mem-
ory file system’s initialization time and recovery time and to provide efficient
file system service (high performance and small system memory usage) for the
multimedia files.

3 The Proposed Method for Log-Based Flash Memory
File Systems

To reduce the log-based flash memory file system initialization time and the
recovery time, our proposed method introduces the startup area. The startup

Fast Initialization and Memory Management Techniques 223

area is allocated separately from the data area (YAFFS2) and it is managed by
SyncManager. The startup area’s size must be determined according to usage of
the embedded systems using this method. the startup area’s size is determined in
proportion to the number (not capacity) of the files stored in Flash memory. For
example, the startup area need small size relatively for the embedded systems
using large-size files (mp3, movies). [Fig. 3] shows the overview of our proposed
method. We implemented the prototype based on YAFFS2 but our proposed
method can be applied in other log-based flash memory file systems. To track
the changes of the file system image, [6] records the changes of I/O operations
in a log-segment but the number of log-segments increase as the I/O opera-
tions increase. It increases the crash recovery time. [6]’s method focused on I/O
operations but our propsed method focuses on the changed files. To track the
change of the file system image, we introduced the filter function in the YAFFS2
to confirm which file is changed. The filter functions are inserted in YAFFS2’s
low-level I/O functions. The changed file is recorded by SyncManager. A log
page in the startup area is made for a file, which contains the data address map-
ping for the corressponding file. When a file is updated, the corresponding log
page in the startup area is marked as DIRTY in the tag and the SynManager
holds the pointer of the file object. During idle time, the SyncManager writes
the changed files’ data address mappings into the re-allocated log pages. If the
system crash occurs in the state where the startup area is not syncronized with
the YAFFS2 data-area, then the updated portions in the flash memory will be
tracked by finding the DIRTY-marked log pages in the startup area, allowing
fast crash recovery. The startup area is fixed in flash memory. To prevent the
startup area from aging quickly, SyncManager reduces I/Os onto the startup
area by lazy-updating the changes of a file when the file has been unused for the
expected time. When SyncManager does garbage-collection in the startup area
and the large portion of the blocks in the startup area is used, the cold blocks
are selected as the garbage-collection’s victims.

For high performance, our proposed method uses a different page addressing
technique from that of YAFFS2. Each Tnode’s entry in the YAFFS2 contains
a group address, which is not a page address. In YAFFS2, the wanted page is

{File ID, Dirty, Sequence Num, Erase Count, ECC}

Log Page

{ Start Address, Length}

startup area data-area (YAFFS2)

SyncManager
File updates

changed_file changed_file

Flash Memory

Main Memory (RAM)

Fig. 3. Overview of the proposed method

224 J. Ryu and C. Park

found by searching pages in the group containg the wanted page sequentially.
To remove this overhead, our proposed method does not use the group address
mapping but instead uses the direct page address mapping. However, this method
consumes more system memory for directly addressing a physical page. Our
proposed method uses the B-Tree technique for the data address mapping instead
of YAFFS2’s Tnode Tree, which allocates a Tnode with 16 entries for using a
page but a node in our B-Tree has a entry and it can represent many pages if the
pages is stored continuously in the flash memory. A node in our B-Tree represents
a logical address, a physical address, and the length of the continuous pages in
the flash memory. A node in our B-Tree uses the more system memory than the
YAFFS2’s Tnode. But the B-Tree node represents the more information than
the YAFFS2’s Tnode and our B-Tree node is more effective in the multimedia
data, which mainly is stored continuously in the flash memory. To control the
usage of the system memory, our proposed method unloads the data address
mappings of the unused files from the system memory. When a file is unused for
5 minutes or the number of the used files exceed the guideline, the unused and
old loaded files are unloaded. If a file, which does not has its data mapping in
the system memory, is requested by the file system, then our proposed system
loads the corresponding file’s data address mapping from the startup area in the
flash memory, whose address is contained in the file object. [Fig. 4] shows our
proposed data mapping in the system memory.

4 Performance Evaluation

The experiments were conducted with YAFFS2 and our prototype, which was
implemented based on YAFFS2. Our experimental setup is shown in [Fig. 5].

YAFFS2 runs with the ”Erasure Check mode”, which confirms whether each
block in the flash memory has been erased on the mount time or not. Our proto-
type runs with the ”Erasure Check mode” as well. If we do not use the ”Erasure
Check mode”, then our proposed method’s initializaton time will be shorter.
[Fig. 6] and [Fig. 7] show the flash memory file system initialization time of our
prototype and YAFFS2, using small-sized files (average size: 359.5 KB). [Fig. 6]
and [Fig. 7] show that our prototype’s initialization time is shorter than that of
YAFFS2, since the startup area and eachblock’s first page are scanned in our
proposed method. [Fig. 8] and [Fig. 9] show the flash memory file system ini-
tialization time of our prototype and YAFFS2, using mp3 files, whose average
file size is 5.9 MB. In [Fig. 8] and [Fig. 9], our prototype’s initialization time
is under 9 seconds but YAFFS2’s initialization time increases linearly while the
size of the data stored in the flash memory increases. It is because YAFFS2 scans
the used pages and each block’s first page. In the mobile device, our proposed
method is efficient and practical because multimedia data mainly are stored,
their size is large, and the number of the stored multimedia data is limited. Our
proposed method records the changed files to track the changes of the file system
image and writes the changed files’ mappings into the startup area periodically.

Fast Initialization and Memory Management Techniques 225

1 2 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

0 8 16 24

Group Number 0 Group Number 1

1

Tnode Tree

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

(80 Bytes)

(32 Bytes) (32 Bytes)

(16 Bytes)

File

Data Address Mapping in the System Memory

YAFFS2

File @SA

Load

Unload “Startup Area”
In Flash Memory

Our Proposed Method

3

Key: 9
groupAddr: 17

length: 9

Key: 1
groupAddr: 0

length: 8

(12 Bytes)

(12 Bytes)

(24 Bytes)

B-Tree

Data Location in Flash Memory

Fig. 4. Our Memory Management

Item Description
Processor Intel Bulverde PXA270 (520Mhz)

SDRAM/Flash Samsung SDRAM 64MB/Intel strata flash 32MB

Ethernet CS8900A 10 Base T

USB USB Host 1.1 & Slave 1.1

NAND6EA 1GB NAND Flash Memory x 6

Fig. 5. Experimental Setup

: 359.5 KB

Mount
Time

(Sec)

of the stored files

Proposed Method

YAFFS2

Fig. 6. Mount Time vs. Number of the stored files (average size of the stored files:
359.5KB)

226 J. Ryu and C. Park

Mount
Time

(Sec)

Proposed Method

YAFFS2

The used size of the stored files (MB)

Fig. 7. Mount Time vs. The used size of the stored files (average size of the stored
files: 359.5KB)

Mount
Time

(Sec)

of the stored files

Proposed Method

YAFFS2

Fig. 8. Mount Time vs. Number of the stored files (average size of the stored files: 5.9
MB)

Therefore crash recovery time is very short because the updated portions in the
flash memory can be addressed exactly.

To compare the performance of YAFFS2 and our prototype, we used io-
zone benchmark tool. [Fig. 10] showes that our proposed method outperforms
YAFFS2, since our method uses the direct page mapping. When playing a movie
encoded in MPEG4, 640x480, 24bits Per Pixel, 20fps by using a mplayer with-
out a frame drop, our prototype is average 120.03 seconds faster than YAFFS2
as well. To measure the random seek performance in the large-sized multimedia

Fast Initialization and Memory Management Techniques 227

Proposed Method

YAFFS2

The used size of the stored files (MB)

Mount
Time

(Sec)

Fig. 9. Mount Time vs. The used size of the stored files (average size of the stored
files: 5.9 MB)

Proposed Method

YAFFS2

Fig. 10. Performance Test(iozone: transfer size - 4KB)

file, our test used a 321MB sized multimedia file and read 1 byte data at the
the relative positions (0%, 90%, 20%, 70%, 40%, 50%, 60%, 30%, 80%, 10%,
100%) from the start of the file. When completing this test, YAFFS2 takes
0.211 seconds while our propopsed method takes 0.112 seconds when the data
address mapping is unloaded and 0.012 seconds when the data address mapping
is loaded previously. When the data address mapping is unloaded, the overhead
is introduced to load the data address mapping.

228 J. Ryu and C. Park

5 Conclusion

We proposed a method for fast initialization and memory management for the
log-based flash memory file systems. This method introduces the start up area
allocated separately from the existing file system data area. The startup area
is managed by SyncManager and contains log-pages. A log page has the corre-
sponding file in the existing file system (YAFFS2) and the file’s mapping data
in the flash memory. When a system crash occurs, the unsyncronized files are
detected easily by confirming the starup area. So the file system initialization
and crash recovery are fast. The mapping address in a log page is a physical page
address in the flash memory, hence the proposed method outperforms YAFFS2,
which has group address mapping. Our proposed method may not use the sys-
tem memory to maintain the files’ address mappings because when it is needed,
it can be loaded from the startup area.

Acknowledgment

This research was supported by the MIC(Ministry of Information and Com-
munication), Korea, under the ITRC(Information Technology Research Center)
support program supervised by the IITA(Institute of Information Technology
Assessment)(IITA-2006-C1090-0603-0045).

References

1. Aleph One Company, ” Yet Another Flash File System”.
2. D. Woodhouse, Redhat, Inc., ”JFFS: The Journalling Flash File System”.
3. Compact Flash Association, ” CompactFlash 1.4 Specification,” 1998
4. Intel Corporation, ”Understanding the Flash Translation Layer (FTL) Specification”.
5. Keun Soo Yim, Jihong Kim, and Kern Koh, ”A Fast Start-Up Technique for Flash

Memory Based Computing Systems,” Proceedings of the 2005 ACM Symposium on
Applied Computing

6. Chin-Hsien Wu, Tei-Wei Kuo, and Li-Pin Chang, ” Efficient Initialization and Crash
Recovery for Log-based File Systems over Flash Memory,” Proceedings of the 2005
ACM Symposium on Applied Computing

7. M. Rosenblum, and J.K. Ousterhout, ” The Design and Implementation of a Log-
Structured File System,” ACM Transactions on Computer Systems 10(1) (1992)

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 229–240, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Efficient Implementation Method of Arbiter for the
ML-AHB Busmatrix

Soo Yun Hwang1, Hyeong Jun Park1, and Kyoung Son Jhang2

1 Mobile Telecommunication Research Division, ETRI, Taejon, Korea
{syhwang, parkhj}@etri.re.kr

2 Department of Computer Engineering, Chungnam National University, Taejon, Korea
sun@cnu.ac.kr

Abstract. The multi-layer AHB busmatrix (ML-AHB busmatrix) proposed by
ARM is a highly efficient on chip bus that allows parallel access paths between
multiple masters and slaves in a system. In this paper, we present one way to im-
prove the arbiter implementation of the ML-AHB busmatrix. We employ the
masking mechanism which does not impose any restrictions on arbitration
scheme. Therefore, the proposed scheme is applied to the implementation of bus-
matrixes to support the transaction based arbitrations as well as the transfer based
arbitrations. In addition, we could not only enhance the throughput of bus system
but also reduce the total area, clock period and power consumption. Experimental
results show that the throughput of our busmatrix based on the transfer based
fixed priority (round robin) arbitration scheme is increased by 41% (18%) com-
pared with that of the equivalent busmatrix of ARM. Moreover, we could reduce
the total area, clock period and power consumption by 22%, 28% and 19% (12%,
15% and 13%) respectively, compared with the busmatrix employing the transfer
based fixed priority (round robin) arbitration scheme of ARM.

1 Introduction

Today’s deep submicron fabrication technologies enable design engineers to place
billions of transistors on a single chip. These high-integrated circuit technologies
make it possible for designers to integrate a number of function blocks such as proc-
essors, memories, interfaces and custom logic on a single chip. As the number of
intellectual property (IP) blocks increases, the communication among function blocks
becomes the new system performance bottleneck [1, 2, 3]. The simplest way of con-
necting the multiple function blocks on a single chip is to employ the on chip bus.

The on chip buses have been the preferred interconnection in most of the processor-
based systems in the past thirty years. They have also been the basic building blocks of
almost all implemented system on a chip (SoC). The traditional single bus is a good
choice for many systems when the number of connected components is small. How-
ever, in the future SoCs, the complexity of a single component is not likely to signifi-
cantly increase since only relatively simple components can be scaled with technology
[4, 5]. Moreover the existing buses may not be the solution to the bandwidth problems
because only one pair of master and slave blocks can send and receive the data at a

230 S.Y. Hwang, H.J. Park, and K.S. Jhang

particular time. There are several types of high performance on chip bus proposals like
ML-AHB busmatrix from ARM [6, 7], PLB crossbar switch from IBM [8], CONMAX
from Silicore [9], Silicon Backplane from Sonics Inc. [10] and so on to solve the
bandwidth problems. In particular, the ML-AHB busmatrix of ARM has been widely
used in many SoC designs. The reasons are that the AMBA bus has a good architecture
for applying embedded systems with low power [11] and the simplicity of AMBA bus
is one of the motives that attract a number of IP designers [12].

The ML-AHB busmatrix is an interconnection scheme based on the AMBA AHB
protocol, which enables parallel access paths between multiple masters and slaves in a
system. This is achieved by using a more complex interconnection matrix called bus-
matrix and gives the benefit of increased overall bus bandwidth, and more flexible
system structure [7]. Especially, the ML-AHB busmatrix employs the slave-side arbi-
tration. The slave-side arbitration is different from the master-side arbitration based
on the request and grant signals. The slave-side arbitration uses the response signal of
the slave for arbitration, i.e. the master just starts a transaction and waits for the slave
response to proceed to the next transfer. Thus, the unit of arbitration can be a transac-
tion or a transfer.

A design method to improve the ML-AHB busmatrix structure of ARM has been
proposed [13]. With the removal of the input stage and some restrictions on the arbi-
tration scheme, it is possible to decrease the total area, clock period and power con-
sumption of busmatrix of ARM [13]. However though the unit of arbitration can be a
transaction or a transfer in the ML-AHB busmatrix based on the slave-side arbitration,
the approach cannot implement the transfer based arbitration scheme because the
input stages are removed in the approach [13]. In addition, the transaction based arbi-
tration scheme of the approach requires that the granted master has to insert one or
more IDLE transfer after each transaction to avoid starvation of other masters. In this
paper, we propose one way to ameliorate the arbiter implementation of busmatrix of
ARM. Our approach does not take away the input stages and does not impose any
restrictions on arbitration scheme. Therefore, the proposed scheme is applied to the
implementation of busmatrixes to support the transaction based arbitrations as well as
the transfer based arbitrations. Moreover, we could not only increase the throughput
of bus system but also decrease the total area, clock period and power consumption
with masking mechanism employed to implement arbiter. In the next section, we
introduce the arbitration schemes of the ML-AHB busmatrix of ARM. Section 3 de-
scribes an implementation method of our arbiters based on masking mechanism. We
present the experimental results in section 4 and the summary and a note on future
works in section 5.

2 The Arbitration Schemes of the ML-AHB Busmatrix of ARM

The ML-AHB busmatrix employs the slave-side arbitration scheme. In the slave-side
arbitration, the arbiters are located in front of each slave port and the master just starts
a transaction and waits for the slave response to progress to the next transfer. There-
fore, the unit of arbitration can be a transaction or a transfer; whereas, the transfer

 An Efficient Implementation Method of Arbiter for the ML-AHB Busmatrix 231

based arbitration is impossible in the traditional shared on chip buses since they use
the master-side arbitration based on the request and grant signals.

There are two types of arbitration schemes in the ML-AHB busmatrix of ARM:
transfer based fixed priority and round robin arbitration schemes (abbreviated FT and
RT). Fig. 1 shows an example timing diagram of the FT and RT arbitration schemes.

HCLK

HSELS0

HTRANSS0

HADDRS0

HRDATAS0

HREADYOUTS0

HSELS1

HTRANSS1

HADDRS1

HRDATAS1

HREADYOUTS1

HSELM

HTRANSM

HADDRM

HRDATAM

HREADYM

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

NONSEQ SEQ SEQ IDLE

A+4

D(A)

NONSEQ SEQ SEQ SEQ

B B+4 B+8

D(B) D(B+8)

NONSEQ NONSEQ IDLE NONSEQ SEQ SEQ

B+4 B+8

D(A) D(A+8) D(A+C) D(B+4) D(B+8)

T10

M
a

s
te

r
0

T11

IDLE

B+C

D(B+4) D(B+C)

SEQ

D(A+4) D(A+8) D(A+C)

A A+8 A+C

SEQ SEQ SEQ

B A A+4 A+8 A+C

D(B) D(A+4)

IDLE

B+C

D(B+C)

IDLE

IDLE

M
a

s
te

r
1

S
h

a
re

d

S
la

v
e

HSELS0

HTRANSS0

HADDRS0

HRDATAS0

HREADYOUTS0

HSELS1

HTRANSS1

HADDRS1

HRDATAS1

HREADYOUTS1

HSELM

HTRANSM

HADDRM

HRDATAM

HREADYM

NONSEQ SEQ SEQ IDLE

A A+4 A+8

D(A) D(A+4) D(A+8)

NONSEQ SEQ SEQ IDLE

B B+4 B+8

D(B) D(B+4) D(B+8)

NONSEQ NONSEQ NONSEQ NONSEQ NONSEQ NONSEQIDLE IDLE

A B A+4 B+4 A+8 B+8

D(A) D(B) D(A+4) D(B+4) D(A+8) D(B+8)

M
a

s
te

r
0

M
a

s
te

r
1

S
h

a
re

d

S
la

v
e

A. An example timing diagram of the FT arbitration scheme

B. An example timing diagram of the RT arbitration scheme

Fig. 1. An example timing diagram of the FT and RT arbitration schemes

In Fig. 1.A, master1 starts a transaction at T1 and master0 requests a transaction at
T2. At this point in time, master0 preempts the right to use the bus at T3 when mas-
ter1 completes only one transfer since the priority of master0 is higher than that of
master1. Master1 has to wait until master0 completes a transaction. This is controlled
by sending a delay response to master1. Master1 can restart the remained three trans-
fers from T8. In Fig. 1.B, master0 and master1 simultaneously start a transaction at
T1 and the arbiter multiplexes the data transfer based on single transfer in round robin
fashion. The shared slave inserts a wait state on the first transfer from each port (at T3
and T5), but all subsequent transfers are zero wait state. In a word, the FT (RT) arbiter
multiplexes the data transfer based on single transfer at every clock cycle as a fixed
priority (round robin) manner. Fig. 2 shows the arbiter logic of the busmatrix of
ARM. All the Request signals are combined within the arbitration block to work out
which master must be used for the next transfer.

Arbitration

(FT or RT)

D Q
HSELM

HTRANSM

HMASTLOCKM

Req0

Req1

ReqX

NoPort

Master No.

EN

D Q

EN

HREADYM

Fig. 2. The arbiter logic of the busmatrix of ARM

232 S.Y. Hwang, H.J. Park, and K.S. Jhang

The arbitration process of Fig. 2 follows four steps:

1. If HMASTLOCK is asserted, the same master remains selected.
2. If HMASTLOCK is not asserted, all the different requests are examined and the

highest priority master is selected. The arbitration algorithm that is used to
choose among the masters can be a fixed priority or a round robin.

3. If no master is requesting access and the currently selected master is performing
IDLE transfers to the shared slave, i.e., the Sel signal is still asserted, then the
same master is selected.

4. If none of the above conditions is met, the NoPort signal is asserted, that is, none
of the masters must be selected and the address/control signals to the shared
slave must be driven to an inactive state.

In the ML-AHB busmatrix of ARM, the FT algorithm is implemented through a
heavy priority encoder and the RT algorithm is realized by the combinations of a de-
multiplexer, multiple priority encoders and an OR-ing function. We analyzed the
internal parts of the busmatrix of ARM on area overhead. Table 1 shows the analysis
results.

Table 1. The analysis results of the internal parts of the busmatrix

 Input Stage Decoder Output Stage
Area Overhead 38 % 19 % 43 %

With the analysis of the internal parts of the busmatrix of ARM, we observed that
the output stage including arbiter occupies the largest fraction of total area among
three components and the arbiter takes most of the area in output stage. We could
reduce the total area and clock period of the busmatrix of ARM by the enhanced arbi-
ter implementation elaborated on the next section.

3 Implementation Method of Arbiter Based on Masking
Mechanism

We adapt the masking mechanism to improve the arbiter implementation of the ML-
AHB busmatrix of ARM. Our approach does not require any restrictions on arbitration
scheme. Thus, the proposed approach is applied to the implementation of busmatrixes
to support the transaction based arbitrations, i.e. transaction based fixed priority and
round robin arbitrations (abbreviated FR and RR), as well as the transfer based arbitra-
tions, i.e. FT and RT arbitrations.

3.1 The Implementation Method of FT and RT Arbitration Schemes

The sequence of our FT arbitration is as follows:

1. If HMASTLOCK is asserted, the same master remains selected.
2. If HMASTLOCK is not asserted and the Sel and Htrans signals of the currently

selected master are ‘0’ and IDLE respectively, the next master with the highest

 An Efficient Implementation Method of Arbiter for the ML-AHB Busmatrix 233

priority is selected by the FT arbitration algorithm. At this point in time, if no
master is requesting access, the NoPort signal is asserted.

3. If none of the above applies, the FT arbitration algorithm is performed to select
the next master with the highest priority.

Fig. 3 shows the arbitration algorithm of our FT arbiter.

Fig. 3. The arbitration algorithm of our FT arbiter

In the fixed priority policy, each master is assigned a fixed priority, regardless of
the currently selected master. Therefore, the masked vector generated by bitwise
AND-ing operation between mask vector and requested master vector is inserted to
the input parameter of the fixed priority function. And then, the next master with the
highest priority is selected through the fixed priority function and the current master is
updated after 1 clock cycle. The fixed priority arbitration scheme based on single
transfer is performed by the repetition of the arbitration algorithm in Fig. 3. Fig. 4
shows the VHDL code of the fixed priority function at the behavioral level.

1: function Fixed_Priority_f (Masked_Vector: std_logic_vector)
2: return integer is
3: variable Next_Master_No : integer;
4: begin
5: Next_Master_No := 0;
6: for i in Masked_Vector’left downto 0 loop
7: if (Masked_Vector (i) = ‘1’) then
8: Next_Master_No := i;
9: end if;

10: end loop;
11: return Next_Master_No;
12: end;

Fig. 4. VHDL code of the fixed priority function

In Fig. 4, a master with the highest priority is selected through the for-statements in
line 6 and the priority level of LSB in Masked_Vector is the highest. If we modified
the range of the Masked_Vector in line 6 as “0 to Masked_Vector’left”, the priority
level of MSB is the highest.

234 S.Y. Hwang, H.J. Park, and K.S. Jhang

The process of our RT arbitration scheme is as follows:

1. If HMASTLOCK is asserted, the same master remains selected.
2. If HMASTLOCK is not asserted and the currently selected master does not ex-

ist, a new master with the highest priority is initially selected by the FT arbitra-
tion algorithm of Fig. 3. If no master is requesting access, i.e. the currently
requested maters do not exist, the NoPort signal is asserted.

3. If none of the above applies, the RT arbitration algorithm is carried out to
choose the next master. At the moment, if the requested masters do not exist and
Sel signal of the currently selected master is ‘1’, the same master remains se-
lected. Otherwise, the NoPort signal is asserted.

Fig. 5 shows the arbitration algorithm of our RT arbiter that is used in above step 3.
Especially, we reuse the fixed priority function of Fig. 4.

0 0 0 1 0 0 0 0

M7 M6 M5 M4 M3 M2 M1 M0

[Current Master No.: M4]

1 1 1 0 0 0 0 0

M7 M6 M5 M4 M3 M2 M1 M0

0 0 0 0 1 1 1 1

M7 M6 M5 M4 M3 M2 M1 M0

[Up_Mask]

if (Up Masked Vector == 0)

Fixed_Priority_f (Down Masked Vector);

else

Fixed_Priority_f (Up Masked Vector);

1 0 0 0 1 0 0 1 [Requested Master] 1 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0
[Up Masked Vector]

0 0 0 0 1 0 0 1
[Down Masked Vector]

Next Master No.: M7

Bitwise AND-ing Bitwise AND-ing

[Dn_Mask]

Update the Current Master No. after 1 clock cycle

Fig. 5. The arbitration algorithm of our RT arbiter

First of all, we make the up and down mask vectors based on the number of cur-
rently selected master as shown in Fig. 5. And then we generate the up (down)
masked vector that is created through bitwise AND-ing operation between up (down)
mask vector and requested master vector. After the generation of up and down
masked vectors, we examine each masked vector if they are zero or not. If the up
masked vector is zero (is not zero), the down (up) masked vector is inserted to the
input parameter of the fixed priority function. A master for the next transfer is chosen
by the fixed priority function and the current master is updated after 1 clock cycle.
Through the repetition of aforementioned process, we could establish the single trans-
fer based round robin arbitration scheme.

3.2 The Implementation Method of FR and RR Arbitration Schemes

The FR (RR) arbiter switches the data transfer based on burst transaction as a fixed
priority (round robin) fashion; whereas, the FT (RT) arbiter multiplexes the data
transfer based on single transfer as a fixed priority (round robin) manner. Therefore,
the basic arbitration algorithm of the FR (RR) arbiter is similar to that of the FT (RT)
arbiter, except the unit of data multiplexing.

 An Efficient Implementation Method of Arbiter for the ML-AHB Busmatrix 235

The arbitration process of our FR arbiter follows three steps:

1. Step1 is equal to step1 of FT arbiter.
2. Step2 is equal to step2 of FT arbiter.
3. If none of the above applies, the same master remains selected because the unit

of data multiplexing of the FR arbiter is a burst transaction.

The FR arbitration scheme is achieved by the iteration of above process. Fig. 6 il-
lustrates an example timing diagram of our FR arbitration scheme. The transaction
type of Fig. 6 is similar to that of Fig. 1.A.

HCLK

HSELS0

HTRANSS0

HADDRS0

HRDATAS0

HREADYOUTS0

HSELS1

HTRANSS1

HADDRS1

HRDATAS1

HREADYOUTS1

HSELM

HTRANSM

HADDRM

HRDATAM

HREADYM

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

NONSEQ SEQ SEQ

A+4

D(A)

NONSEQ SEQ SEQ

B B+4

D(B)

NONSEQ NONSEQ SEQ SEQ

A+4 A+8

D(B+4) D(B+C) D(A+4) D(A+8)

T10 T11

IDLE

SEQ

D(A+4) D(A+8) D(A+C)

A A+8 A+C

SEQ SEQ IDLE

B B+4 B+8 B+C

D(B) D(B+8)

IDLE

A+C

D(A+C)

IDLE

IDLE

SEQ

B+8 B+C

D(B+4) D(B+8) D(B+C)

SEQ SEQ

A

D(A)

IDLE

M
a
s
te

r
0

M
a
s
te

r
1

S
h
a
re

d

S
la

v
e

Fig. 6. An example timing diagram of our FR arbitration scheme

In Fig. 6, master1 starts a transaction at T1 and master0 requests a transaction at
T2. Master0 does not preempt the right to use the bus at T3 and waits until master1
completes a transaction since although the priority of master0 is higher than that of
master1, the unit of arbitration is a burst transaction. Hence, master0 can start a trans-
action from T7.

The sequence of our RR arbitration is as follows:

1. If HMASTLOCK is asserted, the same master remains selected.
2. If HMASTLOCK is not asserted and the Sel and Htrans signals of the currently

selected master are ‘0’ and IDLE respectively, a master for the next transaction
is selected by the RT arbitration algorithm of Fig. 5. However, the down mask
vector of Fig. 5 is modified as shown in Fig. 7 because if the currently selected
master just wants a new transaction after the completion of the previous transac-
tion, the master becomes the lowest priority master to avoid starvation of other
masters. At this point in time, if no master is requesting access, the NoPort sig-
nal is asserted.

3. If none of the above conditions is met, the same master remains selected since
the unit of data multiplexing of the RR arbiter is a burst transaction.

Fig. 7. The changed down mask vector for the RR arbiter

236 S.Y. Hwang, H.J. Park, and K.S. Jhang

With the repetition of above process, we could accomplish the RR arbitration
scheme. Fig. 8 shows an example timing diagram of our RR arbitration scheme. The
transaction type of Fig. 8 is also similar to that of Fig. 1.B.

Fig. 8. An example timing diagram of our RR arbitration scheme

In Fig. 8, master0 and master1 concurrently initiate a transaction at T1 and the ar-
biter multiplexes the data transfer based on burst transaction in round robin fashion.
In this case, the burst type is an incrementing burst of unspecified length with 3 trans-
fer length. The shared slave inserts a wait state on the first transfer from each port (at
T3 and T8), but all subsequent transfers are zero wait state.

4 Experimental Results

4.1 Implementation Results

The proposed scheme is applied to the implementation of busmatrixes to support the
FT, RT, FR and RR arbitration schemes. Our busmatrixes were implemented with
synthesizable RTL VHDL targeting XILINX FPGA (XC2V3000-4ff1152) and we
used the XILINX design tool (ISE 7.1i) to measure the total area and clock period.

The ML-AHB busmatrix of ARM provides only two arbitration schemes (FT and
RT). Therefore, we compared the busmatrixes of ARM (FT and RT) with our busma-
trixes (FT and RT) in total area and clock period to show the effectiveness of the
proposed scheme. Table 2 shows the comparison results.

Table 2. Comparisons of our busmatrixes with those of ARM in total area and clock period

Busmatrix of
ARM

Our Busmatrix
Busmatrix of

ARM
Our Busmatrix

MxS
FT

based
RT

based
FT

based
RT

based

MxS
FT

based
RT

based
FT

based
RT

based

2x2 248 248 233 233 2x2 6.77 6.38 5.74 6.35
4x4 1045 1046 675 740 4x4 9.16 10.16 6.57 9.39
6x6 2474 2505 1965 2233 6x6 11.18 12.39 7.60 9.91

Total
Area
(# of

Slices) 8x8 3495 3653 2826 3363

Clock
Period
(ns)

8x8 11.56 13.76 7.80 10.65

 An Efficient Implementation Method of Arbiter for the ML-AHB Busmatrix 237

In Table 2, M x S indicates the number of masters x the number of slaves. The total
area and clock period of our FT (RT) based busmatrix are decreased by 22% and 28%
(12% and 15%) respectively, compared with those of the FT (RT) based busmatrix of
ARM. Table 3 additionally shows the synthesis results of our FR and RR based bus-
matrixes.

Table 3. Synthesis results of our FR and RR based busmatrixes

Total Area (# of Slices) Clock Period (ns)
MxS FR

based
RR

based
FR

based
RR

based

2x2 241 242 6.19 6.19
4x4 708 715 8.37 9.07
6x6 2044 2149 9.82 10.89
8x8 2975 3100 9.48 11.00

Note that the total area and clock period of our FR (RR) based busmatrix are re-
duced by 18% and 12% (17% and 13%) respectively, compared with those of the FT
(RT) based busmatrix of ARM.

4.2 Power Estimation and Performance Analysis

We used the XPower of XILINX to estimate the power consumption and the Model-
sim II simulator to measure the throughput of the ML-AHB bus system. Fig. 9 shows
our ML-AHB bus system for simulations.

Fig. 9. The ML-AHB bus system for simulations

The ML-AHB busmatrix has a 32-bit address bus, a 32-bit write data bus, a 32-bit
read data bus, a 15-bit control bus and a 3-bit response bus. The simulation environ-
ment consists of two parts: (1) an implemented part and (2) a virtual part. The imple-
mented part corresponds to the ML-AHB busmatrixes with the FT and RT arbitration
schemes and consists of two-masters and two-slaves, four-masters and four-slaves,
six-masters and six-slaves and eight-masters and eight-slaves. The virtual part is com-
posed of AHB masters and AHB slaves. AHB master generates the bus transactions

238 S.Y. Hwang, H.J. Park, and K.S. Jhang

and the bus transactions of the masters have the same length as 8-beat wrapping burst
type. AHB slaves response to the transfers of the AHB masters and include a SRAM.
Both AHB masters and AHB slaves are fully compatible with AMBA AHB protocol
[6] and modeled with VHDL at the behavioral level. We also constructed the protocol
checker and the performance monitor modules with VHDL and foreign language
interface to check the protocol violation.

Before performing the simulation, the workloads should be determined since work-
loads affect simulation results. However, it is difficult to find appropriate workloads
of real applications because real workloads can be obtained when all applications with
real input data are modeled exactly. Instead, the workloads for simulations are simply
obtained by synthetic workload generation with following parameters:

• The clock period of each ML-AHB bus system, where the ML-AHB bus system
consists of the ML-AHB busmatrix, AHB masters and AHB slaves.

• The distribution of bus transactions, which indicates how many portion of total
bus transactions each master is responsible for.

• The distribution of accessed slaves by each master.

Through the simple synthetic workload generation, we were able to estimate the
power consumption and measure the throughput of the ML-AHB busmatrixes with
each arbitration scheme. Table 4 and Table 5 show the simulation parameters.

Table 4. Simulation parameters: distribution of bus transactions

MxS
master

0
master

1
master

2
master

3
master

4
master

5
master

6
master

7

Total
transac-
tion #

2x2 1/2 1/2 0 0 0 0 0 0 200
4x4 1/4 1/4 1/4 1/4 0 0 0 0 400
6x6 1/6 1/6 1/6 1/6 1/6 1/6 0 0 600
8x8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 800

Table 5. Simulation parameters: distribution of accessed slaves by each master

MxS master0 master1 master2 master3 master4 master5 master6 master7
2x2 slave0,1 slave0,1 0 0 0 0 0 0
4x4 slave0~3 slave0~3 slave0~3 slave0~3 0 0 0 0
6x6 slave0~5 slave0~5 slave0~5 slave0~5 slave0~5 slave0~5 0 0
8x8 slave0~7 slave0~7 slave0~7 slave0~7 slave0~7 slave0~7 slave0~7 slave0~7

• The clock period of each bus system is the estimated minimum clock period of
the ML-AHB busmatrix. The estimated minimum clock periods are illustrated in
Table 2.

• For the distribution of bus transaction, four cases are made as shown in Table 4.
Master0 and master1 are enabled for 2x2, and master0, master1, master2 and
master3 are enabled for 4x4, and so on.

• Table 5 shows the distribution of accessed slaves by each master. The target ad-
dresses are generated based on uniform distribution random number function.
Therefore, each master communicates with the slaves with the same probability.

 An Efficient Implementation Method of Arbiter for the ML-AHB Busmatrix 239

Table 6. Comparisons of our busmatrixes with those of ARM in power consumption

Busmatrix of ARM Our Busmatrix
 MxS

FT based RT based FT based RT based
2x2 590.98 595.96 458.34 502.36
4x4 608.87 610.87 481.23 522.34
6x6 630.18 632.76 532.08 568.09

Power
 Consumption

(mW)
8x8 674.32 678.49 558.36 588.18

After the achievement of simulations based on aforementioned simulation envi-

ronments, we could estimate the power consumption of the ML-AHB busmatrixes
through the XPower of XILINX. Table 6 shows the experimental results.

As a result, the power consumption of our FT (RT) based busmatrix is decreased
by 19% (13%), compared with that of the FT (RT) based busmatrix of ARM.

We also could measure the throughput of each bus system through the simulations.
Fig. 10 and Fig. 11 show the experimental results.

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

2x2 4x4 6x6 8x8

#of Mastersx#of Slaves

Throughput

(Mbit/us)

OurBusmatrix(FTbased)

Busmatrixof ARM(FTbased)

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

2x2 4x4 6x6 8x8

#of Mastersx#of Slaves

Throughput

(Mbit/us)

OurBusmatrix(RTbased)

Busmatrixof ARM(RTbased)

 Fig. 10. Comparison of FT Arbitrations Fig. 11. Comparison of RT Arbitrations

Here, throughput is defined by

Throughput = Ntransactions * Ntransfers * Nbit / (Nclock_cycle * Tclock_period)

Where Ntransactions is the total number of bus transactions, Ntransfers the number of trans-
fers per transaction, Nbit the data bit width, Nclock_cycle the number of clock cycle dur-
ing the data transmission and Tclock_period the estimated minimum clock period. With
the simulation results, we observed that the throughput of our busmatrix based on FT
(RT) is increased by 41% (18%) compared with that of the FT (RT) based busmatrix
of ARM. The reason is that the estimated minimum clock period of our busmatrix is
smaller than that of the busmatrix of ARM. Also, the throughput of the fixed priority
scheme is higher than that of the round robin scheme since though the number of
clock cycle of the round robin scheme is smaller than that of the fixed priority
scheme, the estimated minimum clock period of the round robin scheme is remarka-
bly larger than that of the fixed priority scheme.

5 Summary and Future works

In this paper, we have presented one way to improve the arbiter implementation of the
busmatrix of ARM. By virtue of the masking mechanism employed to design the

240 S.Y. Hwang, H.J. Park, and K.S. Jhang

arbiter of the busmatrix, we could not only enhance the throughput of bus system but
also reduce the total area, clock period and power consumption. In addition, we ap-
plied our proposed mechanism to the implementation of busmatrixes with transaction
based arbitrations as well as with transfer based arbitrations since our approach does
not require any restrictions on arbitration scheme.

Experimental results show that the throughput of our busmatrix based on the FT
(RT) is increased by 41% (18%) compared with that of the FT (RT) based busmatrix
of ARM. Moreover, we could reduce the total area, clock period and power consump-
tion by 22%, 28% and 19% (12%, 15% and 13%) respectively, compared with the
busmatrix employing the FT (RT) arbitration scheme of ARM.

Currently, we are adapting our busmatrixes to the multimedia applications such as
a video phone, MPEG-4 and H.264 codec. In addition, we are looking for the applica-
bility of the proposed scheme to the AMBA 3.0 AXI.

References

1. Kyoung-Sun Jhang, Kang Yi, and Soo Yun Hwang : A Two-level On-Chip Bus System
Based on Multiplexers. LNCS-3189, 2004, 09, SPRINGER-VERLAG, pp.363-372.

2. Jian Liang, Swaminathan, S., Tessier, R. : ASOC: a scalable, single chip communications
architecture. Parallel Architectures and Compilation Techniques, 15-19 Oct. 2000,
Page(s):37-46.

3. D. Langen, A. Brinkmann, and U. Ruckert : High Level Estimation of the Area and Power
Consumption of On-Chip Interconnects. Proc. of the 13th Annual IEEE International
ASIC/SOC Conference, Sep. 2000. pp. 297-301.

4. D. Sylvester and K. Keutzer : Impact of small process geometries on microarchitectures in
systems on a chip. Proceedings of the IEEE, Vol.89, No.4, Apr.2001, pp.467-489.

5. P. Wielage and K. Goossens : Networks on silicon: blessing or nightmare?. Symp. Digital
system design, Dortmund, Germany, 4-6 Sep.2002, pp.196-200.

6. ARM, AMBA Specification Rev 2.0, ARM Limited, 1999.
7. AMBA AHB BusMatrix Specification. Document Number ARM DUI 0092C.
8. IBM, 32-bit Processor local bus architecture specification, Version 2.9, IBM Corporation,

2001.
9. Silicore, Wishbone system-on-chip (SoC) interconnection architecture for portable IP

cores, Revision: B.1, Silicore corporation, 2001.
10. Sonics, Sonics uNetworks technical overview, Sonics inc., June 2000.
11. D, Flynn : AMBA: Enabling Reusable On-chip Designs. IEEE Micro, vol. 17, issue 4,

July-Aug. 1997, pp. 20-27.
12. Nam-Joon Kim and Hyuk-Jae Lee : Design of AMBATM Wrappers for Multiple-Clock

Operations. ICCCAS 2004. International Conference on, June 2004, Volume: 2, pp.1438-
1442.

13. Soo Yun Hwang et al. : An Ameliorated Design Method of ML-AHB BusMatrix. ETRI
Journal, Vol.28, no.3, June 2006, pp.397-400.

Modeling and Implementation of an

Output-Queuing Router for Networks-on-Chips

Haytham Elmiligi1, M. Watheq El-Kharashi2, and Fayez Gebali1

1 Department of Electrical and Computer Engineering
University of Victoria, P.O. Box 3055 STN CSC

BC, Canada V8W 3P6
2 Department of Computer and Systems Engineering

Ain Shams University, Cairo, Egypt
{haytham,watheq,fayez}@ece.uvic.ca

Abstract. Routers are pivotal modules in any networks-on-chip (NoC)-
based design. In order to achieve an efficient router design, the size of the
queue must be optimally chosen. The choice of queue size affects packet
loss probability and impacts the silicon area of the overall NoC-based
design. For these reasons, a modeling process is needed to obtain an
early estimation of the optimum queue size that matches packet arrival
rate, number of traffic sources, and the permissable loss probability. In
this paper, we use Markov chain analysis to model an M/D/1/B queue
for an NoC output-queuing router. We explain how to optimally chose
the queue size using pre-defined design parameters that match differ-
ent target applications. Our model is validated with a prototype router
implementation on FPGA.

1 Introduction

Queuing analysis is a vital process in designing NoC-based routers [1]. The queue
size impacts not only the router efficiency, but also the silicon area of a design [2].
A mismatch between the queue size and packet arrival rate could lead to a
poor router performance or excessive use of the silicon area [3]. Poor router
performance happens when the incoming traffic burstiness ratio exceeds the
queue capacity, whereas excessive use of the silicon area takes place if the queue
size is over estimated. For these reasons, the choice of the optimum queue size
is a critical aspect in any NoC design.

In this paper, we address the queue size problem by proposing a queue model
using Markov chain analysis. Our model can be used to acquire the optimum
queue size based on three design parameters: number of ports, packet arrival
rate, and the required packet loss probability. The advantage of our model is
that it helps the designer get the queue size early in the design process and the
corresponding packet loss probability on higher levels of abstraction. As a proof
of concept, an implementation of an output-queuing router based on our model
is done on an FPGA chip to evaluate its performance.

The rest of this paper is organized as follows. Section 2 presents related work in
NoC-based router design and modeling. Section 3 describes the output-queuing

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 241–248, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

242 H. Elmiligi, M.W. El-Kharashi, and F. Gebali

router architecture. Our Markovian M/D/1/B model is presented in Section 4.
Section 5 discusses the experimental results. Router implementation is presented
in Section 6. Finally in Section 7, we draw some conclusions and future works.

2 Related Work

Recently, NoC router design, modeling, and implementation have been addressed
from different perspectives [4, 5]. Some researchers addressed the trade-off be-
tween guaranteed and best-effort services in the router design like [6] and [7].
Another perspective is the analysis of power consumption in the router. Ye et
al. [8] analyzed the switch fabric power consumption in NoC routers. FPGA-
based implementations have been the focus of many researchers [9,10]. However,
only few researchers focused on the router modeling problem [11, 12]. These
models were either based on results from experiments - so they are case-based
models - or targeted only fixed network topologies. The model we present here
addresses this problem.

3 Output-Queuing Router Architecture

Fig. 1 shows the main blocks of an n-port output-queuing router. Packets arrive
at the input of the router asynchronously with a packet ready signal indicator
(PR). The packet arrival rate depends on the target application [13, 14]. The
switch fabric controller reads the packet header, then directs the packet to the
corresponding output queue. The configuration commands are generated based

..

. MUX
Tx_1

PS

B1
B1

B1

1

2

n

..

. MUX
Tx_2

PS

B1
B1

B1

1

2

n

..

. MUX
Tx_n

PS

B1
B1

B1

1

2

n

..

.

 IB
Rx_1

PR

1

2

n

 IB
Rx_2

PR

1

2

n

 IB
Rx_n

PR

1

2

n

Fig. 1. Output-queuing router architecture details

Modeling and Implementation of an Output-Queuing Router for NoCs 243

on routing tables in the controller. There are n queues for each output port serv-
ing as FIFO buffers. Finally, a round robin scheduler algorithm serves backlogged
queues one after another in a fixed order in the output. Packets are sent with
a Packet Sent (PS) signal indicator to the next hop. In output-queuing routers,
packet loss may occur because of destination statistics. In other words, bursty
behavior - which means two or more packets arrive in adjacent clock cycles from
one source, targeting the same output port - could take place and cause packet
loss. Based on the distribution of the burstiness of the source, we could chose a
proper queue size to reduce the packet loss probability.

4 M/D/1/B Queue Modeling

In this section, we derive an M/D/1/B model for an output queue, which
matches routers that have deterministic service rate. The model is driven for
a size B queue as a function of packet arrival rate, departure rate, and packet
loss probability.

 size = B

λout = 1/n

Output queue

From switch fabric To output port

 parr = a/n
 1 2 3 B

Fig. 2. The arrival probability and departure rate for one output queue of an output-
queuing router

Fig. 2 shows one output queue of size B at an output port but associated
with one input port. For a fixed packet length, the probability of packet arrival
is pin = a and the probability of choosing a port is pp, which - in our model
- equals the packet departure rate λout. The departure rate in our model is
based on round-robin schedular and equals a deterministic value of 1/n. The
probability that a packet arrives and requests an output port can be expressed
as:

parr = pin pp = a

(
1
n

)
=

a

n
(1)

Using Markov chain analysis to model our M/D/1/B queue, where changes in
the queue size occur by at most one per time step, and assuming b = 1 − parr

and d = 1 − λout, the state transition diagram for the queue is shown in
Fig. 3, where:

α = pin pp d =
a

n

(
1 − 1

n

)
=

a(n − 1)
n2 (2)

β = (1 − pinpp)λout =
(n − a)

n2 (3)

f = pin pp λout + b d =
2a

n2 − 1 + a

n
+ 1 (4)

244 H. Elmiligi, M.W. El-Kharashi, and F. Gebali

 0 1 2 B

1-α

 α

 β β β β

α α 1-β

f f

 α
. . . .

Fig. 3. State transition diagram for M/D/1/B queue

Since the packet arrival rate is independent from the packet departure rate, and
based on the assumption that packets can be served at the same time step with
a packet departure rate of λout, the transition matrix can be written as:

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 β 0 · · · 0 0 0
α f β · · · 0 0 0
0 α f · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · f β 0
0 0 0 · · · α f β
0 0 0 · · · 0 α βB

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where α0 = 1 − α, and βB = 1 − β.
Using the transition matrix M, we can drive an expression for the equilibrium

distribution vector (s):

s =
[
s0 s1 s2 · · · sB

]t , where
B∑

i=0

si = 1 (6)

s0 is the probability that the queue is empty and sB is the probability that it is
full. The difference equations for the state probability vector are given by:

αs0 − βs1 = 0 (7)
αs0 − gs1 + βs2 = 0 (8)

αsi−1 − gsi + βsi+1 = 0, 0 < i < B (9)

where g = α + β and si is the component of the distribution vector corresponding
to state i. The solution to the above equations can be written in its general form
as:

si =
(

α

β

)i

s0, 0 ≤ i ≤ B (10)

The magnitude of the distribution vector components can be dictated by a dis-
tribution index expression [1]. From Equations 2, 3, and 10, we can write an
expression for the distribution index for the M/D/1/B queue as:

ρ =
α

β
=

a(n − 1)
n − a

(11)

Modeling and Implementation of an Output-Queuing Router for NoCs 245

From Equation 10, we can write a complete solution as:

B∑

i=0

si = s0

B∑

i=0

ρi = 1 (12)

From Equations 10 and 12, we obtain an expression for the probability that the
queue is empty (s0):

s0 =
1 − ρ

1 − ρB+1 (13)

The output traffic from the M/D/1/B queue is given by:

N0 = pinppλouts0 +
B∑

i=1

λoutsi = λout

(
1 − b(1 − ρ)

1 − ρB+1

)
(14)

and the input traffic to the queue is given by:

Ni = pin pp = a
1
n

=
a

n
(15)

The efficiency of the M/D/1/B queue is

η =
No

Ni
=

1
a

(
1 − b (1 − ρ)

1 − ρB+1

)
(16)

and the loss probability is given by:

L = 1 − η = 1 − 1
a

(
1 − b (1 − ρ)

1 − ρB+1

)
(17)

and the queue size B can be calculated from the equation:

B =
1

log(ρ)

[
log

(
1 − b(1 − ρ)

a(L − 1) + 1

)]
− 1 (18)

From Equation 17, we can calculate the loss probability when packets arrive
with inter-arrival rate probability of a and use a service rate of 1/n. Equation
18 gives an indication of the optimum queue size when certain value of the loss
probability is required in the design process. In other words, Equation 17 can be
used in the performance evaluation process while Equation 18 is derived to be
used in the design process.

5 Simulation Results

We used Equations 17 and 18 to study the dependency relation between the
loss probability, packet inter-arrival rate, number of ports, and buffer size. Our

246 H. Elmiligi, M.W. El-Kharashi, and F. Gebali

0 0.2 0.4 0.6 0.8 1

10
1

10
2

10
3

Packet arrival rate

Q
u
e
u
e

s
iz

e

n = 4

n = 5

n = 8

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

Packet arrival rate

Q
u
e
u
e

s
iz

e

L = 10 -
3

L = 10
-
6

L =10
-

9

L = 10
-
12

0 0.2 0.4 0.6 0.8 1
10

-15

10
-10

10
-5

10
0

Packet arrival rate

L
o
s
s

p
ro

b
a
b
il
it
y

n = 4

n = 5

n = 8

0 0.2 0.4 0.6 0.8 1

10
-15

10
-10

10
-5

10
0

Packet arrival rate

L
o
s
s

p
ro

b
a
b
il
it
y

B = n

B = 2n

B = 3n

B = 4n

(a) (b)

(c) (d)

Fig. 4. Simulation results: (a) Loss probability versus packet arrival rate for different
queue sizes when number of ports = 8. (b) Loss probability versus packet arrival rate
for different number of ports when queue size = 8. (c) Queue size versus packet arrival
rate for different loss probabilities for number of ports = 8. (d) Queue size versus packet
arrival rate for different number of ports when loss probability = 10−6.

choices for the values of the number of ports are in the range from 4 to 8 to
match the requirements of various NoC topologies [15].

The experimental results, shown in Fig. 4, show that the change of the queue
size impacts the values of the loss probability significantly. For example, for n =
8 in Fig. 4.a, a packet arrival rate of 0.5 has a loss probability of 10−3 when using
queue size B = n, whereas it improves to 10−11 when using queue size B = 4n.
However, this difference decreases gradually as the packet arrival rate reaches
its maximum value. For a fixed queue size B = 8, changing the number of ports
from 5 to 8 does not have a major impact on the corresponding loss probability
as can be seen in Fig. 4.b. On the other hand, Fig. 4.c and Fig. 4.d give an early
estimation for the optimum queue size when a specific loss probability order of
magnitude is required. Fig. 4.c shows the change of the queue size versus the
packet arrival rate for an 8-port router, when a pre-designed loss probability
values of 10−3, 10−6, 10−9, and 10−12 are used. This curve helps the design-
ers choose appropriate queue size according to various application requirements.
For example, for a packet arrival rate of 0.7, a queue size of 32 packets is required

Modeling and Implementation of an Output-Queuing Router for NoCs 247

to achieve a loss probability of 10−6, whereas it has to be changed to a 67 if a
loss probability of 10−12 is required.

6 FPGA Prototype

We used our model to design and implement an output-queuing router on FPGA.
The main three design parameters that must be pre-defined to know the opti-
mum queue size are: the estimated packet arrival rate, the target loss proba-
bility, and the required number of ports. As a case study we assumed a packet
arrival rate of 0.2, 10−6 loss probability, and an 8-port router. From the previ-
ous curves, an 8-packet queue size is the optimum choice based on these design
parameters. Eight traffic sources/sinks VHDL modules have been designed to
implement a star network topology. The traffic sources are designed to generate
fixed packets of 16-bit length, while the traffic sinks are used to monitor and
analyze the network traffic, and output the needed parameters to calculate the
efficiency. We implemented our design on a Xilinx FPGA Vertix II Pro family
100K chip.

The synthesis report shows that equivalent gate costs for the input buffers and
switch fabric, queues and control unit, and output multiplexers are 4,787, 38,595,
and 1,356 equivalent gates, respectively. The queues and control unit occupy the
main area of the router - 86.2% - while the switch fabric occupies only 10.7%, and
the output multiplexer unit - which is implemented using LUTs - occupies only
3.1%. The implementation shows the significant effect of the queue size design
on the overall router silicon area. Also, the maximum propagation delay between
internal gates is found to be 4.778 ns. This value limits the maximum frequency,
which can be used in our router as a master clock frequency, to 209.293 MHz.
We ran these experiments until 20,107 packets have been received. Our choice of
the queue size based on our model results in an 99.12% average efficiency, which
is almost the same efficiency obtained theoretically (99.45%) using Equation 16
and this validates our model.

7 Conclusion and Future Work

In this paper, we used Markov chain analysis to drive a queue model for NoC
output-queuing router. The proposed model explains the impact of the packet
arrival rate, number of ports, and queue size on the router performance. The
experimental results show that for low packet arrival rates, increasing the queue
size relative to the number of ports improves the router efficiency significantly.
However, this improvement is reduced with the increase in the packet arrival
rate. We validated our model by implementing an FPGA prototype for output-
queuing router. We are planning to apply this design methodology to various
real-time applications and address the network congestion problem by modifying
the current communication protocol.

248 H. Elmiligi, M.W. El-Kharashi, and F. Gebali

References

1. Gebali, F.: Computer Communications Networks: Analysis and Design. 3rd edn.
Northstar Digital Design, inc., Victoria, B.C., Canada (2005)

2. Ogras, U.Y., Hu, J., Marculescu, R.: Key research problems in NoC design: A holis-
tic perspective. In: Proceedings of the 3rd IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Synthesis (CODES+ISSS’05),
Jersey City, NJ (2005) 69–74

3. Hu, J., Marculescu, R.: Application-specific buffer space allocation for networks-
on-chip router design. In: Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design (ICCAD’04), San Jose, CA (2004) 354–361

4. Kim, J., Park, D., Theocharides, T., Vijaykrishnan, N., Das, C.R.: A low latency
router supporting adaptivity for on-chip interconnects. In: Proceedings of the 42nd
Annual Conference on Design automation (DAC’05), Anaheim, CA (2005) 559–564

5. Mullins, R., West, A., Moore, S.: Low-latency virtual-channel routers for on-chip
networks. In: Proceedings of the 31st Annual International Symposium on Com-
puter Architecture (ISCA’04), Munich, Germany (2004) 188–197

6. Rijpkema, E., Goossens, K., Rădulescu, A., Dielissen, J., Meerbergen, J., Wielage,
P., Waterlander, E.: Trade offs in the design of a router with both guaranteed
and best-effort services for networks on chip. IEE Proceedings of Computers and
Digital Techniques 150(5) (2003) 294–302

7. Rijpkema, E., Goossens, K., Wielage, P.: A router architecture for networks on
silicon (2006) Proceedings of Progress 2001, 2nd Workshop on Embedded Systems,
Veldhoven, the Netherlands, October 2001.

8. Ye, T.T., Micheli, G.D., Benini, L.: Analysis of power consumption on switch
fabrics in network routers. In: Proceedings of the 39th Conference on Design
automation (DAC’02), New Orleans, LA (2002) 524–529

9. Ehliar, A., Liu, D.: A network on chip based gigabit ethernet router imple-
mented on an FPGA (2006) Proceedings of the Swedish System-on-Chip Con-
ference (SSoCC’06), Kolmrden, Sweden, May 4-5, 2006.

10. Zeferino, C., Kreutz, M., Susin, A.: RASoC: A router soft-core for networks-on-
chip. In: Proceedings of Design, Automation and Test in Europe Conference and
Exhibition (DATE’04), Paris, France (2004) 198–203

11. Lee, I.G., Lee, J., Park, S.: Adaptive routing scheme for NoC communication
architecture. In: Proceedings of the 7th International Conference on Advanced
Communication Technology (ICACT’05), Park, Korea (2005) 1180–1184

12. Andreasson, D., Kumar, S.: Improving BE traffic QoS using GT slack in NoC
systems. In: Proceedings of the 23rd NORCHIP Conference, Oulu, Finland (2005)
44–47

13. Tedesco, L., Mello, A., Giacomet, L., Calazans, N., Moraes, F.: Application driven
traffic modeling for NoCs. In: Proceedings of the 19th Annual Symposium on In-
tegrated Circuits and Systems Design (SBCCI’06), Ouro Preto, MG, Brazil (2006)
62–67

14. Lahiri, K., Raghunathan, A., Dey, S.: Evaluation of the traffic-performance char-
acteristics of system-on-chip communication architectures. In: Proceedings of
the 14th International Conference on VLSI Design (VLSID’01), Bangalore, India
(2001) 29–35

15. Bjerregaard, T., Mahadevan, K.: A survey of research and practices of network-
on-chip. ACM Computing Surveys 38 (2006) 1–51

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 249–260, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Handling Control Data Flow Graphs for a Tightly
Coupled Reconfigurable Accelerator

Hamid Noori1, Farhad Mehdipour1, Morteza Saheb Zamani2, Koji Inoue1,
and Kazuaki Murakami1

1 Department of Informatics,
Graduate School of Information Science and Electrical Engineering,

Kyushu University, Fukuoka, Japan
{noori,farhad}@c.csce.kysuhu-u.ac.jp,

{inoue,murakami}@i.kyushu-u.ac.jp
2 Department of IT and Computer Engineering, Amirkabir University of Technology,

Tehran, Iran
szamani@aut.ac.ir

Abstract. In an embedded system including a base processor integrated with a
tightly coupled accelerator, extracting frequently executed portions of the code
(hot portion) and executing their corresponding data flow graph (DFG) on the
accelerator brings about more speedup. In this paper, we intend to present our
motivations for handling control instructions in DFGs and extending them to
Control DFGs (CDFGs). In addition, basic requirements for an accelerator with
conditional execution support are proposed. Moreover, some algorithms are
presented for temporal partitioning of CDFGs considering the target accelerator
architectural specifications. To show the effectiveness of the proposed ideas, we
applied them to the accelerator of an extensible processor called AMBER.
Experimental results represent the effectiveness of covering control instructions
and using CDFGs versus DFGs.

1 Introduction

Using an accelerator for accelerating the execution of frequently executed portions of
applications is an effective technique to enhance the performance of a processor in
embedded systems. In this technique, data flow graphs (DFGs) extracted from critical
portions of an application are executed on an accelerator. Similar technique has been
presented in [3, 4, 9, 13, 15, 22, 2, 5, 17, 21]. The accelerator can be implemented as a
reconfigurable hardware with fine or coarse granularity or as a custom hardware (such
as Application Specific Instruction-set Processors or extensible processors) [7]. The
integration of accelerator and the processor can be tightly or loosely coupled [7, 13].
For loosely-coupled systems, there is an overhead for transferring data between the
base processor and the accelerator. When an accelerator is tightly coupled [9, 2, 5, 17,
21], data is read and written directly to and from the processor’s register file, making
the accelerator an additional functional unit in the processor pipeline. This makes the
control logic simple, as almost no overhead is required in transferring data to the

250 H. Noori et al.

programmable hardware unit, however, it increases the read/write ports of the register
file. Our main focus in this paper is on a tightly coupled reconfigurable accelerator.

DFG extraction can be done at high level or binary level of the source code. In our
analysis, we focus on the latter one which means that the DFG nodes are the primitive
instructions of the base processor. The DFG containing control instructions (e.g. branch
instruction) are called Control Dataflow Graphs (CDFGs). Handling branches
(conditional execution) is a challenge in CDFG acceleration, because, due to the result
of a branch instruction, the sequence of execution changes. We consider two types of
CDFGs:

1. CDFGs which contain at most one branch instruction as its last instruction. In this
case the accelerator does not need to support conditional execution.

2. CDFGs containing more than one branch instructions. Accelerators used for
executing CDFGs should have conditional execution support.

As mentioned before, accelerators are used for executing hot portions of
applications. Therefore, while generating CDFG we only follow hot directions of
branches. For a control instruction, the only taken, or not-taken might be hot which
means that they have a considerable execution frequency (more than a specified
threshold). In some other cases, both directions can be hot. We propose adding only hot
directions of branches into the CDFG without being limited to selecting just one or all
of the directions. This brings about more instruction level parallelism (ILP) and can
hide branch misprediction penalty.

In this work, we intend to answer these two following questions.

a) Does acceleration based on CDFG vs. DFG obtain higher performance?
b) How can the conditional execution be supported on an accelerator?

To answer the first question, we investigate the effect of extending DFGs and
covering control instructions on the speedup and present some important motivations
for extending DFGs over basic blocks (using CDFGs instead of DFGs). Moreover, as
an answer to the second question, we introduce basic requirements for an accelerator
with conditional execution support.

Due to the limitations of hardware resources of the accelerator (e.g. the number of
inputs, outputs, logics, connections and etc) and different size of extracted CDFGs
from various applications, in most cases the whole CDFG can not be mapped on the
accelerator. As another contribution in this paper, we present CDFG temporal
partitioning algorithms to partition large CDFGs to smaller and mappable ones.
Mappable CDFGs satisfy the accelerator architectural constraints, hence, can be
mapped and executed on the accelerator.

2 Motivations

In this section, basic arguments to extend DFGs over control instructions and
supporting CDFGs are investigated. We follow a quantitative analysis approach and
use some applications of Mibench [14] for these analyses. As mentioned above, DFGs
are extracted from the frequently executed portions of an application and a control
instruction (e.g. branch instruction) may cause the DFG generation to be stopped.

 Handling Control DFGs for a Tightly Coupled Reconfigurable Accelerator 251

Therefore, short distance control instructions may result in generation of small size
DFGs (SSDFG). In fact, SSDFGs are not suitable for improving performance in
application execution and have to be run on the base processor [11] because they do not
offer any more speedup.

In Fig. 1, a piece of a main loop of adpcm(enc) has been shown. adpcm(enc) is an
application program which includes a loop which consumes 98% of total execution
time. The critical portion of application contains 3 loads and 12 branch instructions.
According the location of branch instructions, 4 DFGs can be extracted from the piece
of loop that has been shown in Fig 1. Three DFGs from four depicted DFGs in Fig. 1
are SSDFGs (have the length less than or equal to 5 (we only execute DFGs which have
more than 5 nodes on the accelerator). These SSDFGs do not bring about more speedup
and have to be run on the base processor.

Fig. 1. Control data flow graph of hot portion of adpcmc(enc)

This kind of analysis was accomplished for 17 applications of Mibench [14]. Results
of analysis motivate us to use CDFGs instead of DFGs for acceleration. Fig. 2 shows
the overall percentage of frequently executed (hot) potion of each application. In
addition, this figure shows the fraction of applications that can not be accelerated due to
SSDFGs. For example, for bitcount application, almost 92% of application is hot. On
the other hand, 32% out of 92% of hot portions do not worth to be accelerated due to the
SSDFGs, therefore, they are dismissed from execution on the accelerator. However,
analyses show for some applications like fft, fft(inv) and sha which includes few branch
instructions, supporting conditional execution results in no considerable speedup,
because a small portion of generated DFGs are removed due to SSDFGs.

0

10

20

30

40

50

60

70

80

90

100

%

adpc
m

(e
nc)

ad
pc

m
(d

ec
)

bitc
ounts

blo
wfis

h

blo
wfis

h (d
ec

)

bas
ic

m
at

h
cj

pe
g

crc

dijk
stra

djp
eg fft

fft
 (i

nv
)

la
m

e

pat
ric

ia
sh

a

st
rin

gs
ea

rc
h

su
sa

n

Percentage of hot portions Percentage of eliminated hot portions due to SSDFGs

Fig. 2. Fraction of hot portions and eliminated hot portions in applications

252 H. Noori et al.

Extending DFGs to contain more than one branch instruction and generate the
CDFGs vs. DFGs is one solution to prevent many SSDFGs generation. For a control
instruction, in some cases only taken or not-taken might be hot and for some others both
directions are hot. In latter case, covering both directions may help to the generation of
larger CDFGs, hence more parallelism and elimination of branch misprediction
penalties. In addition, architecture of the accelerator should be modified to execute the
CDFGs. Indeed, appropriate algorithms are required to generate CDFGs considering
the specifications of the accelerator.

3 Basic Requirements for Architecture with Conditional Execution
Support

To support conditional execution in an accelerator, the capability of branch instruction
execution should be added to the accelerator. It is assumed that the proposed
accelerator is a coarse grain reconfigurable hardware which is a matrix of functional
units (FUs) with specific connections between the FUs. Moreover, each FU like the
processor’s ALUs can execute an instruction level operation.

In a DFG, the nodes (instructions) receive their input from a single source whereas,
in the CDFG, nodes can have multiple sources with respect to the different paths
generated by branches. The correct source is selected at run time according to the
results of branches. Fig. 3 shows the CFG (contains only control flow of instructions)
and DFG for a section of an adpcm(enc) loop. Node 8 may receive one of its inputs
from nodes 5 or 7. The result of the branch that located in node 6 determines which one
should be selected. The nodes that generate output data of a CDFG are altered
according to the results of branches as well. Therefore, the accelerator should have
some facilities to support conditional execution and generate valid output data.
Predicated execution is one technique [16].

Fig. 3. Control flow (a) and data flow graphs (b) for a part of adpcm(enc) loop

Predicated execution is an effective technique to remove control dependency of
programs running on ILP (Instruction level parallelism) processors. Proposed
architecture in [8] uses predicated instructions. With predicated execution, control

 Handling Control DFGs for a Tightly Coupled Reconfigurable Accelerator 253

dependency is essentially turned into data dependency using predicates. A predicate is a
Boolean variable used to represent the control information of a control instruction and
to nullify the following instructions associated with it. The following instructions
become no-ops if the predicated variable is evaluated to be false. The architecture
featuring predicated execution should have radical changes, since every instruction can
be predicated and a separated predicated register file is needed. Also, partial
architectural support has also been studied [10]. In [10], Mahlke et al. proposed
architecture with two new instructions added to the original instruction set to support
predicated execution.

In this section, we propose basic requirements of an architecture which can support
conditional execution. In the general architecture with conditional execution features,
following items are considered to support conditional execution:

a) An FU in the accelerator can receive its inputs directly from accelerator
primary inputs or from output of the other FUs.

b) According to the condition of branch instructions, output of each node can be
directed to the other nodes from different paths. For example, in Fig. 3 output of
node 8 can be routed to nodes 16, 19 or 22. Node 19 will receive the output of node
7 if branch instruction in node 7 is not-taken, otherwise it will be obtained by node
22. Therefore, there may be several outputs for a CDFG and some of them may be
valid as its output accelerator final outputs.

According to above mentioned properties, the accelerator architecture must have
these following requirements:

a) Capability of selective receiving of inputs from both accelerator primary
inputs and output of other instructions (FUs) for each node.

b) Possibility of selecting the valid outputs from several outputs generated by
accelerator according to conditions made by branch instructions. In this case,
no need to modify the FUs.

c) Accelerator should be equipped by control path besides to data path which
provides the correct selection of inputs and outputs for each FU and entire
accelerator.

We will give more details on the architecture specifically proposed for an extensible
processor in Section 5.

4 Algorithms for CDFG Temporal Partitioning

CDFG extracted from various applications are in different sizes and for some of the
CDFGs the whole of it can not be mapped on the accelerator due to the limitations of
hardware resources of the accelerator (e.g. number of inputs, outputs, logics and
specifically routing resource constraints). Even if the logic resource limitations are
considered, some constraints like the routing resource constraints are not applicable in

254 H. Noori et al.

CDFG generation phase. Satisfying or violating routing resource constraints can be
specified after trying to map a CDFG on the accelerator. Therefore, we investigate
some algorithms for partitioning CDFGs under the different hardware resources
constraints of the accelerator and introduce a mapping-aware framework which
considers the routing resource constraints in CDFG generation process. Temporal
partitioning can be stated as partitioning a data flow graph (DFG) into a number of
partitions such that each partition can fit into the target hardware and also,
dependencies among the nodes are not violated [6].

Integrated Framework presented in [11] (based on design flow proposed in [12])
performs an integrated temporal partitioning and mapping process to generate
mappable DFGs. This framework takes rejected DFGs and attempts to partition them to
appropriate ones with the capability of being mapped on the accelerator. The DFGs
which are called rejected (vs. mappable) DFGs are ones that are not mappable on the
accelerator due to hardware constraints [11]. Moreover, the partitions obtained from the
integrated temporal partitioning process are the same appropriate DFGs which are
mappable on the accelerator.

Extending the CDFGs to cover hot directions of branch instructions will result in
larger CDFGs. Using temporal partitioning algorithms considering the accelerator
constraints is a solution to this issue. As the authors knowledge there are small number
of algorithms for CDFG partitioning, though a lot of works have been done around the
DFG temporal partitioning [1, 6, 12].

In [1] a temporal portioning algorithm has been presented that partitions a CDFG
considering target hardware with non-homogenous architecture. Setting control signal
values determines a specific path of the data and converts a CDFG to sub-graphs that do
not include control instructions. This algorithm considers all states of the control
instructions in application to convert corresponding CDFG to a set of DFGs and then it
tries to reduce the number of generated DFGs. Using this algorithm the large number of
DFGs may be obtained during CDFG to DFG conversion. In addition, the knowledge to
different states in application is required to reduce the number of DFGs. In this section,
we propose some CDFG temporal partitioning algorithms. The proposed algorithms
can also be used as general CDFG temporal partitioning algorithms.

4.1 TP Based on Not-Taken Paths (NTPT)

This algorithm adds instructions from not-taken path of a control instruction to a
partition until violating the target hardware architectural constraints (e.g. the number of
logic resources, inputs and outputs) or reaching to a terminator control instruction. A
terminator instruction is an instruction which changes execution direction of the
program, e.g. procedure or function call instructions and also backward branches (to
prevent cycles in CDFG). In fact, a terminator instruction is an exit point for a CDFG.
Therefore, in our methodology a CDFG can include one or more exit-points according
the different paths achieved based on control instructions conditions. Generating a new
partition is started with branch instructions which at least one of their taken or not-taken
instructions has not been located in the current partition.

 Handling Control DFGs for a Tightly Coupled Reconfigurable Accelerator 255

4.2 Execution Frequency-Based Algorithms

In NTPT algorithm, instructions were selected only from not-taken paths of branches,
whereas execution frequency of taken and not-taken instructions may be different. Our
second temporal partitioning algorithm considers the execution frequency (obtained
through profiling) of taken and not-taken instructions as an effective factor for selecting
the instruction and adding them to the current partition. A frequency threshold is
defined to determine that whether instruction is critical or not. Critical instruction
means an instruction with a frequency more than the defined threshold. For a branch
instruction one of its taken or not-taken instructions or both of them can be critical.

In our frequency-based temporal partitioning algorithm, instructions are added one
after another until observing a terminator or a branch instruction. For each instruction,
list of all instructions located on its taken and not-taken paths stopping at a terminator
are created. All instructions of two lists are added to the current partition if enough
space is available. Otherwise the list with higher execution frequency is selected. In this
case, the other list is used to create a new partition. If two lists are terminating in a
unique instruction, it is attempted to add them to the current partition, so, there is no
need to reconfiguration during execution of the current partition instructions.

4.3 Evaluating Proposed Algorithms

The proposed algorithms were compared according to a) the number of generated
partitions and b) efficiency factor. The former is a factor that determines the number of
reconfigurations required during run-time. The latter has been defined as a factor to
show the efficiency of executing CDFGs on the accelerator. Efficiency factor is ratio of
the number of clock cycles spent for DFG execution on the base processor to the
number of clock cycles on the accelerator. Because of the space limitation we omitted
the details of efficiency factor calculation. Larger amount of this factor means lower
delay and correspondingly higher speedup. Six applications of Mibench [14] were
selected for evaluation of the two proposed algorithms. These applications have
considerable number of branch instructions and high potential to get enhanced
performance using the conditional execution supporting features (Fig. 2). In addition,
in these applications the large numbers of SSDFGs are generated due to the many short
distance branch instructions. Comparison of two NTPT and execution frequency-based
temporal partitioning algorithms was accomplished with respect to the average number
of partitions (CDFGs) generated and the efficiency factor. According to Fig. 4, using
NTPT algorithm, small number of partitions is obtained for all of the benchmark
applications. We removed all small length CDFGs (SSDFGs) from the CDFG set
generated by the temporal partitioning algorithms.

On the other hand, results obtained show that the NTPT algorithm has more or
equivalent efficiency in comparing with frequency-based algorithm (Fig. 5). Though,
the NTPT algorithm is a simpler approach for temporal partitioning, but it may bring
about more efficiency comparing with the frequency-based algorithm which is more
complicated. Some compilers which are used for VLIW processors move hot
instructions to the not-taken part of branch instructions to avoid the pipeline flushing
[9, 19]. For the applications have been modified by this kind of compliers, using NTPT
algorithm is suggested. However, we do not claim that the NTPT algorithm does better
for all critical portions of applications.

256 H. Noori et al.

Fig. 4. Comparison of the number of partitions Fig. 5. Comparison of the efficiency factor

5 Case Study: Extending an Extensible Processor to Support
Conditional Execution

AMBER is an extensible processor introduced in [15] targeted for embedded systems
with the aim of accelerating application execution. Other tightly coupled accelerators
have been proposed in [3, 4, 13, 19, 21]. The reconfigurable functional unit (RFU) in
AMBER acts as an accelerator and can not support conditional execution. The basic
requirements represented in Section 3 are applied for extending the AMBER’s RFU to
support conditional execution.

5.1 General Overview of AMBER

AMBER has been developed by integrating a base processor with three other main
components [15]. The base processor is a general RISC processor and the other three
components are: profiler, sequencer and a coarse grain reconfigurable functional unit
(RFU). Fig. 6(a) illustrates the integration of different components in AMBER.

The base processor is an in-order RISC processor that supports MIPS instruction
set. The profiler does the profiling for running applications through looking for hot
portions which are usually in loops and functions. The sequencer mainly determines
the microcode execution sequence by selecting between the RFU and the processor
functional unit. The RFU is based on array of 16 functional units (FUs) with 8 input and
6 output ports. It is used in parallel with other processor’s functional units (Fig. 6(b)).
RFU reads (write) from (to) register file. In the RFU, the output of each FU in a row can
be used by all FUs in the subsequent row [15].

AMBER has two operational modes: the training and the normal mode. The training
mode is done offline. In this phase, target applications are run on an instruction set
simulator (ISS) and profiled. AMBER enters the training mode once and after detecting
start addresses of the hot portions, generating configuration bit-streams for extracted
DFGs and initiating sequencer tables it switches to the normal mode. In the normal
mode, using the RFU, its configuration data (from configuration memory) and
sequencer DFGs are executed on the RFU. More details on AMBER and its
components are out of scope of this paper and can be found in [15].

 Handling Control DFGs for a Tightly Coupled Reconfigurable Accelerator 257

(a) (b)

Fig. 6. Integration of main components in AMBER (a) RFU general architecture (b)

5.2 Extending AMBER RFU to Support Conditional Execution

In this section, we apply the basic requirements introduced in Section 3 to RFU used in
AMBER. First, we propose conditional data selection muxes for controlling selectors
of muxes used for FU inputs and outputs of the RFU. Fig. 7 shows an example of a RFU
(with 5 FUs) without supporting conditional execution. On the other hand, the
hardware has been modified as shown in bottom part of Fig. 7 to support conditional
data selection.

In the proposed architecture, the selector signals of muxes used for choosing data for
FU inputs (the Data-Selection-Mux), along with the RFU output and exit point (not
shown in the figure) are each controlled by another mux (the Selector-Mux). The inputs
of Selector-Mux (one-bit width) originate from the FUs (which execute branches) of
the upper rows and the configuration memory in order to control the selector signals
conditionally, as well as unconditionally. The selectors of Selector-Mux are controlled
by configuration bits. It should be noted the outputs of FUs are only applied to the
Selector-Muxes in the lower-level rows, not in the same or upper rows. A similar
structure is used for selecting the valid output data of the RFU.

Fig. 7. Equipping the RFU to support conditional execution

258 H. Noori et al.

For example, suppose a CDFG containing nodes 5, 6, 7, and 8 (Fig. 3) is to be
mapped on the modified RFU. The second input of node 8 uses the output of node 5
when node 6 is taken otherwise uses the output of node 7. Nodes 5, 7, 6, and 8 are
mapped to FU1, FU2, FU3, and FU5, respectively. Assuming that outputs of FU1, FU2,
FU3, and the immediate value have been assigned to inputs 1, 2, 3, and 0 of the Data
Selection Mux for the second input of FU5. The selector signals of Selector-Mux i.e.
Sel1 and Sel0 are configured to be driven by Not Branch result from FU3 and Branch
result from FU3, respectively, using configuration bits. When FU3 (node 6) is taken,
Sel1 is 0 and Sel0 is 1, therefore the output of FU1 (node 5) is selected. When FU3 is
not-taken Sel1 is 1 and Sel0 is 0, therefore the output of FU2 (node 7) is selected.

5.3 Performance Evaluation

The extended RFU was developed and synthesized using Synopsys tools [20] and
Hitachi 0.18μm. The area of the extended RFU is 2.1 mm2. Each CDFG needs 615 bits
in total for its configuration on the RFU. 375 out of 615 bits is used for control signals.
Profiling data was provided by executing applications on the Simplescalar as ISS [18].
Integrated Framework based on NTPT temporal partitioning algorithm is used to
generate mappable CDFGs. The required number of clock cycles for executing each
CDFG is determined according to depth of CDFG and base processor clock frequency.

We compared the effectiveness of CDFGs versus DFGs. The average number of
instructions included in DFGs is 6.39 instructions and for CDFGs is 7.85 instructions.
Fig. 8 shows the speedups obtained based on CDFG and DFG compared to the base
processor for some applications. The reason for the high speedup obtained by adpcm is
that it has a main loop with 56 instructions, including 12 branches. For 7 of these
branches, both taken and not-taken instructions are hot, so that 27% of branches are
mispredicted. Therefore, a big part of executed clock cycles belongs to penalty of the
mispredicted branches (18%). For those branches with both directions being hot, the
CDFGs include both directions, and hence, the extended RFU architecture eliminates
cycles of mispredicted branches. Also, since CDFGs are longer than DFGs, more ILP
can be extracted.

0

0.5

1

1.5

2

2.5

3

Speedup

ad
pcm

(e
nc)

ad
pc

m
(d

ec
)

blo
wfis

h
(e

nc)

blo
wfis

h
(d

ec
)

cr
c

dijk
st

ra

Ave
ra

ge

Speedup Comparison DFGs

CDFGs

Fig. 8. Speedup comparison of acceleration approaches based on DFGs and CDFGs

 Handling Control DFGs for a Tightly Coupled Reconfigurable Accelerator 259

6 Conclusion

In this paper, we presented motivation for handling branch instruction in DFGs and
extending them to CDFGs. In addition, basic requirements for developing an
accelerator featuring conditional execution were presented and some algorithms for
CDFG temporal partitioning and generating executable CDFGs on the accelerator were
proposed. NTPT is a temporal partitioning algorithm which tries to traverse not-taken
path of the branch instructions and partitions the input CDFG. On the other hand,
frequency-based temporal partitioning algorithm considers the taken and not-taken
frequencies to partition input CDFG. Using this approach it is possible to add both
taken and not-taken paths of a branch instruction to a partition. Comparison of these
algorithms shows that though NTPT is a simple partitioning algorithm but it generates
small number of CDFGs which bring about a comparable and even higher speedup.

To show the effectiveness of supporting conditional execution in hardware, we
applied our proposals to the accelerator of an extensible processor called AMBER.
RFU was a matrix of functional units which was extended to support the conditional
execution. We used an integrated framework based on NTPT algorithm to generated
mappable CDFGs on the RFU. These CDFGs are executed on the RFU to accelerate the
application execution. Experimental results show the effectiveness of covering branch
instructions and using CDFGs versus DFGs.

Acknowledgement

This research was supported in part by the Grant-in-Aid for Creative Basic Research,
14GS0218, Encouragement of Young Scientists (A), 17680005, and the 21st Century
COE Program.

References

[1] Auguin, M, Bianco, L, Capella, L, Gresset, E. Partitioning conditional data flow graphs for
embedded system design, Proc. of ASAP 2000 (2000) 339-348

[2] Carrillo, J. E, Chow, P. The effect of reconfigurable units in superscalar processors, Proc.
of the ACM/SIGDA FPGA (2001) 141-150

[3] Clark, N, Blome, J, Chu, M, Mahlke, S, Biles, S, Flautner, K. An architecture framework
for transparent instruction set customization in embedded processors, Proc. ISCA (2005)
272-283

[4] Clark, N, Zhong, H, Mahlke, S. Processor acceleration through automated instruction set
customization, MICRO-36 (2003)

[5] Hauck, S, Fry, T, Hosler, M, Kao, J. The Chimaera reconfigurable functional unit, IEEE
Symp. on FPGAs for Custom Computing Machines (1997) 206-217

[6] Karthikeya M and Gajjala P and Bhatia D, Temporal partitioning and scheduling data flow
graphs for reconfigurable computers, IEEE Transactions on Computers, 48 (6) (1999)
579-590

[7] Kastner, R, Kaplan, A, Sarrafzadeh, M. Synthesis techniques and optimizations for
reconfigurable systems, Kluwer-Academic Publishers (2004)

260 H. Noori et al.

[8] Lee, J.E, Kim, Y, Jung, J, Choi, K. Reconfigurable ALU array architecture with conditional
execution, International SoC Design Conference (2004) 222-226

[9] Lodi, A, Toma, M, Campi, F, Cappelli, A, Canegallo, R, Guerrieri, R. A VLIW processor
with reconfigurable instruction set for embedded applications, IEEE Journal of Solid-State
Circuits, Vol. 38, No. 11 (2003) 1876–1886

[10] Mahlke, S. A, Hank, R. E, McCormick, J.E, August, D. I, Hwu, W. W. A comparison of
full and partial predicated execution support for ILP processors. In Proc. ISCA (1995)
138-150

[11] Mehdipour, F, Noori, H, Saheb Zamani, M, Murakami, K, Sedighi, K, Inoue, K. Custom
instruction generation using temporal partitioning techniques for a reconfigurable
functional unit, Int. Conference on Embedded and Ubiquitous Computing (2006)

[12] Mehdipour, F, Saheb Zamani, M, Sedighi, M. An integrated temporal partitioning and
physical design framework for static compilation of reconfigurable computing systems,
Int. J. of Microprocessors and Microsystems, Elsevier, Vol. 30, No. 1 (2006) 52-62

[13] Mei, B, Vernalde, S, Verkest, D, Lauwereins, R. Design methodology for a tightly coupled
VLIW/Reconfigurable matrix architecture, DATE (2004) 1224-1129

[14] Mibench, www.eecs.umich.edu/mibench
[15] Noori, H, Mehdipour, F, Murakami, K, Inoue, K, Saheb Zamani, M. A reconfigurable

functional unit for an adaptive dynamic extensible processor, Proc. of IEEE International
Conference on Field Programmable Logic and Applications (2006) 781-784

[16] Park, J.C, Schlansker, M.S. On predicated execution. Technical Report HPL-91-58.
Hewlett Packard Laboratories (1991)

[17] Razdan, R, Smith, M.D. A high-performance microarchitecture with
hardware-programmable functional units, MICRO-27 (1994)

[18] Simplescalar, www.simplescalar.com
[19] Smith J.E, Sohi, G.S. The microarchitecture of superscalar P. In Proc. IEEE, Vol. 83,

(1995) 1609- 1624
[20] Synopsys Inc. http://www.synopsys.com/products/logic/design_compiler.html
[21] Vassiliadis, S, Gaydadjiev, G, Kuzmanov, G. The MOLEN polymorphic processor, IEEE

Transactions on Computers, Vol. 53, No. 11 (2004) 1363-1375
[22] P. Yu and T. Mitra, Characterizing embedded applications for instruction-set extensible

processors, In Proc. Design Automation Conference (2004) 723-728

Behavioral Synthesis of Double-Precision

Floating-Point Adders with Function-Level
Transformations: A Case Study

Yuko Hara1, Hiroyuki Tomiyama1, Shinya Honda1, Hiroaki Takada1,
and Katsuya Ishii2

1 Graduate School of Information Science, Nagoya University,
{hara,tomiyama,honda,hiro}@ertl.jp

2 Information Technology Center, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan

ishii@itc.nagoya-u.ac.jp

Abstract. Recently, the continuously growing capacity of FPGAs has en-
abled us to place floating-point arithmetic IPs on FPGAs. The required
area for floating-point computations, however, is still high. This paper
presents a case study on behavioral synthesis of double-precision floating-
point adders and adder/subtracters for FPGAs. With function-level trans-
formations, we design totally 15 adders and 21 adder/subtracters from
addition and subtraction functions written in C. Our experimental results
show that the circuit area is reduced by 58%, the execution time is short-
ened by 47% and the area-delay product is improved by 69%. Through the
case study,we show the effectiveness of behavioral synthesis with function-
level transformations for designing complex arithmetic circuits.

1 Introduction

Traditionally, floating-point arithmetic units have rarely been used in FPGAs
due to their high cost. A designer had to convert floating-point numbers in
system-level specification into fixed-point ones before starting hardware design.
However, the conversion from floating-point numbers into fixed-point ones is
very time-consuming and error-prone.

Recently, the continuously growing capacity of FPGAs has enabled us to place
single-precision floating-point arithmetic IPs, or even double-precision ones, on
FPGAs. In most cases, floating-point arithmetic IPs are provided in the form of
gate-level netlist or register-transfer level description in HDL. With such gate-
or RT-level IPs, it is often impossible to satisfy application-specific design re-
quirements such as area, clock frequency, latency, and so on. Although RT-level
IPs are customizable or modifiable to some extent, it is not easy to significantly
change their latency or area.

One of the solution approaches to the design of application-specific complex
arithmetic units is the use of behavioral synthesis. Behavioral synthesis is a
technology which automatically generates an RT-level circuit from a sequential
program [1]. Using behavioral synthesis, various circuits with different area and

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 261–270, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

262 Y. Hara et al.

performance can be generated from the same sequential program by specifying
different synthesis options and constraints. Behavioral synthesis techniques have
extensively been studied for more than two decades, and behavioral synthesis
tools are now being used in practice, particularly in Japanese industry [2] [3].

In this case study, we have designed totally 15 adders and 21 adder/sub-
tracters for double-precision floating-point numbers for FPGAs with using a
behavioral synthesis tool. Specifically, we have focused on function-level transfor-
mations in order to generate area- and/or performance-efficient designs. Through
the case study, we show the effectiveness of behavioral synthesis with function-
level transformations for designing complex arithmetic circuits.

The rest of this paper is organized as follows. Section 2 explains experimental
environments used in Sections 3 and 4. Section 3 shows a case study on behavioral
synthesis of adders. Section 4 studies synthesis of adder/subtracters. Section 5
concludes this paper with a summary.

2 Design Environment

This section describes the design environments used in the experiments of Section
3 and 4.

2.1 Design Tools

We use a commercial behavioral synthesis tool eXCite from YXI [4]. A C pro-
gram is input to eXCite with several optimization options and design constraints.
Then, an RT-level description in VHDL or Verilog-HDL is generated. The op-
timization options and design constraints include clock frequency, the number
of functional units, and so on. For logic synthesis and place-and-route, we use
Synplify Pro from Synplicity [5] and XST from Xilinx [6], respectively. Logic
synthesis and place-and-route are optimized for performance. Xilinx Spartan 3
is specified as a target device.

2.2 Double-Precision Floating-Point Addition Program in C

We use a double-precision floating-point addition function double add from the
SoftFloat suite [7]. The SoftFloat suite is an open-source software implementation
of the IEC/IEEEStandard for binary floating-point arithmetic. It includes several
fundamental arithmetic operations such as addition, subtraction, multiplication,
division, and so on, supporting both single-precisionand double-precisionfloating-
point formats. In this paper, we select double-precision floating-point addition due
to its high computational complexity and importance.

Note that the size of the double-precisionfloating-point additionprogram is rela-
tively large comparedwith DSP kernelswhich were often used in the past literature
on behavioral synthesis. The addition program consists of more than 600 lines of
C code. After behavioral level optimization such as common subexpression elimi-
nation and dead code elimination, there exist 298 arithmetic and logic operations,
307 assignments, 77 if statements, 26 goto/return statements, and so on.

Behavioral Synthesis of Double-Precision Floating-Point Adders 263

Table 1. Experimental results for adders

Clock const. (MHz) 25 50 100
Design goal Perf. Area Perf. Area Perf. Area

States 3 21 5 22 10 25
Area (slices) 6,039 5,654 4,913 5,875 3,667 6,121

Clock freq. (MHz) 23.6 29.0 29.4 26.3 49.6 37.3
Exec. Cycles 3 21 5 22 10 25

Exec. time (ns) 127.3 723.2 169.9 835.4 201.6 671.0
Area-delay (×103) 768.7 4,088.7 834.9 4,908.0 739.3 4,107.0

2.3 Evaluation Metrics

We evaluate the quality of designs with three metrics, i.e., area, execution time
and area-delay product. Area is measured by the number of slices occupied for the
designs. Execution time is defined as the product of clock period and execution
cycles. Area-delay product is defined as the product of area and execution time.
Since in general area and execution time are in trade-off relation, area-delay
product is useful to evaluate the overall quality of the designs.

3 Synthesis of Adders

In this section, we first show a case study on synthesizing adders for double-
precision floating numbers. Then, we employ three techniques to improve the
quality of adders.

3.1 Simple Synthesis of Adders

First, we synthesized adders from the double-precision floating-point addition
function explained in Section 2.2. The clock frequency constraint was set to be
25, 50 and 100 MHz. For each clock frequency, we specified two types of synthesis
goal to behavioral synthesis tool eXCite: one is the performance maximization and
the other is the area minimization by sharing components as much as possible.

Then, we executed logic synthesis and place-and-route to evaluate area and
clock frequency of the designs. The results are shown in Table 1. The row “Design
goal” of Table 1 represents the synthesis goal.

When the synthesis goal is the area minimization, the number of required com-
ponents is smaller than that for performance maximization since several com-
ponents are temporally shared 1. The total area, however, is larger as imposing
a more severe constraint on clock frequency. This is because more multiplexers
and registers are required, and this area overhead is larger than the area sav-
ing obtained by reduced components. As a severe clock constraint is given, the
control path becomes compilicated and its area is increased. Moreover, the exe-
cution time becomes longer, which results in severe performance degradation. In
terms of the area-delay product, the synthesis goal for performance yields better
designs than that for area.
1 Information on the types and the numbers of components requried by each design

are omitted due to the limited space.

264 Y. Hara et al.

11

1

3
3

roundAndPackFloat64

propagateFloat64NaN

subFloat64Sigs addFloat64Sigs

normalizeRoundAndPackFloat64

double_add

1 1

 int func2(int a, int b){

 int x1, x2, z0, z1, z, id;

 . . .

 id = 0; x1 = a; x2 = b;

 goto L1;

 R0: z0 = z;

 . . .

 id = 1; x1 = b; x2 = a;

 goto L1;

 R1: z1 = z;

 . . .

 L1: z = func1(x1, x2);

 switch(id){

 case 0:

 goto R0;

 case 1:

 goto R1;

 }

 }

 int func1(int a, int b){

 int z;

 . . .

 return z;

 }

 int func2(int a, int b){

 int z0, z1;

 . . .

 z0 = func1(a, b);

 . . .

 z1 = func1(b, a);

 . . .

 }

(a) (b) (c)

Fig. 1. (a)A call graph of double-precision floating-point addition function, (b)An
emample of an original program, (c)The rewritten program with goto conversion

3.2 Synthesis of Adders with Goto Conversion

The double-precision floating-point addition function double add from the Soft-
Float suite consists of multi-level function calls. A call graph for double add
is shown in Fig. 1 (a). In Fig. 1 (a), addFloat64Sigs directly calls propagate-
Float64NaN three times and roundAndPackFloat64 once. subFloat64Sigs
directly calls propagateFloat64NaN three times, while it indirectly calls roun-
dAndPackFloat64 once via normalizeRoundAndPackFloat64. double add has
two arguments a and b. If both of their signs are same, double add calls add-
Float64Sigs, otherwise double add calls subFloat64Sigs. In addition to the func-
tions shown in Fig. 1 (a), there exist more than ten functions, but they are
omitted here since they are small and to be inlined.

Unless specific options are given, eXCite inlines all callee functions and gener-
ates one large function. When synthesizing double add in Fig. 1 (a), for example,
all the functions are inlined into double add. In general, functional units can be
shared among the inlined functions, which leads to a small circuit area. When
large functions which are called multiple times are inlined, however, the num-
ber of states is increased. This makes its control path complicated, leading to
inefficient designs. This problem is avoided by applying goto conversion to such
functions. Goto conversion is a transformation to replace function calls with goto
statements, and has been used in some behavioral synthesis tools such as [2] [3].

An example of goto conversion is shown in Figs. 1 (b) and (c). Fig. 1 (b)
is an original C source code. In this example, there exist two function calls to
func1 in func2. Without goto conversion, the body of func1 is inlined twice. This
might lead to large number of states, which results in the complicated control
logic. In Fig. 1 (c), only func2 is rewritten with goto conversion. First, when a
goto statement for label L1 is executed above label R0, the control flow jumps
to label L1 and calls func1. After executing func1, the control flow jumps back

Behavioral Synthesis of Double-Precision Floating-Point Adders 265

to label R0 from a switch statement described below label L1 since id is zero.
When the control flow executes a goto statement for label L1 above label R1,
it behaves as same as above. In the program in Fig. 1 (c), the body of fun c1
is inlined only once in spite of being executed at two locations in the C source
code. In addition, the components required by func1 can be shared with other
operations as same as inlining.

In this section, goto conversion is applied to synthesis of double-precision
floating-point adders. The candidate functions for goto conversion are propa-
gateFloat64NaN and roundAndPackFloat64 since they are relatively large and
called several times. Using goto conversion, we have designed three adders as
follows, for each clock constraint.

RG: goto conversion is applied to roundAndPackFloat64 with inlining propa-
gateFloat64NaN

PG: goto conversion is applied to propagateFloat64NaN with inlining roun-
dAndPackFloat64

RPG: goto conversion is applied to both roundAndPackFloat64 and propagate-
Float64NaN

We set three constraints on clock frequency, i.e., 25, 50 and 100 MHz. Based on
the results in Section 3.1, we specified performance maximization as our synthesis
goal. The experimental results are shown in Table 2. Numbers in parentheses in
Table 2 are normalized values where baseline is “Perf.” in Table 1.

When the clock constraint is 25 or 100 MHz, it is the best to apply goto
conversion only to roundAndPackFloat64 in terms of area-delay product. When
the clock constraint is 50 MHz, applying goto conversion only to propagate-
Float64NaN is the best. When employing RPG on 50 MHz, PG on 100 MHz or
RPG on 100 MHz, the areas are larger than those without goto conversion. This
is mainly because, with use of goto conversion, the number of registers is largely
increased by gate-level retiming. Particularly as more severe clock constraint is
given, larger numbers of registers are required. Then, the total area was also
increased due to the increase of registers.

In terms of area-delay product, the best design is generated with RG on 25
MHz clock constraint among all the results in Table 2.

Table 2. Experimental results for adders with goto conversion

Clock const. (MHz) 25 50 100
Technique RG PG RPG RG PG RPG RG PG RPG

States 3 3 3 5 5 5 10 10 10
Area (slices) 5,503 4,799 5,854 4,541 4,614 5,158 3,578 5,468 5,034

(0.91) (0.80) (0.97) (0.92) (0.94) (1.05) (0.98) (1.49) (1.37)
Clock freq. (MHz) 27.6 21.7 28.7 26.7 29.2 27.1 50.1 43.9 49.2

(1.03) (0.72) (1.19) (1.10) (1.01) (1.09) (0.99) (1.13) (1.01)
Exec. Cycles 3 3 3 5 5 5 10 10 10

Exec. time (ns) 108.5 138.4 104.7 187.5 171.4 184.5 199.8 227.9 203.3
(0.83) (1.09) (0.82) (1.10) (1.01) (1.09) (0.99) (1.13) (1.01)

Area-delay (×103) 597.3 664.2 613.0 851.2 791.0 951.9 715.0 1,246.2 1,023.5
(0.78) (0.86) (0.80) (1.02) (0.95) (1.14) (0.97) (1.69) (1.38)

266 Y. Hara et al.

4 Synthesis of Adder/Subtracters

In this section, we design adder/subtracters from an addition and subtraction
functions which supports the double-precision floating-point format. Adder/
subtracter is an arithmetic circuit which computes both addition and subtrac-
tion. In Section 4.1, we show the results with a simple method to merge these two
functions. Then, in Section 4.2, we employ goto conversion to generate improved
designs compared to the simple design.

4.1 Simple Synthesis of Adder/Subtracters

The double-precision floating-point subtraction function double sub from the
SoftFloat suite has a similar structure as addition function double add. dou-
ble sub takes two arguments a and b. If both the signs of a and b are same,
subFloat64Sigs is called, otherwise addFloat64Sigs is called. A call graph of dou-
ble add and double sub is shown in Fig. 2 (a). double addsub is a new function
which is defined to merge double add and double sub. An adder/subtracter for
double-precision floating-point format can be generated from double addsub.

First, in this section, double sub was singly synthesized, and then, the new
function double addsub was synthesized. double addsub has three input values;
two arguments a and b, and a 1-bit id. This program is partially shown in Fig. 2
(b). The bodies of double add and double sub are omitted here. Variables defined
as double type are automatically converted to float64 type, which is in actual
unsigned long long type. The bitwidth of id is reduced to one by an option
of eXCite although it is originally defined as eight bits in the C source code.
If id is equal to zero, double add is called, otherwise double sub is called. The
experimental results for double sub and a function which merges double add and
double sub are shown in Table 3.

For adder/subtracters, the area is almost same as the sum of areas of
double add and double sub. The number of components required by an adder/
subtracter is also same as the sum of those of double add and double sub. This
is because double add and double sub were speculatively executed even though

1
1

11

1

3
3

roundAndPackFloat64

propagateFloat64NaN

double_add

subFloat64Sigs addFloat64Sigs

normalizeRoundAndPackFloat64

double_sub

1
1

double_addsub

1 1
 typedef unsigned long long float64;

 float64 double_addsub (float64 a, float64 b, char id){

 float64 z; /* output */

 if(id == 0){

 z = double_add(a, b);

 }else{

 z = double_sub(a, b);

 }

 return z;

 }

(a) (b)

Fig. 2. (a)A call graph of double-precision floating-point addition and subtraction func-
tions, (b)A new function which is defined to merge double add and double sub

Behavioral Synthesis of Double-Precision Floating-Point Adders 267

Table 3. Experimental results for subtracters and adder/subtracters

Function Subtracters Adder/subtracters
Clock const. (MHz) 25 50 100 25 50 100

States 3 5 10 3 5 10
Area (slices) 5,041 5,184 3,737 8,145 7,381 9,696

Clock freq. (MHz) 21.0 19.6 50.4 16.1 20.5 32.6
Exec. Cycles 3 5 10 3 5 10

Exec. time (ns) 142.6 254.5 198.5 186.6 244.2 306.5
Area-delay (×103) 718.8 1,319.3 741.9 1,519.8 1,802.6 2,971.4

Table 4. Experimental results for adder/subtracters with components sharing

Clock const. (MHz) 25 50 100
States 7 11 21

Area (slices) 8,998 8,264 5,943
(1.11) (1.12) (0.61)

Clock freq. (MHz) 15.4 20.9 45.4
(1.04) (0.98) (0.72)

Exec. Cycles 4 6 11
Exec. time (ns) 259.9 287.3 242.1

(1.39) (1.18) (0.79)
Area-delay (×103) 2,338.2 2,374.0 1,439.0

(1.54) (1.32) (0.48)

execution of double add and double sub must be exclusive. Therefore, the com-
ponents are hardly shared between the two functions.

Next, in order to prevent from the speculative execution of double add and
double sub, we explicitly inserted a clock boundary after the condition test in
Fig. 2 (b) so that double add and double sub are mutually executed. This helps
components be shared. The experimental results are shown in Table 4. Values
in parentheses in Table 4 are normalized by “Adder/subtracters” in Table 3.

In terms of area in Table 4, when the clock constraint is 25 or 50 MHz, the
areas are increased compared to the results in Table 3. This is mainly because
the number of multiplexers is increased to share the components. When the clock
constraint is 100 MHz, on the other hand, the area is reduced since the number of
registers is significantly reduced. Note that, in general, the speculative execution
requires more registers.

4.2 Synthesis of Adder/Subtracters with Goto Conversion

As explained above, double add and double sub have very similar structures.
Fig. 2 (a) shows that both double add and double sub call addFloat64Sigs and
subFloat64Sigs. In the experiments in Table 3, both addFloat64Sigs and sub-
Float64Sigs are inlined twice since the functions are called by both double add
and double sub. This makes designs large. To avoid inlining large functions such
as addFloat64Sigs and subFloat64Sigs, firstly, we employ goto conversion to
addFloat64Sigs and subFloat64Sigs. This design is denoted as ASG.

The C source code of double add and double sub are shown in Fig. 3 (a) and (b),
respectively. Fig. 3 (a) and (b) have little differences except a condition in the if
statement to determine a function to be called. Note that extract64Sign is a small
function which gets a sign bit of an argument, and aSign and bSign represents the

268 Y. Hara et al.

 float64 double_addsub
 (float64 a, float64 b, char id){
 float64 z; /* output */
 int aSign, bSign;

 aSign = extractFloat64Sign(a);
 bSign = extractFloat64Sign(b);
 if((aSign == bSign && id == 0)
 || (aSign != bSign && id != 0)){
 z = addFloat64Sigs(a, b, aSign);
 }else{
 z = subFloat64Sigs(a, b, aSign);
 }
 return z;
 }

 float64 double_add(float64 a, float64 b){
 int aSign, bSign;

 aSign = extractFloat64Sign(a);
 bSign = extractFloat64Sign(b);
 if (aSign == bSign) {
 return addFloat64Sigs(a, b, aSign);
 }else {
 return subFloat64Sigs(a, b, aSign);
 }
 }

 float64 double_sub(float64 a, float64 b){
 int aSign, bSign;

 aSign = extractFloat64Sign(a);
 bSign = extractFloat64Sign(b);
 if (aSign == bSign) {
 return subFloat64Sigs(a, b, aSign);
 }else {
 return addFloat64Sigs(a, b, aSign);
 }
 }

(a) (b) (c)

Fig. 3. A new function which is defined to merge double add and double sub

signs of a and b, respectively. Then, we define a new function whose condition of if
statement is rewritten from if statements of double add and double sub in order to
directly call addFloat64Sigs and subFloat64Sigs from the new function as shown
in Fig. 3 (c). In this function, addFloat64Sigs is called when the signs of a and b
are same and id is zero or when double add and double sub are not same and id is
not zero, i.e., id is one, otherwise subFloat64Sigs is called. Goto conversion is not
applied to any functions. This design is denoted as NGT.

Next, goto conversion is applied to roundAndPackFloat64 and propagate-
Float64NaN for double addsub described in Fig. 3 (c). Then, we obtain three
designs NRG, NPG and NRPG. The five designs are summarized as follows.

ASG: goto conversion is applied to addFloat64Sigs and subFloat64Sigs
NGT: addFloat64Sigs and subFloat64Sigs are directly called in a new function

without goto conversion
NRG: goto conversion is applied to roundAndPackFloat64 in addition to a tech-

nique NGT
NPG: goto conversion is applied to propagateFloat64NaN in addition to a tech-

nique NGT
NRPG: goto conversion is applied to roundAndPackFloat64 and propagate-

Float64NaN in addition to a technique NGT

The experimental results are shown in Table 5. Values in parentheses in Table 5
are normalized by “Adder/subtracters” in Table 3. in Table 3. All the results with
ASG have better results than the results in Table 3. These results, however, were
the worst among with five techniques in Table 5. When the clock constraint is 25
MHz, NRG has the best result. In this case, all the techniques with goto conversion,
i.e., NRG, NPG and NRPG have better results than the one with NGT. When the
clock constraint is 50 or 100 MHz, NGT which does not employ goto conversion
has the best results. This is mainly because of gate-level retiming during logic syn-
thesis. With goto conversion, gate-level retiming easily increases registers, which
results in an increase in the circuit area.

Behavioral Synthesis of Double-Precision Floating-Point Adders 269

Table 5. Experimental results for adder/subtracters with goto conversion

Clock const. (MHz) 25
Technique ASG NGT NRG NPG NRPG

States 3 3 3 3 3
Area (slices) 7,937 6,049 5,446 4,865 5,787

(0.97) (0.74) (0.67) (0.60) (0.71)
Clock freq. (MHz) 21.1 23.7 30.3 23.0 23.2

(0.76) (0.68) (0.53) (0.70) (0.69)
Exec. Cycles 3 3 3 3 3

Exec. time (ns) 142.4 126.8 99.1 130.6 129.4
(0.76) (0.68) (0.53) (0.70) (0.69)

Area-delay (×103) 1,130.3 766.8 539.9 635.4 748.6
(0.74) (0.51) (0.36) (0.42) (0.49)

Clock const. (MHz) 50
Technique ASG NGT NRG NPG NRPG

States 5 5 5 5 5
Area (slices) 7,190 4,408 4,702 4,732 4,691

(0.97) (0.60) (0.64) (0.64) (0.64)
Clock freq. (MHz) 22.3 28.7 27.4 30.6 26.7

(0.92) (0.71) (0.75) (0.67) (0.77)
Exec. Cycles 5 5 5 5 5

Exec. time (ns) 224.5 174.0 182.7 163.4 187.4
(0.92) (0.71) (0.75) (0.67) (0.77)

Area-delay (×103) 1,613.9 766.8 858.8 773.4 879.0
(0.90) (0.43) (0.48) (0.43) (0.49)

Clock const. (MHz) 100
Technique ASG NGT NRG NPG NRPG

States 10 10 10 10 10
Area (slices) 5,382 4,054 4,393 5,823 5,227

(0.56) (0.42) (0.45) (0.60) (0.54)
Clock freq. (MHz) 38.5 44.3 47.9 47.9 47.0

(0.85) (0.74) (0.68) (0.68) (0.69)
Exec. Cycles 10 10 10 10 10

Exec. time (ns) 259.5 225.9 208.7 208.9 212.6
(0.85) (0.74) (0.68) (0.68) (0.69)

Area-delay (×103) 1,396.8 915.9 916.8 1,216.4 1,111.5
(0.47) (0.31) (0.31) (0.41) (0.37)

4.3 Discussion

Through the case study, we have found the following observations.

– Reducing the number of components does not always lead to area reduction
because of the increased multiplexers and registers.

– Goto conversion is useful in order to reduce the area.
– However, goto conversion does not always lead to area reduction because of

the increased registers through gate-level retiming.

We have seen so far that the quality of designs obtained by behavioral synthe-
sis is affected by a number of factors such as clock constraint, resource constraint,
optimization options and so on. Therefore, it is not easy but very important to
establish a systematic methodology for behavioral synthesis.

5 Conclusions

In this paper, we have presented several techniques on behavioral synthesis of
double-precision floating-point adders and adder/subtracters. We have generated
totally 15 adders and 21 adder/subtracters with function-level transformations
such as goto conversion.

270 Y. Hara et al.

The future works are considered in two directions. One is to develop other
arithmetic IPs for double-precision floating-point computations. The other is to
establish a systematic methodology for behavioral synthesis of complex arith-
metic circuits.

References

1. D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, High-Level Synthesis:
Introduction to Chip and System Design, Kluwer Academic Publishers, 1992.

2. K. Wakabayashi and T. Okamoto, “C-based SoC Design Flow and EDA Tools: An
ASIC and System Bendor Perspective,” IEEE Trans. CAD, vol. 19, no. 12, Dec.
2000.

3. K. Wakabayashi, “CyberWorkBench: Integrated Design Environment Based on C-
based Behavior Synthesis and Verification,” Int. Symp. VLSI Design, Automation
and Test, 2005.

4. Y Explorations, Inc., http://www.yxi.com/.
5. Synplicity Inc., http://www.synplicity.com/.
6. Xilinx Inc., http://www.xilinx.com/.
7. SoftFloat, http://www.jhauser.us/arithmetic/SoftFloat.html.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 271–282, 2007.
© Springer-Verlag Berlin Heidelberg 2007

NISD: A Framework for Automatic Narrow Instruction
Set Design

Xianhua Liu, Jiyu Zhang, and Xu Cheng

Microprocessor Research and Development Center,
Peking University, Beijing, P.R. China, 100871

{liuxianhua,zhangjiyu,chengxu}@mprc.pku.edu.cn

Abstract. Code size is becoming an important design factor in the embedded
domain. To deal with this problem, many embedded RISC processors support a
dual-width instruction set. Mixed code generation is also introduced in
expectation of achieving both higher code density from the narrow instruction
set (usually 16 bits) and good performance from the normal one (usually 32
bits), with little extra cost. To a certain application domain, processors can
combine an efficient general purpose instruction set and a narrow instruction set
tailored to the particular applications. Since the design of instruction set is
highly related to the compiler and the application programs, a feedback driven
technique will be a good choice.

In this paper, we introduce a framework of automatic narrow instruction set
design. The instructions are described in our Instruction Set Description
Template (ISDT). Given a set of application programs, the design tool will
iteratively use the suggested narrow instruction set represented in ISDT to do
mixed-code generation and to update the narrow instruction set according to the
evaluation feedback, thus to get an ultimate fine narrow instruction set without
human designer's involvement. We describe our method in detail by example of
designing narrow instruction set for UniCore with the mediabench as the
application set, and show its usefulness through the experiments.

Keywords: dual-width instruction set, narrow instruction set design, automatic
instruction set design.

1 Introduction

Embedded systems are more and more important in people's daily life. According to
[1], the market size of embedded systems is 100 times bigger than the desktop market
and it is estimated that with current growth rates the number of embedded systems
will reach 16 billion by 2010. Meanwhile, in the embedded domain, applications must
be stored and executed under constraints of limited memory and energy, with a clear
and important trend of continuous increase in complexity. In this situation, many
RICS processors provide dual width ISA and a way of mixed coding to provide a
smaller code size, such as ARM with Thumb, MIPS with MIPS16e, UniCore32 with
UniCore16, and etc.. These dual width instruction set processors support both a
normal instruction set (usually 32-bit) and a narrow one (usually 16-bit). The narrow

272 X. Liu, J. Zhang, and X. Cheng

instruction set leads to smaller code and lower instruction cache energy consumption
[2]. However, because of the limitation of encoding space, the narrow IS often can
only encode a subset of the normal instructions and can access only a subset of
registers, so some functions can not be easily encoded into the narrow one. Thus it
may take more instructions to represent the same program fragments by narrow ISA
than the normal one. This brings a difficulty to design of the narrow IS. Besides
performance, code size, energy consumption and some other features of the final
system, Time to Market is also one of the important factors which determine the
profits of the product. Thus, a convenient tool is needed to help to design a proper
narrow IS for the particular application sets.

For embedded computer systems, the applications are often fixed in comparison
with general purpose computer systems. To a certain application domain, processors
can combine an efficient general purpose instruction set and a narrow instruction set
tailored to the particular applications. Since the design of instruction set is highly
related to the compiler and the application programs, a feedback driven technique will
be a good choice. The problem is mainly on how to automatically perform an iterative
feedback driven process to free the designers from the repeated work to some extend.

This paper makes the following contributions. First, we present an automatic
narrow IS design framework aiming at generating instruction set tailored to particular
applications for embedded systems. This framework takes compiler in the design
loop. The core part is mainly based on a post-process optimizer in the compiler tool-
chain, which can directly deal with a low-level intermediate representation. Based on
this intermediate representation, we design our Instruction Set Description Template
(ISDT) to guide compilation and simulation. Further more, we present our
experimental study of a narrow instruction set design for UniCore, a RISC
microprocessor to show details of the design process and its usefulness.

This paper is organized as follows. In section 2, we review some related work in
dual width ISA design and automatic ISA design. Section 3 presents the workflow of
our framework. The detail of the method is shown in Section 4 and the experimental
results are given in Section 5. Section 6 concludes and gives the future work.

2 Related Works

2.1 Dual-Width IS Design and Mixed Code Generation

Several works have already been done in the dual-width instruction set design
[3][4][5] and mixed code generation field. In the current dual-width IS design, most
of work is done by experts with deep human analysis on the original IS and compiled
applications. A typical work is described in [8] by Krishnaswamy and Gupta. They
introduced a set of AX (Augmenting eXtensions) to Thumb instruction set and the
task of the compiler is to identify and replace proper pairs of Thumb instructions with
AX + Thumb instruction pairs. The aim of this method is to improve performance of
Thumb code. Because of the limited opcodes width and access to limited registers in
the original Thumb code, the performance is generally not as good as ARM code.
Some architectures support 32-bit and 16-bit mixed instructions without mode
changing, such as Thumb-2 [9]. Thumb-2 is a carefully designed ISA which can

 NISD: A Framework for Automatic Narrow Instruction Set Design 273

provide both 16-bit and 32-bit instructions in Thumb-2 mode. Although Thumb-2 is a
big improvement over Thumb and can be seen as a separate instruction set, it still
needs more instructions than ARM to finish some work.

Mixed code generation domain is also widely studied. Krishnaswamy and Gupta
presented several coarse-grained heuristics with varying costs to make the decisions
between using ARM and Thumb code at module level [1]. Each module of the
program is either compiled entirely into Thumb code or entirely into ARM code.
They use heuristic algorithm to choose between ARM and Thumb code for each of
the frequently executed functions which are picked out by profiling. These heuristic
algorithms all need to generate both ARM and Thumb codes for all of the frequently
executed functions and the compiler misses the opportunity to achieve greater code
size reduction by encoding parts of a function into 16-bit code.

A fine-grained method is also given and evaluated in [1]. The authors began with
the coarse-grained mixed code and identified patterns of Thumb instruction sequences
that are better executed using ARM instructions for each function and replaced these
patterns with equivalent ARM code. However, the cycle counts are usually increased
due to the cost of using two BX instructions per pattern and thus it exhibits no
advantage over their coarse grained method.

Several other fine-grained mixed code generation methods are suggested in [6][7].
These methods usually used explicit mode-changing instructions to switch between
the 32-bit and 16-bit modes. The extra mode-changing instructions in mixed code also
lead to extra program execution cycles. The method in [10] proposed several Mode-
Changing instructions that can switch the processor mode while performing a normal
operation. These Mode-Changing instructions should be the ones frequently occurring
in the programs so as to provide a mode-changing instruction when needed. In this
method, the program is firstly compiled into the normal IS (32-bit), and then the
compiler tool-chain will identify the proper instruction sequences and re-encode them
with narrow IS. A narrow instruction sequence always begins with an MC instruction
which performs the same functional operation as its corresponding instruction in
normal IS, as well as telling the processor to change its execution mode into narrow
mode. It ends with such an MC instruction, too, which tells the processor to change its
execution mode back to the normal one. Each of the instructions between the two MC
instructions has a corresponding instruction in the narrow IS. They are changed into
narrow mode one by one, so as to reduce the code size and to avoid loss of
performance. Our mixed-code generation method is based on this method.

2.2 Instruction Set Extension Design Tools

As embedded systems often aim at certain domain and have relative fixed
applications, several works have been done on ways to extend an initial instruction set
to adapt to a specific application domain. A number of publications propose to either
statically analyze data flow graphs to find chances for new instructions or taking
execution frequency into account [14][15]. Most of these publications rely on a
specification language to generate compilers and simulators. The main difference
between designing a narrow IS and a normal one is that the former often requires a
one-to-one mapping relation from a narrow instruction to a normal one. This brings
some new features into the design requirements.

274 X. Liu, J. Zhang, and X. Cheng

The work presented in [11] on narrow IS design uses EXPRESSION Architecture
Description Language (ADL) to model the narrow ISA features. The processor
architecture with the desired narrow ISA features is described using EXPRESSION
ADL and the description is input to the EXPRESS retargetable compiler and
SIMPRESS simulator. Then the applications are compiled, simulated and the code
size and performance statistics is generated for analysis. However, the several narrow
ISAs to be evaluated are given by the authors from profiles, rather than generated by
the tool, thus it still needs a lot of human involvement.

3 NISD Overview

In this section, we introduce the framework of our narrow instruction set design tool
(NISD). We take the mode-changing mechanism and the fine-grained mixed code
generation method presented in [10].

The task of designing a dual-width IS based on the original wide ISA is to design a
Mode-Changing Instruction Set and a narrow IS, both of which is a subset of the
original wide ISA. Process of automatically selecting instructions for narrow IS is
shown in Fig. 1.

Fig. 1. Narrow IS Design Workflow

We start with the original compiler and simulator with only the normal IS. The MC
instruction set and the narrow instruction set are both empty. The original ISA of the
processor is described in our Instruction Set Description Template (ISDT). A set of
typical application programs on the target embedded system is also given.

Firstly, the application programs are compiled and analyzed. The analyzer records
occurrence frequency of each instruction and provides the list of narrow instruction
candidates sorted by frequency. The initial narrow IS contains the instructions with
the highest frequencies. The details of collecting frequency and generating the initial
narrow IS are described in Section 4. We should notice that occurrence frequency is

 NISD: A Framework for Automatic Narrow Instruction Set Design 275

only one heuristic used to design a narrow IS. Whether one instruction in a certain
sequence will be encoded into narrow form is determined by the whole narrow
instruction set and the compiler tool-chain. Thus the instruction with the highest
occurrence frequency is not necessarily the one which will be encoded into the narrow
form most, that is, to add this instruction into narrow IS might not provide the highest
compression rate. In this consideration, after given the sorted instruction list and the
initial narrow IS by the analyzer, the narrow IS will be used in the compiler tool-chain
to do mixed-code generation. An iterative process is taken to evaluate the effect of the
narrow IS and the IS will be modified according to the feedback.

In the iterative process, the analyzer generates the suggested IS in the form of our
ISDT. The compiler compiles all the programs into mixed code and evaluates how
much code size reduction can be achieved using each suggested narrow IS. The phase
of mixed code generation is taken as a post-processing phase of the compilation. The
key idea of the mixed code generation is to identify instructions which can be
converted into MC IS and narrow IS, reschedule the code to move such instructions
together into contiguous blocks and use MC instructions and narrow instructions to
represent them. In the end of an iterative, the effect of each narrow instruction is
collected. The weights in the narrow instruction candidate list will be updated and the
list will be re-sorted. Details will be presented in Section 4.

Finally, the narrow IS with the highest average compression rate is selected. The
simulator is also modified automatically at the same time, in order to check whether
there will be any important performance difference.

4 Selecting Instructions Using NISD

In this section, we take UniCore as an example to describe our method. UniCore is a
pipelined RISC processor developed by Microprocessor Research and Development
Center of Peking University. It has been taped out and used in thin-client systems
with small local storages. In UniCore processor, there are two instruction sets of
different widths: the 32-bit UniCore32 instruction set and the 16-bit UniCore16
instruction set. The UniCore32 instructions can access all 32 integer registers and
have instructions designed aiming at efficiently support digital signal processing and
some features in high level languages, such like multiply-accumulate operation, data
block translating operations, etc. The Mode-Changing instructions are 16-bit wide and
are used to change processor execution mode between 32-bit mode and 16-bit mode
as well as performing their normal operations. When executing a UniCore16
instruction, the pre-decoder first turns it into the corresponding UniCore32 instruction
and then decodes and executes the UniCore32 instruction. We show the design
process of UniCore16 IS in this section. The evaluation is given in the next section.

4.1 Program Analysis and Initial Narrow IS Generation

Our program analysis maps each 32-bit instruction to one or several instruction
classes, records the occurrence frequencies and gives the sorted instruction candidate
list. The classes are mainly based on the opcode and operand type. The latter includes:
how many operands there are in the instruction and how many bits each of them

276 X. Liu, J. Zhang, and X. Cheng

needs. The classes need to be given by experts. The given classes should contain the
ones which are convenient to be represented in 16 bits.

Due to the limited encoding space and the requirement of ease to decode, there are
many restrictions in narrow IS design. Simplicity prefers regularity. RISC processors
often use some set of fixed bits to specify opcodes and several types of operands. In
typical narrow IS, such as Thumb, MIPS16 and UniCore16, etc. most of the narrow
instructions can only access a fixed set of 8 registers. Each register operand requires 3
bits for specification. In this situation, there will be 7 bits left to specify the opcodes,
thus 128 opcodes can be encoded in total. Although this form is popular in many
processors, there can be other forms, too. For example, we can use 4 bits to represent
each register operand, and there can be 16 opcodes in total. We can also mix these
two types of instruction forms. The instruction classes we used are listed in Fig. 2.

3 regs, in r0-r7 / r8-r15 / r16-r23/ r24-r31
3 regs, in r0-r15 / r16-r31
2 regs, in r0-r31
1 reg, in r0-r31
2 regs and 1 imme, regs in r0- r15 / r16-r31, imme: 4 bits
1 reg and 1 imme, imme field: 4bits or 7 bits
1 imme, imme field: 9 bits or 12bits
Other

reg: short for register
imme: short for immediate field

Fig. 2. Instruction operand forms for 16-bit IS

For each instruction in a program, the analyzer finds out which classes it belongs to
and increments the occurrence frequency number of relative classes. The classes may
have intersections. In some cases, an instruction can belong to several classes. Take
“add r0, r2, r3” for example. This instruction can be mapped to both “add, 3 regs, in
r0=r7”class and “add, 3 regs, in r0-r15” class. Each frequency number of the two
classes will be incremented.

The analyzer maintains an array INST[OP][ARGFORM] to record the occurrence
frequency of each instruction class. If an instruction’s operands match one of the
listed forms, the relative item in INST[OP][ARGFORM] will be incremented. If an
instruction’s operand form do not belong to any of the listed forms, the item
INST[OP][Other] is incremented.

After the frequency statistics of the application programs, the analyzer sorts the
items of array INST according to their values, that is, the occurrence frequencies of
the instructions. One narrow IS candidate suggested by the analyzer concludes the
instructions with the highest frequencies. The analyzer repeats adding the instruction
with the highest frequency into the IS and removing it from the sorted array, until the
instruction set is full. The number of instructions in the IS is determined by the
selected instructions. For example, if the selected instructions are all of “3 regs, all in
r0-r15 / r16-r31” operand form, which means each of them needs 12 bits to represent

 NISD: A Framework for Automatic Narrow Instruction Set Design 277

operands, the IS has 16 instructions in total. If the selected instructions are all of “3
regs, in r0-r7 / r8-r15 / r16-r23/ r24-r31” operand form, the IS has 128 instructions in
total. The mixed IS’ size will be between the two numbers.

Just as the design of any instruction set architecture, the design of narrow IS should
also have the compiler tool-chain and application programs in the loop. In this
consideration, the suggested narrow IS candidate will be used in the compilation to do
mixed-code generation and be evaluated. Our instruction set description template used
to guide mixed-code generation is described in Section 4.2 and the iterative design
and evaluation process is presented in Section 4.3.

4.2 Instruction Set Description Template

The analyzer generates the narrow IS candidate in the form of our Instruction Set
Description Template (ISDT). We take the mixed-code generation phase in a post-
processing phase in the tool-chain, which is, a link-time optimization phase, as
described in [10]. The intermediate language of the post-processing tool is a low-level
language, specifying the opcode, used registers, immediates and so on.

Our ISDT is designed to match its intermediate language, as shown in Fig. 3. It has
several fields describing its opcode and operands’ requirements. The opcode field
identifies the operation of the instruction, e.g. ADD, SUB, etc, which is a subset of
the opcode set of the normal IS. The opmask_16 field determines the fixed bits of the
instruction, which is used for generating the binary code. The argform field is
consistent with instruction operand forms shown in Fig. 2. Some of the instructions is

Fig. 3. Instruction Set Description Template for UniCore

struct inst_template
{
 T_OPCODE opcode;
 T_INT opmask_16;
 T_ARGFORM argform;
 T_CONDITION cond;
 T_INT reg_dest_base;
 T_INT reg_dest_mask;
 T_INT reg_dest_shift;
 T_INT reg_source1_base;
 T_INT reg_source1_mask;
 T_INT reg_source1_shift;
 T_INT reg_source2_base;
 T_INT reg_source2_mask;
 T_INT reg_source2_shift;
 T_BOOL is_signed_imme;
 T_INT imme_mask;
 T_INT imme_shift;
 T_INT opmask_32;
 T_INT reg_dest_shift_32;
 T_INT reg_source1_shift_32;
 T_INT reg_source2_shift_32;
 T_INT reg_imme_shift_32;
};

278 X. Liu, J. Zhang, and X. Cheng

conditional executed, and the cond field shows which conditions are allowed to be
encoded into this instruction. There can be at most 3 register operands in the 16-bit IS
for UniCore: one destination register and two source registers, described in our ISDT
by reg_dest, reg_source1 and reg_source2 separately. For reg_dest, we take 3 fields to
describe its limits. The reg_dest_base field shows the lowest presentable register
number for reg_dest of this instruction. The reg_dest_mask field shows the number of
bits used for this register operand, and the reg_dest_shift field shows the beginning
position of this register operand in the binary representation of this instruction. For
example, if the destination register in this instruction ranges from R15 to R23, and bit
6-bit 8 represent this register number, we can define these three fields as follows:

reg_dest_base = 15; reg_dest_mask = 0x7; reg_dest_shift = 0x6;

The upper bound of destination register number is the sum of reg_dest_base and
reg_dest_mask. When reg_dest_mask is zero, it means this instruction should not
contain any destination register. The source registers and the immediate fields are
described in the same way. The rest of the fields are used for generating the
corresponding 32-bit instruction for simulator. When performing instruction
execution simulation, the simulator fetches an instruction and checks if it is in the 32-
to-16 Mode-Changing IS table. If so, it converts upper half of it into the relative 32-
bit instructions, changes the CPU execution mode and goes on execution. The process
of changing CPU mode back to 32-bit mode is almost the same.

4.3 Compiler-in-the-Loop Narrow IS Design and Evaluation

The iterative process of narrow IS design and evaluation phase is illustrated in Fig. 4
After the analyzer generates the sorted narrow instruction candidate list and gives

the initial narrow IS in the form of ISDT, the mixed-code generation and narrow
instruction evaluation phase is called. This phase contains the following steps:

(1) Narrow instruction table creation
The narrow instruction table is created from the ISDT. It contains three parts: the
32-to-16 Mode-Changing instruction table, the UniCore16 instruction table and the
16-32 Mode-Changing instruction table.

(2) Mixed-code generation and narrow instruction evaluation
I. Mark instructions which are in the current narrow instruction table. The
processor scans each instruction and marks all instructions which are in the current

Fig. 4. The Iterative Process of Narrow IS Design and Evaluation

 NISD: A Framework for Automatic Narrow Instruction Set Design 279

narrow instruction table, that is, which can be encoded into an MC instruction or a
general UniCore16 instruction. In the case of branch instructions or load/store
instructions, we should calculate the current relative offsets to decide whether one
instruction can be coded into one MC instruction or UniCore16 instruction. The
actual relative offsets might be smaller after turning some instructions into 16 bits,
but it will not be larger than the value calculated now.
2. Instruction schedule. The dependence between each pair of instructions in each
basic block is analyzed. The instructions are moved to let more marked instructions
be together, thus to generate longer narrow instruction sequence.
3. Mark narrow instruction sequences. The post-processor scans the instructions
form the beginning of each basic block. When it meets the first instructions which
can be changed to a 32-to-16 MC instruction, it records that the 16-bit instruction
sequence begins. After it has scanned the longest narrow instruction sequence
ended with a 16-to-32 MC instruction, it changes each instruction to MC or
UniCore16. Then it begins a new procedure of scanning until the end of the basic
block. The count of each MC or UniCore16 instruction is incremented according to
the times it is used.
After all the basic blocks are dealt with, mixed-code generation phase is finished.

(3) Narrow Instruction List Weight Update and Re-sort
The weight of each narrow instruction candidate in the list is updated according
to the usage count in the compilation of the application programs. How to update
the weight is a matter of question, and we currently use the following method. For
each instruction in the list, if the instruction is also in the suggested narrow IS,
the usage count of it will be used as its new weight. Thus if an instruction is in the
narrow IS and it has seldom be used during the entire compilation process of all the
application programs, its weight will get very low, no matter how high its original
value is. After the weight update, the narrow instruction candidate list will be re-
sorted according to the new weight. If the selected IS has come to a fixed point, or
the iterative count is equal to the threshold, the iterative process will be finished,
and the narrow IS will be exported.

5 Evaluation

In this section, we illustrate the effect of our technique by presenting the experimental
results of the automatic narrow IS design for UniCore. The mixed-code generation
phase is implemented as a post pass of GNU tool-chain (gcc 3.2.1). We use
mediabench as our benchmark. Each program is compiled with GCC “–O2” level of
optimization.

5.1 Code Size Reduction Rate

We compare the code sizes of the programs in a normal IS and the one in mixed-code
with our automatically generated narrow IS. The code size reduction rates of the mixed
code are shown in Fig. 5. We can see from the figure that the mixed code reduces the
program sizes of UniCore32 by 14% to 18%, with an average of 16% code size
reduction, and no performance loss. The cycle counts of mixed code are as shown in

280 X. Liu, J. Zhang, and X. Cheng

Fig. 6, normalized to the normal programs. The experiment shows that the method can
work well without human designers and can provide a foundation for further refine.
Further more, it generates relatively good results for all the programs. However, the
average reduction rate seems to be not as good as some results reported by some fine-
tuned narrow instruction set, such as Thumb. This is partly because of the mixed-code
generation method we used. As described before and in [10], this fine-grained mixed-
code generation method focuses on ensuring no performance loss as well as getting a fine
code size reduction rate. The results reported in [3] and [9] both get higher code density
at the cost of lower performance. In the future, the performance and code size requires
should be added to the framework, to generate instruction set in balance of performance
and code density. There are also many details to be adjusted in the framework, e.g., the
given instruction oprand types, the way to update instructions’ weights, and so on. We
are planning to refine these parts in the future.

Fig. 5. Code Size Reduction Rate

Fig. 6. Normalized Cycle Counts

 NISD: A Framework for Automatic Narrow Instruction Set Design 281

5.2 Variations of Generated Narrow ISs

Fig. 7 shows the average code size reduction rates of different iterative parse. We can
see from the figure that although the initial narrow IS contains the instructions with
highest frequencies; the compress rate is relatively low. As NISD iteratively updates
the narrow IS, the compress rate gets higher. In our experiments, after the forth
iterative, the compress rate begins to grow slowly. This curve and the final IS may be
affected by the way of updating the narrow IS. A further study of how to update the
narrow IS from the feedback is still desirable.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 4 5 6 7

iterative parse

Fig. 7. Average Code Size Reduction Rate of Different Iterative Parse

6 Conclusion and Future Work

In this paper, we present a framework of fast automatic narrow instruction set design.
aiming at generating instruction set tailored to particular applications for embedded
systems. The set of applications is analyzed and the suggested narrow instruction set
is used in the post-process parse of compilation to generate mixed code. Then the
effect of each instruction in the set is evaluated and the instruction set is updated
according to the feedback. In such an iterative process, when designing a narrow
instruction set for a specific application domain, an Instruction Set Description
Template (ISDT) is used to describe the current narrow instruction set. The core part
of mixed-code generation gets the narrow IS information from the ISDT and the IS is
automatically updated through modifying its ISDT representation. Thus it needs no
human designers to be involved in.

With the shown experimental results, we can see that this method can work well
with out human designers. The code size reduction rates of programs vary between
14% and 18%, with no performance loss. There are also many details to be adjusted in
the framework. We are planning to add trade-off of performance and code density in
our framework, to let designers add system requirements. Further more, different
programs have different code size, and thus they should have different weights, too.
We should take this into consideration. The way to update instructions’ weights
should be studied as well.

282 X. Liu, J. Zhang, and X. Cheng

References

1. The HiPEAC Roadmap on Embedded Systems.
2. A. Krishnaswamy, R. Gupta. Profile Guided Selection of ARM and Thumb Instructions.

ACM SIGPLAN Joint Conference on Languages Compilers and Tools for Embedded
Systems & Software and Compilers for Embedded Systems, pp. 55-64 June 2002

3. L. Goudge, S. Segars. Thumb: Reducing the Cost of 32-bit RISC Performance in Portable
and Consumer Applications. Proceedings of the 41st IEEE International Computer
Conference, pp.176, 1996

4. MIPS32 Architecture for Programmers Volume IV-a: The MIPS16 Application Specific
Extension to the MIPS32 Architecture. 2001

5. X. Ma, Y. Kwon and H. J. Lee. PARE: Instruction Set Architecture for Efficient Code Size
Reduction. Electronics Letters 25th Nov'99 Vol. 35 No. 24 pp. 2098-2099, 1999

6. S. Lee, J. Lee, S. Min, J. Hiser and J. W. Davidson, Code Generation for a Dual
Instruction Set Processor based on Selective Code Transformation. Proceedings of the 7th
International Workshop on Software and Compilers for Embedded Systems, pp.33-48,
Sep. 2003

7. A. Halambi, A. Shrivastava, P. Biswas, N. Dutt, A. Nicolau. An Efficient Compiler
Technique for Code Size Reduction using Reduced Bit-width ISAs. Design Automation and
Test in Europe, March 2002

8. A. Krishnaswamy, R. Gupta. Enhancing the Performance of 16-bit Code Using
Augmenting Instructions. ACM SIGPLAN Conference on Languages Compilers and
Tools for Embedded Systems, June 2003

9. R. Phelan. Improving ARM Code Density and Performance. Technical report, ARM
Limited, 2003

10. X. Liu, J. Zhang and X. Cheng. Efficient Code Size Reduction without Performance Loss.
Proceedings of the International Symposium on Applied Computing (SAC), March.
2007. Seoul, Korea.

11. A. Halambi, A. Shrivastava, P. Biswas, N. Dutt and A. Nicolau. A Design Space
Exploration Framework for Reduced Bit-Width Instruction Set Architecture (rISA) Design.
Proceedings of the International Symposium on System Synthesis (ISSS), Oct. 2002.
Kyoto, Japan.

12. UniCore32 ISA and Programming Manual. Microprocessor Research Center of Peking
University, 2002.

13. C. Lee, M. Potkonjak and W. H. Mangion-Smith. MediaBench: A Tool for Evaluating and
Synthesizing Multimedia and Communications Systems. Proceedings of the 30th Annual
International Symposium on Microarchitecture, pp.330-335, Dec. 1997.

14. U. Kastens, D. K. Le, A. Slowik and M. Thies. Feedback Driven Instruction-Set
Extension. Proceddings of LCTES, 2004.

15. A. Peymandoust, L. Pozzi, P. Ienne, and G.D. Micheli. Automatic Instruction Set
Extension and Utilization for Embedded Processors. Proceedings of 14th International
Conference on Application-specific Systems, Architectures and Processors, 2003.

A Hardware/Software Cosimulator with RTOS

Supports for Multiprocessor Embedded Systems

Takashi Furukawa, Shinya Honda, Hiroyuki Tomiyama, and Hiroaki Takada

Takada Laboratory, Graduate School of Infomation Science, Nagoya University,
Nagoya 464-8603, Japan

{furukawa,honda,tomiyama,hiro}@ertl.jp

Abstract. This paper presents a hardware/software cosimulator for mul-
tiprocessor embedded systems. Our cosimulator consists of multiple soft-
ware simulators each of which simulates a set of application tasks together
with an RTOS running on a processor, multiple hardware simulators and
a cosimulation backplane. All of the simulators are executed concurrently
with communication. Our cosimulator supports two types of communi-
cation; one is based on Remote Procedure Call (RPC), and the other is
based on a shared memory on a host computer. Using the cosimulator, we
successfully performed cosimulation of an MPEG encoder/decoder system
with two processors and some peripheral circuits.

Keywords: Cosimulation, RTOS, Multiprocessors, Embedded Systems,
ITRON.

1 Introduction

Nowadays, real-time operating systems (RTOSs) have become one of the most
important components in embedded systems due to the growing complexity of
the system functionalities as well as the pressure to time-to-market. Thus, system
designers need a cosimulator which simulates not only application software and
hardware but also RTOS.

In our past study, we had developed a hardware/software cosimulator which
supports an RTOS [1] [2]. The organization of the cosimulator is shown in
Fig. 1. The cosimulator provides an RTOS simulation model which completely
conforms to a standardized RTOS API, i.e., the μITRON standard [3] [4].
μITRON is one of the most popular RTOSs in Japan for small- to middle-scale
embedded systems such as cellular phones and automotive controllers. μITRON
is not a specific RTOS product, but is an API standard, so a number of ITRON-
compliant RTOSs exist. The RTOS model is compiled and linked with applica-
tion software tasks to generate a software simulator which is directly executable
on a host computer. Due to the native execution, the cosimulator is much faster
than traditional cosimulators which use an instruction-set simulator (ISS) of
the target processor for software execution. The cosimulator can cooperate with
various types of hardware simulators such as HDL simulators, the SystemC ref-
erence simulator [5], and functional hardware models written in C or C++. The

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 283–294, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

284 T. Furukawa et al.

Fig. 1. Cosimulator for single processor systems

software simulator and hardware simulators are executed concurrently, commu-
nicating with each other. The communication is enabled by a backplane tool
named Device Manager (DM). DM can connect multiple simulators and sup-
ports synchronization and communication between them. For connection of the
simulators, DM uses Component Object Model (COM), which is standard remote
procedure calls (RPCs) on MS-Windows [6]. Therefore, various simulators can
be connected with DM easily. However, the cosimulator supports only single
processor systems although multiprocessors are increasingly used in embedded
systems in order to achieve both high performance and low power consumption.
Another drawback of the cosimulator is the large communication overhead due
to the COM-based implementation.

In this study, we have significantly improved the cosimulator in two ways.
One is support for multiprocessor systems, and the other is support for faster
communication based on a shared memory on a host computer. In summary, our
new cosimulator features

• cosimulation for multiprocessor systems,
• native (hence fast) simulation of application software,
• complete support of a standard RTOS,
• simulation of various hardware simulators such as HDL simulators, the Sys-

temC simulator and C/C++ functional models, and
• two types of communication; flexible communication based on RPCs and

fast communication based on a shared memory on a host computer.

To our knowledge, no other cosimulator supports all of the five features.
This paper is organized as follows. Section 2 presents related work on hard-

ware/software cosimulation with RTOS supports. Section 3 describes the cosim-
ulator which we have developed. A case study with an MPEG encoder/decoder
application is presented in Section 4. Section 5 concludes this paper with a
summary.

A Hardware/Software Cosimulator with RTOS Supports 285

2 Related Work

Due to the increasing importance of RTOSs in embedded systems, several re-
searchers have recently studied cosimulation of not only hardware and applica-
tion software but also RTOSs.

Generic RTOS simulation models in system-level description languages are
developed for cosimulation of hardware and software including RTOS [7] [8].
After cosimulation with the RTOS models, system designers select a real RTOS
to obtain a final implementation code. Since most of such generic RTOS models
support a minimal set of the service calls, the designer needs to replace the
service calls of the generic RTOS in application software with those of the real
RTOS. However, replacement of the service calls is time-consuming and may
embed errors into application software. Those errors can hardly be found until
cosimulation using an ISS. Note that cosimulation with the ISS is very slow,
although some advanced techniques (e.g., virtual synchronization [9]) are studied
for acceleration.

In our past literature [1] [2], we presented a cosimulator including a simulation
model of a standard RTOS which is used in the final implementation. Therefore,
the system designer does not have to rewrite the application software. However,
the cosimulator does not support multiprocessor systems although they have
now become popular.

Another approach to embedded software design is presented in [10], where an
application-specific RTOS and its simulation model are automatically generated.
In their approach, application software is analyzed first, and then only the RTOS
services needed by the application software are included in the final RTOS. The
work is similar to ours in that a set of services which can be used in application
software is pre-defined. The major difference is that their work puts a special
focus on customizing an RTOS while our methodology is based on a standard
RTOS.

3 Cosimulation for Multi-processor Systems

3.1 Overview

This section describes the cosimulator which we have developed. The overall
structure of the cosimulator is shown in Fig. 2. Our cosimulator consists of mul-
tiple software simulators, multiple hardware simulators, and Device Manager
(DM). Each of the software simulators simulates a set of application tasks and
an RTOS running on a processor. Each software simulator includes a simulation
model of the RTOS. The RTOS model is compiled and linked with the appli-
cation tasks to generate the software simulator which is directly executable on
a host computer. Various types of hardware simulators can be executed such as
HDL simulators, the SystemC reference simulator [5] and functional hardware
models in C/C++.

Each of the components of the cosimulator, i.e., the software simulators,
the hardware simulators and DM, is executed as an application on an MS

286 T. Furukawa et al.

Fig. 2. Improved cosimulator for multiprocessor systems

Windows-based host computer. The simulators are executed concurrently with
communication (i.e., read/write accesses from processors to hardware modules)
and synchronization (i.e., interrupts from hardware modules to processors or be-
tween processors). Our cosimulator features two types of communication
mechanism: one is flexible communication based on RPC, and the other is fast
communication based on a shared memory on the host computer.

3.2 Flexible Communication by RPC

For communication from software simulators to hardware simulators, our cosim-
ulator supports flexible communication by RPC.

In our cosimulator, memory mapped I/O is assumed. Thus, unique addresses
are mapped to hardware simulators. DM manages the map of the addresses and
the hardware simulators. When a software simulator needs to perform a read or
write access to a hardware simulator, first the software simulator sends an access
request with an address, and then DM selects an appropriate hardware simulator
with the address map, and transfers the request to the hardware simulator.

The transfers of requests are implemented with a standard RPC on MS-
Windows, COM. COM is a mechanism for communications between MS-Windows
applications. COM enables communication which does not depend on program-
ming language because COM is a binary standard. COM is supported in several
languages, e.g., C, C++, Visual BASIC and Java. In order to connect and com-

A Hardware/Software Cosimulator with RTOS Supports 287

municate with each other, software simulators, hardware simulators and DM
have their COM objects. In an initial setting phase, each of the simulators con-
nects to DM (which is a server application), and exchanges pointers of the COM
objects. Then, they can communicate with each other by RPC with the pointers.
The COM communications are used for read/write accesses from processors to
hardware modules at cosimulation time.

ITRON project [3] defines a hardware access interface, thus application soft-
ware on an ITRON-based RTOS can execute reads and writes with the defined
interface in final implementation. Since our RTOS simulation model supports
the same interface, application software on our cosimulator can execute reads
and writes with the same interface at cosimulation phase. Therefore, applica-
tion software does not have to be modified from the cosimulation phase to the
implementation phase.

Application software reads and writes hardware devices using the interface as
follows.

x = sil_rew_mem(address); // x = *address;
sil_wrw_mem(address,x+1); // *address = x+1;

These APIs are compiled to RPC calls to DM with our RTOS simulation model
at cosimulation phase, and are compiled to accesses to target addresses with a
real RTOS at implementation phase.

When the software simulator calls an RPC of DM with an address (and a value
to write), DM compares the address and the address map to find a corresponding
hardware simulator, and then DM calls an RPC of the hardware simulator.
In order to realize this mechanism, the address map consists of addresses and
pointers, which point at COM objects for corresponding hardware simulators
(Sa and Sb in Fig. 2).

When DM calls an RPC of the hardware simulator, the hardware simula-
tor performs a read or a write. The RPC functions provided by the hardware
simulators define detail of behaviors for read and write accesses.

To summarize, the RPC-based communication for read/write accesses is exe-
cuted in the following way.

• A software simulator calls an RPC of DM with an address.
• DM selects an appropriate hardware simulator with the address map and

calls an RPC of the hardware simulator.
• The hardware simulator performs a read or a write.

For the RPC-based communications, some initial settings need to be executed.
Each of the software simulators and the hardware simulators connect to DM and
exchange their pointers of COM objects immediately after they are invoked. Also,
DM sets the address map by RPC calls from hardware simulators.

3.3 Fast Communication by Shared Memory

Although RPC-based communication is flexible, it imposes large overheads of
simulation speed. Our cosimulator also supports a fast communication based on

288 T. Furukawa et al.

Fig. 3. Shared memory in our cosimulator

shared memory mechanism of MS-Windows. If some of concurrently executed
simulators simply access shared memory, however, the memory conflicts may
happen. For example, assume that one simulator (named SimA) reads a shared
variable (named x), another simulator (named SimB) reads and modifies x,
and then SimA modifies x. The final modification by SimA does not take into
account the previous modification by SimB. In order to prevent such shared
memory conflicts, our cosimulator also supports lock mechanism. Fig. 3 shows
the structure of our cosimulator with shared memory. When a software simulator
needs to perform a read or write access to a hardware simulator, in the case of
the shared memory-based communication, first the software simulator acquires
a lock by a lock request, directly accesses to a shared memory not via DM, and
releases the lock by an unlock request. Note that the software simulators can
perform any number of accesses between the lock and the unlock.

To support the lock mechanism, DM has a lock list which consists of locked
address spaces. When a software simulator needs to acquire/release a lock, the
software simulator calls an RPC of DM with an address space, and then DM
adds/removes the address space to/from the lock list. After the software sim-
ulator acquires the lock, it accesses to a shared memory with a pointer of the
shared memory.

The shared memory-based communications for read/write accesses are exe-
cuted as follows.

• A software simulator calls an RPC of DM with an address space to acquire
a lock.

• DM adds the address space to the lock list.
• The software simulator directly accesses to the shared memory once or mul-

tiple times.
• The software simulator calls an RPC of DM with the address space to release

the lock.
• DM removes the address space from the lock list.

A Hardware/Software Cosimulator with RTOS Supports 289

In order to acquire and release locks, the shared memory-based communications,
as well as the RPC-based communications, need RPC. Thus, if the software
simulators acquire and release a lock for each access, the shared memory-based
communications also impose large overheads of cosimulation speed. However, as
mentioned above, the software simulators can perform any number of accesses
between the lock and the unlock, and then the shared memory-based communi-
cations can be performed faster than the RPC-based communications.

The lock list is simply initialized to empty. Some other initial settings are
needed in order to use shared memory on MS-Windows. Unique addresses are
mapped to shared memory objects. Each simulator which accesses to shared
memory requests to create shared memory objects by calling an RPC of DM
with the addresses and the sizes of the objects. When DM receives the request,
DM generates a unique name of the shared memory object from the address,
creates shared memory space in virtual memory of MS-Windows, and generates
a shared memory object there with the generated name. Then, DM returns the
name to the simulator, and the simulator opens the object with the name. Each
shared memory object is created or opened as follows.

• A simulator calls an RPC of DM with an address and the size of a shared
memory object to create the object.

• DM generates a unique name from given address, creates the shared memory
object with the given size and the generated name, and returns the generated
name to the simulator. Note that if the shared memory object already exists,
DM only increments its reference counter.

• The simulator opens the shared memory object with the returned name.

3.4 Interrupts

Our cosimulator also supports synchronizations, i.e., interrupts from hardware
modules to processors or between processors. In order to identify the software
simulators, unique processor IDs are mapped to the software simulators. DM
manages the map of the processor IDs and the software simulators. In target
systems, interrupts are performed immediately by interrupt signals at any time
except for when CPU is locked or the interrupts are masked (hence ignored).
In our cosimulator, the interrupts are performed immediately by RPC calls.
When a simulator needs to interrupt a software simulator, first the simulator
calls an RPC of DM for interrupt request, and then DM selects the software
simulator where the interrupt request should be transferred, and calls an RPC
of the software simulator. The argument of the interrupt request is organized
by a processor ID allocated to higher bits and an interrupt number allocated to
lower bits as shown in Fig. 4.

In order to generate interrupts by application tasks, our RTOS simulation
model supports an interface for interrupt request. The API is compiled to an
RPC call of DM with our RTOS simulation model at cosimulation phase, and is
compiled to an interrupt generation with a real RTOS at implementation phase.
Hardware simulators also can request interrupts by calling RPC of DM.

290 T. Furukawa et al.

Fig. 4. Structure of argument for interrupt request

When the RPC of DM is called for interrupt, DM compares the processor
ID and the processor ID map to find an appropriate software simulator, and
calls an RPC of the software simulator. In order to realize this mechanism, the
processor ID map consists of the processor IDs and pointers of COM objects for
corresponding software simulators. Then, the software simulator suspends a task
and calls an interrupt handler with a virtual interrupt mechanism in our RTOS
simulation model.

The interrupts are performed as follows.

• A simulator calls an RPC of DM with a processor ID and an interrupt
number.

• DM selects an appropriate software simulator by comparing the processor ID
map and the given processor ID, and calls an RPC of the software simulator.

Fig. 5. Flow and hardware organization of the MPEG encoder/decoder

A Hardware/Software Cosimulator with RTOS Supports 291

• The software simulator performs the interrupt by suspending a task and
calling an interrupt handler.

Our RTOS simulation model also supports an interface for interrupt handler reg-
istration. The API is compiled to registration to the virtual interrupt mechanism
with our RTOS model at cosimulation phase, and is compiled to registration to
real interrupt mechanism with a real RTOS at implementation phase.

As the initial setting, DM sets the processor ID map by RPC calls from
software simulators.

4 Design Example

This section evaluates our cosimulator through two case studies with a MPEG
encoder/decoder example. This section also compares two types of commu-
nication with a simple write example. In these experiments, cosimulation is
performed on a dual Xeon 2.8GHz processor system each with dual-threaded
execution, running on MS-Windows XP.

4.1 A Case Study with an MPEG Encoder/Decoder

Fig. 5 shows the flow and organization of the MPEG encoder/decoder system.
MPEG encoder converts input data in the RGB format into the MPEG2 format,
and writes the data to shared memory on the target system. MPEG decoder

Fig. 6. Screenshot of cosimulation

292 T. Furukawa et al.

Fig. 7. Cosimulation time with two communication mechanisms

reads the data on the shared memory, converts the data into the RGB format,
and writes the output data to a buffer of a video graphics array (VGA) device.
The system consists of the VGA device, the buffer, the shared memory, a DCT
circuit, and two processors which execute application software each with an
RTOS. One processor executes encoding with the DCT circuit, and the other
processor executes decoding.

A Hardware/Software Cosimulator with RTOS Supports 293

Table 1. Cosimulation time of the MPEG encoder/decoder

System Type Cosimulation Time

with DCT circuit 262.427 sec/frame

without DCT circuit 0.766 sec/frame

We performed cosimulation of the MPEG encoder/decoder system. The VGA
device and the buffer are written in C++ as hardware models and simulated
by native execution. The DCT circuit is written in HDL and simulated by HDL
simulator ModelSim. The two processors are simulated by two software simula-
tors which are generated from our RTOS simulation model with encode/decode
applications. A screenshot of the cosimulation is shown in Fig. 6.

We also performed cosimulation of another MPEG encoder/decoder system
for comparison, which does not include the DCT circuit.

Table 1 shows cosimulation time of these two systems.

4.2 Comparisons of Communication Mechanisms

In the next experiment, we evaluated communication speed with two types of
communication mechanism. The systems for evaluation consist of N processors
(1 ≤ N ≤ 6), a VGA device and a buffer. Each processor writes 320× 320 pixels
to the VGA device.

We performed the cosimulation for 12 cases in total, where the number of
processors and communication mechanism are different. Fig. 7 compares the
cosimulation time. As the result, the cosimulation with the shared memory-
based communication is up to 53 times faster than the cosimulation with the
RPC-based communication.

5 Conclusion

RTOSs have become one of necessities in the design of complex embedded sys-
tems, and multiprocessors are increasingly used in embedded systems. This pa-
per presented our hardware/software cosimulator for multiprocessor embedded
systems, which supports Japanese standard RTOS. Our cosimulator performs
cosimulation by concurrent execution of software simulators and hardware sim-
ulators with communications. Each of the software simulators is automatically
generated from application tasks and an RTOS simulation model included in
our cosimulator and directly executable on a host computer. Our cosimulator
supports various types of hardware simulator such as HDL simulators, the Sys-
temC reference simulator and functional hardware model written in C/C++.
Our cosimulator also supports two types of communication; one is flexible com-
munication based on RPCs, and the other is fast communication based on a host
shared memory.

In future, we plan to develop distributed cosimulator running on multiple host
computers.

294 T. Furukawa et al.

Acknowledgment

This work was partially supported by JSPS Grant-in-Aid for Scientific Research
(B) #17300014.

References

1. S. Honda, T. Wakabayashi, H. Tomiyama, and H. Takada. “RTOS-Centric Cosim-
ulator for Embedded System Design”. IEICE Trans. Fundamentals, vol. E87-A,
no. 12:pages 3030–3035, Dec. 2004.

2. S. Chikada, H. Tomiyama, S. Honda, and H. Takada. “Cosimulation of ITRON-
Based Embedded Software with SystemC”. In Proc. of International High Level
Design Validation and Test Workshop (HLDVT), pages 71–76, Nov. 2005.

3. ITRON Project. http://ertl.jp/ITRON/home-e.html.
4. H. Takada and K. Sakamura. “μITRON for Small-Scale Embedded Systems”.

IEEE Micro, vol. 15, no. 6:pages 46–54, Dec. 1995.
5. SystemC Open Initiative. http://www.systemc.org/.
6. Microsoft Corporation. http://www.microsoft.com/.
7. D. Desmet, D. Verkest, and H. D. Man. “Operating System Based Software Gener-

ation for Systems-on-Chip”. In Proc. of Conference on Design Automation (DAC),
pages 396–401, 2000.

8. A. Gerstlauer, H. Yu, and D. D. Gajski . “RTOS Modeling for System Level
Design”. In Proc. of the Design, Automation and Test in Europe (DATE), pages
130–135, Mar. 2003.

9. Y. Yi, D. Kim, and S. Ha . “Fast and Time-Accurate Cosimulation with OS
Scheduler Modeling”. Design Automation for Embedded System, vol. 8, no. 2:pages
211–228, Aug. 2003.

10. S. Yoo, G. Nicolescu, L. Gauthier, and A. A. Jerraya . “Automatic Generation of
Fast Timed Simulation Models for Operating Systems in SoC Design”. In Proc. of
the Design, Automation and Test in Europe (DATE), pages 620–627, Mar. 2002.

http://ertl.jp/ITRON/home-e.html
http://www.systemc.org/
http://www.microsoft.com/

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 295–308, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Face Detection on Embedded Systems

Abbas Bigdeli1, Colin Sim2, Morteza Biglari-Abhari2, and Brian C. Lovell1

1 Safeguarding Australia Program,
NICTA, Brisbane, QLD 4000, Australia

{abbas.bigdeli,brian.lovell}@nicta.com.au
2 Department of Electrical and Computer Engineering
The University of Auckland, Auckland, New Zealand
{csim036,m.abhari}@auckland.ac.nz

Abstract. Over recent years automated face detection and recognition (FDR)
have gained significant attention from the commercial and research sectors. This
paper presents an embedded face detection solution aimed at addressing the real-
time image processing requirements within a wide range of applications. As face
detection is a computationally intensive task, an embedded solution would give
rise to opportunities for discrete economical devices that could be applied and
integrated into a vast majority of applications. This work focuses on the use of
FPGAs as the embedded prototyping technology where the thread of execution is
carried out on an embedded soft-core processor. Custom instructions have been
utilized as a means of applying software/hardware partitioning through which the
computational bottlenecks are moved to hardware. A speedup by a factor of 110
was achieved from employing custom instructions and software optimizations.

1 Introduction

The identification and localization of a face or faces from either an image or video
stream is a branch of computer vision known as face detection [1, 2]. Face detection has
attracted considerable attention over recent years in part due to the wide range of
applications in which it forms the preliminary stage. Some of the main application areas
include: human-computer interaction, biometrics, content-based image retrieval systems
(CBIRS), video conferencing, surveillance systems, and more recently, photography.

The existing visual sensing and computing technologies are at a state where reliable,
inexpensive, and accurate solutions for non-intrusive and natural means of human-
computer interactions are feasible. Biometrics is an evolving application domain for
face detection and is concerned with the use of physiological information to identify and
verify a person’s identity. In most cases, face recognition algorithms are designed to
operate on images assumed to only contain frontal faces [2]. Therefore, face detection is
required to first extract faces from an image prior to the recognition step. Examples of
commercial biometric systems are BioID [3] and ViiSage1. HumanScan is the company
that developed BioID; a multimodal system incorporating voice, lip movement and face
recognition to authenticate a person. This system implements a model-based face
detection algorithm based on the Hausdorff distance [4].

1 www.viisage.com

296 A. Bigdeli et al.

Another application area that can clearly benefit from face detection is surveillance
systems that would allow easier identification of criminals in public spaces. Shan et al
[5] presented a robust face recognition system specifically designed for Intelligent
CCTV systems. Another video surveillance system which has the capacity to detect
faces is that proposed by Kim et al [6]. More recently, FujiFilm2 and Nikon
Corporation3 have incorporated face detection technologies into some of their camera
series to automatically improve pictures taken under poor lighting conditions.

The majority of the research work to date has primarily focused on developing
novel face detection algorithms and/or improving the efficiency and accuracy of
existing algorithms. As a result, most solutions deployed (similar to the examples
given above) are typically high-level software programs targeted for general purpose
processors that are expensive and usually non-real-time solutions. Since face
detection is typically the first step and frequently a bottleneck in most solutions due to
the large search space and extensive amount of computationally intensive operations,
it is reasonable to suggest an embedded implementation specifically optimized to
detect faces. An embedded solution would entail many advantages including 1) low
cost, as only a subset of hardware components are required compared to the general
computer based solutions, 2) optimization of the face detection algorithms for real-
time operations independent of face recognition or other post-processing concerns and
3) integration with other technologies such as security cameras to create smart
devices.

Related Work
Now that reliable, accurate, and efficient face detection algorithms are available
coupled with advances in embedded technologies; low-cost implementations of robust
real-time face detectors can be explored. The most common target technologies are:
pure hardware, embedded microprocessors, and configurable hardware.

Pure hardware systems are typically based on very large scale integrated circuit
(VLSI) semiconductor technology implemented as application specific integrated
circuits (ASIC). Compared to the other technologies, ASICs have a high operating
frequency resulting in better performance, low power consumption, high degree of
parallelism, and well established design tools. However, a large amount of
development time is required to optimize and implement the designs. Also, due to the
fixed nature of this technology the resulting solutions are not flexible and cannot be
easily changed, resulting in high development costs and risk. Theocharides et al [7]
investigated the implementation of a neural network based face detection algorithm in
160 nm VLSI technology based on algorithm proposed by Rowley et al in [8, 9],
which has a high degree of parallelism.

On the other hand, software programs implemented on general purpose processors
(GPP) offer a great deal of flexibility, coupled with very well established design tools
that can automatically optimize the designs with little development time and costs.
GPPs are ideally suited to applications that are primarily made up of control processing.
However, they are disadvantaged because minimal or no special instructions are

2 www.fujifilmusa.com
3 www.nikonimagings.com

 Face Detection on Embedded Systems 297

available to assist with data processing [10]. Digital signal processors (DSP) extend
GPPs in the direction of increasing parallelism and providing additional support for
applications requiring large amounts of data processing. The drawbacks of
microprocessors (both GPPs and DSPs) are high power consumption, and inferior
performance compared to an ASIC. The performance of the final solution is limited to
the selected processor.

Finally, configurable platforms such as field programmable gate arrays (FPGA)
combine some of the advantages from both pure hardware and pure software
solutions. More specifically, the high parallelism and computational speed of
hardware, and the flexibility and short design time of software. By inheriting
characteristics from both hardware and software solutions, the design space for
FPGAs is extended for better trade-offs between performance and cost. These design
trade-offs are far superior to that of pure hardware or software solutions alone. From
an efficiency point of view, the performance measures for FPGAs, that is, operating
frequency, power consumption, and so on, are generally half way in between the
corresponding hardware and software measures.

Several configurable hardware based implementations exist, including that by
McCready [11] and Sadri et al [12]. McCready specifically designed a novel face
detection algorithm for the Transmogrifier-2 (TM-2) configurable platform. The
Transmogrifer-2 is a multi-board FPGA based architecture proposed by Lewis et al
[13]. The algorithm was intentionally designed with minimal mathematical operations
that could execute in parallel — engineering effort has been put in to reduce the
number of multiplications required. The implemented system required nine boards of
the TM-2 system, requiring 31,500 logic cells (LC). The system can process 30
images per second with a detection accuracy of 87%. The hardware implementation is
said to be 1,000 times faster than the equivalent software implementation.

On the other hand, Sadri et al [12] implemented the neural network based
algorithm proposed by Rowley et al [8] on the Xilinx Virtex-II Pro XC2VP20 FPGA.
Skin color filtering and edge detection is incorporated to reduce the search speed. The
solution is partitioned such that all regular operations are implemented in hardware
while all irregular control based operations are implemented on Xilinx’s embedded
hardcore PowerPC processor. This partitioning allows the advantages of both
hardware and software to be simultaneously exploited. The system operates at 200
MHz and can process up to nine images per second.

The examples presented illustrate the obvious compromises between accuracy and
algorithm robustness versus the amount of resources required. That is, to improve the
performance of the face detection algorithms, we must either increase the embedded
design complexity, which generally results in higher power consumption and
hardware costs, or settle for a lesser solution.

2 PC Based Software Prototype

The initial software prototype of the standard Viola-Jones algorithm was implemented
based on the trained classifiers provided in the Open Computer Vision Library

298 A. Bigdeli et al.

(OpenCV)4. The particular classifiers used in this implementation are those trained for
a base detection window size of 24x24 pixels. The classifiers are trained to detect
upright frontal faces. These classifiers were created and trained by Lienhart et al who
used a total of 8,000 training samples, of which 5,000 are face images and 3,000 non-
face images [14]. The accuracy of the implemented Viola-Jones face detection
algorithm was validated using a subset of images from the CMU + MIT face
databases, and images retrieved from a random web crawl.

To ensure that the results obtained can be compared with other published sources,
detection and false detection events use the definition of Lienhart et al [14], as
follows. A detection window is said to correctly identify a face if the following
criteria are satisfied:

i) The maximum displacement between the centre of the detected window and the
actual face do not exceed 30% of the actual face size.

ii) The difference between the detected window and actual face size does not
exceed 50% of the actual face size.

At ∆ = 1.0 and s = 1.255, the detection accuracy for the CMU+MIT image set is 80%.
This result is consistent with that presented by Lienhart et al [14]. On the other hand,
the detection accuracy for the web crawl image set is 92%. The slightly better results
obtained in the web crawl image set is possibly due to the following factors:

i) The images from the web crawl image set had a higher resolution and better
quality

ii) The images’ backgrounds were less complex, resulting in less misclassification.

2.1 Implementation Details

In order to standardize the input data for all implementation platforms so that the
performance results can be benchmarked, a set of 10 images arbitrarily chosen from a
web search is used as input. Each image contains a single frontal face. Multiple
images are used so that any variability in the processing time for individual images is
better averaged out. All the images are stored as grayscale bitmaps of size 576x720
pixels — image size being arbitrarily chosen. Variability in execution times is
primarily attributed to the cascaded nature of the Viola-Jones algorithm. The amount
of time required to search an image for a face is closely related to the “complexity” of
the image; that is, if an image has large areas that do not contain faces but passes
many of the cascaded classifier stages, then more time is required to process the
image. Other aspects that contribute to varying the execution times are platform
dependent and include: cache and memory access times, pipeline schedule, interrupt
mechanisms, and so on.

The software prototype was developed in C and compiled with a GNU GCC
compiler under Cygwin. The compiler was set to highest optimization for speed, and
the PC was a Pentium 4 processor, 3.20 GHz, with 1.0 GB RAM with Windows XP
as the operating system.

4 www.opencv.org
5 Where s is the scale factor in the search algorithm and, Δ represents the number of pixels to

shift the detection window [14].

 Face Detection on Embedded Systems 299

2.2 Software Implementation Results

All 10 faces within the 10 images were located with two false positives. Due to the
small number of images, the ratio between detection and false detection rates may be
skewed. The total execution time for the program to process all 10 images is 19.91
seconds. A breakdown of each function and their contribution to the final time are
presented in the Table 1.

Not all functions used in the program are in Table 1; this is because the profiling
process is based on samples taken when the program is running. As a result, functions
that execute quickly may not be acknowledged. An arrow before a function name
indicates that it is called from another function where the function that called it has
one less indentation level. As an example, referring to Table 1,
InitialiseClassifierStages, UpdateClassifierStages, and so on
are all called from the FaceDetection function. As seen in the flat profile, the
RunClassifierCascade function consumes the majority of the execution time.
This function is responsible for checking if a sub-window contains a face. The
function itself is executed in close to no time; the long processing time is due to the
accumulation of over 7.5 million calls. The number of calls to
RunClassifierCascade is related to the number of search locations which in
turn is proportional to the size of the image.

Table 1. Flat profile of the Viola-Jones algorithm

CalculateIntegralImage 0.35 10 0.04 1.76
CalculateSqIntegralImage 0.03 10 0 0.15
FaceDetection 19.53 10 1.95 98.09
 → InitialiseClassifierStages 0.02 10 0 0.1
 → UpdateClassifierStages 0.02 150 0 0.1
 → RunClassifierCascade 19.46 7,458,250 0 97.74
 → round 0.01 Unknown N/A 0.05
 → AddSubWindow 0 110 0 0
 → GetFaceWindows 0 10 0 0
FreeIntegralImage 0 20 0 0
FreeFaceWinList 0 10 0 0
FreeSubWinList 0 10 0 0

Percentage of
Total Time (%)

Total Time Taken
(sec)

Function Name Average Time
(sec)

Number of
Calls

2.3 Initial Embedded System and Port of Software Code

A fully functional embedded system based on Altera Nios II softcore processor was
created on a Stratix FPGA development board. Overall the maximum system operating
frequency is 96.42 MHz. However, due to the limitations of the possible frequencies
that can be generated by the PLL module, the maximum feasible operating frequency
without violating timing constraints is 80 MHz. From this point onwards unless
otherwise stated the actual operating frequency for each system is 80 MHz.

Given that the code implemented on the PC is based on GNU libraries which is the
same as the software development in the Nios II environment, it was possible to be
directly ported across to the Nios II system without many changes.

300 A. Bigdeli et al.

2.4 Profile of Embedded Code

Initially, the GNU profiler was used to profile the code which was compiled with
maximum speed optimization. The original code runs quite slowly. The lengthy
processing time is attributed to the extensive number of locations searched within each
image. The amount of searching is directly proportional to the input image size and the
step size of the detection window. There are several methods available to help reduce
the search space, common approaches being, image differencing and skin color
modeling. Image differencing as its name suggests involves taking the difference
between image frames. Since humans are generally the only objects that move within a
scene, searching can be concentrated on the sections that are changing. On the other
hand, the skin color modeling method makes use of statistical models of human skin to
filter the input image hence the search for faces can then be restricted to those areas. An
alternative method is to reduce the size of the input images using an image interpolation
algorithm. Once the faces are found in the smaller image, the location and dimension of
the detection windows can be rescaled to the size of the original image.

The most popular techniques for enlarging or shrinking images are nearest
neighborhood, bilinear, and bicubic down-sampling. Of these methods, bicubic offers
the best results in terms of sharpness and preservation of image details. Every point in
the resulting image is calculated from a weighted average of 16 pixels adjacent to the
corresponding pixel in the original image. The bicubic interpolation algorithm can be
expressed as the following set of equations:

∑=
k

kk sucxg)()(

⎪
⎪
⎩

⎪⎪
⎨

⎧

+++
+++

=
0

)(22

2

2

3

2

1

2

1

3

1 1

DSCsBsA

DSCsBsA

su

(1)

Bicubic interpolation function and its kernel [15].

Where g is the interpolation function, c is points in the original image, u is the
interpolation kernel, and s is the distance between the pixel of interest and its
neighboring pixels. As noted in [15], the accuracy and efficiency of the algorithm lies
solely on the interpolation kernel, u. It was empirically found that the smallest possible
scale factor without compromising the detection accuracy of the 10 input images is 0.25.
All the faces in the original image were detected with no false positives. The
performance report after applying bicubic down-sampling is given in Table 2.

The down-sampling calculations are carried out in the Imresize function. As
seen in the performance report, the size reduction of the input image has a positive

Table 2. Performance report after applying bicubic down-sampling

Imresize 84.74 10 8.47 7.46
CalculateIntAndSqIntImages 0.16 10 0.02 0.01
FaceDetection 1050.27 10 105.03 92.52
 → InitialiseClassifierStages 0.19 10 0.02 0.02
 → UpdateClassifierStages 49.14 90 0.55 4.33
 → RunClassifierCascade 1000.78 315,100 0.003 88.16
Average Time Per Image 113.52

Percentage of
Total Time (%)

Section Total Time
(sec)

Occurance Average
Time (sec)

 Face Detection on Embedded Systems 301

performance affect on all functions that carry out operations on the image. On
average, a speedup factor of 16.5 is achieved after down-sampling the input image to
a quarter of its original size.

An additional optimization applied was to combine the Calculate-
IntegralImage and CalculateSqIntegralImage functions together. This
is a logical step given that these functions have a similar structure and operate on the
same data. The resulting function name is CalculateIntAndSqIntImage, and
completes execution in approximately half the time originally required to calculate the
integral and square integral images separately. The reduction in time is a result of not
having to fetch the same image data from extended memory (SDRAM) twice.

3 Optimization Using Custom Instructions

Configurable custom processors are becoming an ever more popular implementation
technology of choice for addressing the demands of complex embedded applications.
Unlike traditional hardwired processors that consist of a fixed instruction set from
which application code is mapped; configurable processors can be augmented with
application specific instructions, implemented as hardware logic to optimize
bottlenecks. This lends towards a method for hardware-software partitioning whereby
the efficiency of hardware and the flexibility of software are integrated.

There are a number of benefits in extending a configurable processor with custom
instructions. First, transparency; the added custom instructions will improve the
performance of the tasks for which they are designed with minor changes to the
original code. Second, rapid development; there is a wide variety of off-the-self
configurable cores that could be used as a base for development. Additional
instructions could be integrated into the processor core as the need to extend its
computational capabilities arises. Finally, low-cost access to domain specific
processors; generally the fundamental characteristics of an application area is similar.
These characteristics can be summarized as a set of instructions and applied to a
variety of similar applications, for example, multimedia applications [16].

Unfortunately, there are two minor drawbacks to using custom instructions. For
one, additional hardware is required, although this is becoming less of an issue as
embedded technologies become more economical. Secondly, as the custom
instructions are directly integrated into the processor’s pipeline, the maximum
operating frequency may be degraded if the instruction is poorly designed. Adding
custom instructions is a proven optimization technique that has been applied to a wide
range of embedded applications. Some published examples include, embedded real-
time operating systems (RTOS) [17], biometrics [18], and multimedia [19].

3.1 Custom Instruction Design Flow

The design flow for identifying and integrating custom instructions into configurable
processors is summarized in Figure 1. This is a generic framework that could be
applied to any application. Firstly, the software code is profiled to reveal bottlenecks
that could be alleviated with the introduction of custom instructions. Once the
hardware module for the instruction is implemented and tested, it is added to the

302 A. Bigdeli et al.

processor and the whole system is regenerated. Then the software code is updated to
make use of the new instructions. Finally, the functionality of the system is verified to
ensure bugs are not introduced with the new instruction. This process is repeated until
either the performance requirements or resource limits are met.

3.2 Extending Nios II with Custom Instructions

All of the Altera Nios II processor cores are designed to support up to 256 new custom
instructions. The logic for the new instructions is directly connected to the arithmetic
logic unit (ALU), as illustrated in Figure 2. In the face detection application, this comes
does to applying the custom instructions to the Viola-Jones algorithm The Viola-Jones
application code which includes the initial software optimizations is profiled using
performance counters. As expected, the FaceDetection function, more specifically,
the RunClassifierCascade function is the most time consuming. It should be
noted that it is not the RunClassifierCascade function itself that is time
consuming, but due to the large number of times it is called, the accumulated time is
large. Hence, the overall processing time could be improved if either the number of calls
to RunClassifierCascade or its execution time is reduced. Since reducing the
number of calls to RunClassifierCascade is going to compromise the accuracy of
the face detector, the focus is placed on reducing the execution time of the function itself.
Any time savings made in each function call will correspond to a large overall saving.

The main operations carried out in the RunClassifierCascade function are
addition and multiplication of integer values associated with the calculation of
indexes into the input image. There are also floating point multiply and addition
operations that are required for image normalization and weighting of the classifier
features. Since all the integer related instructions are already implemented in
hardware, it is believed that there are opportunities to improve the performance of the
floating point operations through custom instructions.

Fig. 1. Custom instructions design flow Fig. 2. Connection of custom instruction logic
with the Nios II ALU

 Face Detection on Embedded Systems 303

Floating point multiply is the first operation of interest as it is used most frequently.
Further profiling of the RunClassifierCascade function indicates that this
operation takes up roughly 559 seconds of the total 1135 seconds, approximately 49%
of the total processing time. By default all floating point arithmetic are emulated in
software. For these reasons the first operation to be implemented as a custom
instruction is the floating point multiply. The next instruction that was implemented
was floating point add/subtract Instructions. A summary of the performance reported
for the face detector after the addition of the floating point multiply instruction and
add/subtract Instruction are presented in Table 3 and Table 4 respectively.

Table 3. Performance with the use of the floating point multiply custom instruction

Imresize 56.5 10 5.65 9
CalculateIntAndSqIntImages 0.16 10 0.02 0.03
FaceDetection 571.17 10 57.12 90.98
 InitialiseClassifierStages 0.19 10 0.02 0.03
 UpdateClassifierStages 36.62 90 0.41 5.83
 RunClassifierCascade 534.03 315,100 0.002 85.06
Average Time Per Image 62.79

Percentage of
Total Time (%)

Section Total Time
(sec)

Occurance Average
Time (sec)

Table 4. Performance with the use of the floating point addition/subtraction custom instruction

Imresize 57.46 10 5.75 12.73
CalculateIntAndSqIntImages 0.16 10 0.02 0.04
FaceDetection 393.61 10 39.36 87.23
 → InitialiseClassifierStages 0.19 10 0.02 0.04
 → UpdateClassifierStages 34.78 90 0.39 7.71
 → RunClassifierCascade 358.43 315,100 0.001 79.43
Average Time Per Image 45.13

Percentage of
Total Time (%)

Section Total Time
(sec)

Occurance Average
Time (sec)

3.3 Optimization of the Imresize Function

The next most time consuming function to focus on is Imresize. Since the bicubic
resizing algorithm used in the Imresize function is not specific to the Viola-Jones
algorithm and could also be applied to many other applications, it is an ideal
candidate for optimization. As it stands, the Imresize function accounts for 13% of
the total time.

By examining the bicubic interpolation algorithm more closely, it becomes evident
that the coefficients calculated by the interpolation kernel can be fixed constants.
More importantly, the exact value of these constants is not essential [20]. A graphical
illustration for computing an interpolated value is depicted in Figure 3. In essence,
the two dimensional convolution like calculations described in Equation 1 can be
decomposed to five sets of one dimensional operations. The coefficients, a0, a1, a2,
and a3, as seen in Figure 3 all add to one; hence, the intermediate sums will never
exceed the largest pixel value of 255. Also, the intermediate results after
multiplication are truncated to 8-bit integer values.

304 A. Bigdeli et al.

Fig. 3. Graphical description for calculating an interpolation value

A series of experiments were conducted using the original implementation of the
bicubic interpolation algorithm to look at the behavior of a0, a1, a2 and a3 for a
variety of different scale factors. The following observations were made:

• a0 and a3 have the same values
• a2 is roughly four times larger than a0 and a3 while a1 is roughly two times

larger than a0 and a3
• when the coefficients are set to the same value and are close to zero, the

resulting image is very dark (basically black)
• when the coefficients are set to the same value and close to one, the resulting

image is extremely noisy

Based on these observations, the chosen values for a0, a1, a2, and a3 are 0.125,
0.5, 0.25, and 0.125, respectively. These coefficients are chosen because they
correspond to dividing the pixel values by 2, 4, and 8, that is, shifting of the pixel
values to the left by 1, 2, and 3 bits, respectively. The images produced based on the
new implementation of the Imresize function using these coefficients is identical
to the original implementation and that from Matlab — Matlab’s implementation is
used as an additional confirmation step. The Imresize function that utilizes the
coefficients, a0, a1, a2, and a3 is referred to as the “new implementation”, while the
implementation that makes use of the bicubic kernel is referred to as the “original
implementation”.

(a) (b) (c)

Fig. 4. Examples of images resized to a quarter of their original size. The methods used are: (a)
original implementation, (b) new implementation, and (c) Matlab’s bicubic resize function.

 Face Detection on Embedded Systems 305

The performance of the original and new implementation of the Imresize
function is summarized in Table 5; the values obtained are averaged across all 10 face
images. The new implementation is 115 times faster than the original implementation.

Table 5. Performance summary of the original and new implementation of the Imresize

Section Average Clock Cycles Average Time (sec)
Original Imresize 459,693,061 5.75
New Imresize 3,949,404 0.05

4 The Effect of Data and Instruction Caches on Performance

It is also important to investigate what the effects data and instruction caching
behavior and size have on performance. Initially, the Nios II processor is configured
with the default data cache settings, that is, an on-chip memory size of 16 KB with a
data cache line size of 4 bytes. According to the Nios II core documentations, if the
line size is greater than 4 bytes, data retrieval from extended memory (SDRAM in our
case) is pipelined; hence reducing the impact of data transfer latency. A new system
with exactly the same configuration but with the data cache line size increased to 32
bytes is generated. When the face detector and face detector beta programs are ran on
this system, the total execution times are 466.23 and 394.18 seconds, respectively –
the difference between the two execution times are less. These results give a positive
indication that the processor’s caches have an influence on performance.

The next experiment is to look at the effects of altering the size of the data cache.
A series of eight systems with all the possible data cache sizes are generated. All
these systems have a data cache line size of 32 bytes and the instruction cache size is
fixed to 4 KB. Table 6 summarizes these results. The usage of other resources such as
DSP blocks, PLLs, and pins remain the same. There are minor fluctuations in the
amount of LEs used and operating frequencies, but this is likely due to the variability
in optimizations by the synthesis and fitting tools. Logically, the total amount of
memory bits utilized linearly scales with the data cache size. As seen in Table 6, the
size of the data cache does have an affect on the performance of the programs,
particularly in the size range from 0.5 to 16 KB. Also, the performance continues to
improve with a larger data cache.

A similar system but with data and instruction cache sizes of 64 KB (the largest
cache sizes possible) were also generated on a Stratix EP1S40 development board

Table 6. Summary of the resource usage and executions times for varying data cache sizes

0.5 66 5.65 589.26 483.07
1 68 6.13 555.3 452.11
2 66 7.07 527.24 433.59
4 66 8.96 507.48 421.03
8 66 12.71 481.64 406.13
16 68 20.19 466.23 394.18
32 68 35.1 458.8 389.05
64 68 64.8 455.79 386.89

Face Detector
Beta (sec)

Data Cache Size
(KB)

LE (%) Total Memory
Bits (%)

Face Detector
(sec)

306 A. Bigdeli et al.

(with roughly four times more resources than EP1S10) to confirm that no further
improvements were possible with an instruction cache larger than 16 KB. Similarly
other computational functions including Divide, Compare, and Round were added as
custom instructors and similar speed-ups were observed.

5 Conclusion

This paper investigated the effects of replacing software bottleneck operations of a
Face-Detection System based on Viola-Jones algorithm with custom instructions on
performance. Table 7 presents a summary of the new instructions implemented along
with a measure of their efficiency — in-order for comparisons to be made fairly, the
floating point multiply custom instruction is re-synthesized without the use of DSP
blocks.

Table 7. Speedup, resource usage, and efficiency measure for each custom instruction

Floating Point Operation Resource (LE) Speedup Speedup/Area (10-3)
Multiply 1,019 18 18
Add/Sub 806 21 26
Divide 1,061 11 10
Compare 77 16 208
Round 354 37 105

These results indicate that the floating point compare custom instruction is by far

the most efficient in terms of speedup to area, even though it has a low overall
speedup factor when integrated with the face detector application. On the other hand,
even though the floating point multiply instruction has a reasonably low speedup to
area ratio, when used in the face detector application the speedup for this instruction
is high, in part because it is one of the most commonly used operations.

As the Viola-Jones face detection algorithm is primarily dominated by control
operations and calculations involving 32-bit integer or floating point numbers, very
little benefit is likely to result from the movement of larger functions to hardware.

An inadvertent result revealed through this investigation is that both the size and
behavior of the caches, specifically the instruction cache, has a significant affect on
the software performance. Experiments have shown that the total execution time may
noticeably fluctuate depending on the code or instruction cache size. The implication
of this result is that, it is difficult to determine the effectiveness of the optimizations
applied — even with custom instructions; since changes to the software code results
in a change to the code size and hence caching behavior. Lastly, it has been shown
that incremental changes to the software code can add up to substantial reductions in
the total execution time. However, the extent and effectiveness of these optimizations
is largely attributed to the designer’s experience.

Acknowledgement

This project was partly supported by a grant from the Australian Government
Department of the Prime Minister and Cabinet. NICTA is funded by the Australian

 Face Detection on Embedded Systems 307

Government's Backing Australia's Ability initiative and the Queensland Government,
in part through the Australian Research Council. However the majority of work was
done at The University of Auckland in New Zealand.

References

1. M. H. Yang, D. J. Kriegman, and N. Ahuja: Detecting faces in images: a survey. In IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 24 (2002) 34-58

2. E. Hjelmas and B. K. Low: Face detection: a survey. In Computer Vision and Image
Understanding, vol. 83, (2001) 236-274

3. R. W. Frischholz and U. Dieckmann: BiolD: a multimodal biometric identification system.
In Computer, vol. 33 (2000) 64-68

4. D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge: Comparing images using the
Hausdorff distance. In IEEE Transactions on Pattern Analysis and Ma-chine Intelligence,
vol. 15 (1993) 850-863

5. Ting Shan, Brian C. Lovell, Shaokang, Chen and Abbas Bigdeli: Reliable Face
Recognition for Intelligent CCTV. In Proc. of Safeguarding Australia 2006- The 5th
Homeland Security Summit & Exposition (2006) 356-364

6. T.-K. Kim, S.-U. Lee, J.-H. Lee, S.-C. Kee, and S.-R. Kim: Integrated approach of
multiple face detection for video surveillance. In Proc. of Int. Conf. on Pattern
Recognition, vol. 2 (2002) 394-397

7. T. Theocharides, G. Link, N. Vijaykrishnan, M. J. Irwin, and W. Wolf: Embedded
hardware face detection. In Proc. of the 17th Int. Conf. on VLSI Design (2004) 133-138

8. H. A. Rowley, S. Baluja, and T. Kanade: Neural network-based face detection. In IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20 (1998) 23-38

9. H. A. Rowley, S. Baluja, and T. Kanade: Rotation invariant neural network-based face
detection. In IEEE Computer Society Conf. on Computer Vision and Pattern Recognition
(1998) 38-44

10. B. D. T. Inc.: Using General-Purpose Processors for Signal Processing. In ARM
Developers' Conf. (2004)

11. R. McCready: Real-Time Face Detection on a Configurable Hardware System. In Proc. of
The Roadmap to Reconfigurable Computing, 10th International Workshop on Field-
Programmable Logic and Applications (2000) 157-162

12. M. S. Sadri, N. Shams, M. Rahmaty, I. Hosseini, R. Changiz, S. Mortazavian, S.
Kheradmand, and R. Jafari: An FPGA Based Fast Face Detector. In Global Signal
Processing Expo and Conf. (2004)

13. D. M. Lewis, D. R. Galloway, M. Van Ierssel, J. Rose, and P. Chow: The Transmogrifier-
2: a 1 million gate rapid-prototyping system. In IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 6 (1997) 188-198

14. R. Lienhart, A. Kuranov, and V. Pisarevsky: Empirical Analysis of Detection Cascades of
Boosted Classifiers for Rapid Object Detection. In DAGM, 25th Pattern Recognition
Symposium (2003) 297-304

15. R. Keys. Cubic convolution interpolation for digital image processing. In IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 29 (1981) 1153-1160

16. A. Bigdeli, M. Biglari-Abhari, S. H. S. Leung, and K. I. K. Wang: Multimedia extensions
for a reconfigurable processor. In Proc. of 2004 International Symposium on Intelligent
Multimedia, Video and Speech Processing, (2004) 426-429

308 A. Bigdeli et al.

17. T. F. Oliver, S. Mohammed, N. M. Krishna, and D. L. Maskell: Accelerating an embedded
RTOS in a SoPC platform. In Proc. of TENCON Conference, vol. 4 (2004) 415-418

18. H. Tsutsui, T. Masuzaki, T. Izumi, T. Onoye, and Y. Nakamura: High speed JPEG2000
encoder by configurable processor. In Proc. of Asia-Pacific Conf. on Circuits and Systems,
vol. 1 (2002) 45-50

19. Z. GuangWei and L. Xiang: An efficient approach to custom instruction set generation. In
IEEE Int. Conf. on Embedded and Real-Time Computing Systems and Applications
(2005) 547-550

20. W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flannery: Numerical recipes in
C: the art of scientific computing. Second ed. Cambridge University Press, New York
(1992)

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 309–316, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Improved Fusion Design of Audio-Gesture for
Multi-modal HCI Based on Web and WPS

Jung-Hyun Kim and Kwang-Seok Hong

School of Information and Communication Engineering, Sungkyunkwan University, 300,
Chunchun-dong, Jangan-gu, Suwon, KyungKi-do, 440-746, Korea

kjh0328@skku.edu, kshong@skku.ac.kr
http://hci.skku.ac.kr

Abstract. This paper introduces improved fission rule depending on SNNR
(Signal Plus Noise to Noise Ratio) and fuzzy value for simultaneous multi-
modality, and suggests the Fusion User Interface (hereinafter, FUI) including a
synchronization between audio-gesture modalities, based on the embedded
KSSL (Korean Standard Sign Language) recognizer using the WPS (Wearable
Personal Station for the next generation PC) and Voice-XML. Our approach
fuses and recognizes 62 sentential and 152 word language models that are
represented by speech and KSSL, then translates recognition results that is fis-
sioned according to a weight decision rule into synthetic speech and visual il-
lustration (graphical display by HMD-Head Mounted Display) in real-time. The
experimental results, average recognition rates of the FUI for 62 sentential and
152 word language models were 94.33% and 96.85% in clean environments
(e.g. office space), and 92.29% and 92.91% were shown in noisy environments.

1 Introduction

Multi-modal interaction offers significant ease of use benefits over uni-modal interac-
tion, for instance, when hands-free operation is needed, for mobile devices with lim-
ited keypads, and for controlling other devices when a traditional desktop computer is
unavailable to host the application user interface. This is being driven by advances in
embedded and network-based speech processing, creating opportunities for integrated
multi-modal web browsers and solutions that separate the handling of visual and aural
modalities [1]. The functionality of a multi-modal interface can be fairly extensive,
and applications may be found in a number of fields. To name a few examples, these
applications proved to be a viable aid for visually impaired users, an alternative to
WIMP (Windows, Icon, Menu, and Pointer based interfaces) interfaces in mobile
computing, and an entertaining extension to computer games [2], [3], [4].

However, the desktop PC and wire communications net-based traditional studies
on pattern recognition and multimodal interaction generally have some restrictions
and problems such as conditionality on the space, limitation of motion, uncertainty of
measurement, and necessity of complex computational algorithms according to using
the vision technologies for recognition and acquisition of haptic-gesture information.
In other words, traditional studies emphasized the fusion of audio-visual or audio-
emotion information as integration architecture for multi-modal HCI, and although

310 J.-H. Kim and K.-S. Hong

this fusion was based on speech recognition, a noisy environment as not considered
entirely. But, noise and speaker information in speech recognition are very important
as benchmark's elements, and can not be ignored.

Consequently, we introduces improved a weight decision rule that fission the han-
dling of haptic and aural modalities by coupling the WPS-based embedded KSSL
recognizer with a remote Voice-XML user using SNNR and fuzzy value, for clear
language processing in noisy environments, and suggests the FUI including a syn-
chronization between audio-gesture modalities. In contrast to other proposed Multi-
Modal interaction approaches, our approach is unique in two aspects: First, because
the FUI provides different weight and feed-back function in individual (speech or
gesture) recognizer, according to SNNR and fuzzy value, it may select an optimal
language processing interface under a given situation or noisy environment, and can
allow more interactive (natural) communication functions in noisy environment.
Second, according as the FUI fuses and recognizes 62 sentential and 152 word lan-
guage models that are represented by speech and KSSL, then translates recognition
results that is fissioned according to a weight decision rule into synthetic speech and
visual illustration (graphical display by Head Mounted Display) in real-time, it pro-
vides a wider range of personalized and differentiated information more effectively.

2 Speech Recognition and Synthesis Based on Voice-XML

Voice-XML is the W3C's standard XML format for specifying interactive voice
dialogues between a human and a computer. For ASR-engine in architecture [5] of
W3C's VXML 2.0, we used the HUVOIS solution that is Voice-XML-based voice
software developed by KT Corp. in Korea for those with impaired sight that converts
online text into voice and reads out the letters and words punched in through the
computer keyboard, thus enabling them to use computers and the internet.

Fig. 1. The Voice-XML’s architectural model

The HUVOIS solution consist of HUVOIS-ARS based on HMM, TTS using Tri-
phone unit and HUVOIS Voice-XML, and supports client-sever network, LSS(Load
Share Server) and modular structure. The Voice-XML’s architectural model is shown
in Fig. 1. A document server (e.g. a web server) processes requests from a client

 An Improved Fusion Design of Audio-Gesture for Multi-modal HCL 311

application, the Voice-XML interpreter, through the VXML interpreter context. The
server produces Voice-XML documents in reply, which are processed by the Voice-
XML interpreter. The Voice-XML interpreter context may monitor user inputs in paral-
lel with the Voice-XML interpreter. For example, one Voice-XML interpreter context
may always listen for a special escape phrase that takes the user to a high-level personal
assistant, and another may listen for escape phrases that alter user preferences like vol-
ume or text-to-speech characteristics. The implementation platform is controlled by the
Voice-XML interpreter context and by the Voice-XML interpreter.

3 WPS-Based Embedded KSSL Recognizer

For an improved KSSL recognition based on WPS and ubiquitous computing, we
used 5DT company's wireless data gloves and Fastrak® which are popular input de-
vices in the haptic application field, and utilized blue-tooth module for the wireless
sensor network. Wireless data gloves are basic gesture recognition equipment that can
capture various haptic information (e.g. hand or finger’s stooping degree, direction)
using the fiber-optic flex sensor. In addition, the Fastrak® is a solution for the posi-
tion/orientation measuring requirements of applications and environments, and is a
3D digitizer and a quad receiver motion tracker, making it correct for a wide range of
applications requiring high resolution, accuracy, and range [6], [7].

Statistical classification algorithms such as K-means clustering, Quality Threshold
clustering, the fuzzy c-means clustering algorithm and the Self-Organizing Map, have
been applied universally in traditional pattern recognition systems with unsuper-
vised training, such as machine training, data mining, pattern recognition, image
analysis and bioinformatics [8], [9], [10]. However, such classification algorithms
have certain restrictions and problems, such as the necessity of complicated mathe-
matical computation according to multidimensional features, the difficulty of applica-
tions in distributed processing systems, relativity of computation costs by pattern size,
and minimization of memory swapping and assignment. In this paper, we prescribed
32 basic KSSL motion gestures and 28 hand gestures connected with a travel informa-
tion scenario, according to "Korean Standard Sign Language Tutor (KSSLT) [11]".
KSSL gestures and hand gestures are classified by an arm’s movement, hand shape,
pitch and roll degree. Consequently, we constructed 62 sentential and 152 word lan-
guage models according to associability and presentation of hand gestures and basic
KSSL motion gestures. In addition, for a clustering method to achieve efficient
feature extraction and construction of recognition models based on distributed com-
puting, we suggest and introduce an improved RDBMS (Relational Data-Base Man-
agement System) clustering module, to resolve such restrictions and problems.

As the fuzzy logic for KSSL recognition, we applied trapezoidal shaped member-
ship functions for representation of fuzzy numbers-sets, and utilized the fuzzy max-
min composition. Two fuzzy relations R and S are defined in sets A, B and C
(we prescribed the accuracy of hand gestures and basic KSSL gestures, object KSSL
recognition models as the sets of events that occur in KSSL recognition with the sets

312 J.-H. Kim and K.-S. Hong

A, B and C). That is, R ⊆ A × B, S ⊆ B × C. The composition S·R = SR of two rela-
tions R and S is expressed by the relation from A to C, and this composition is defined
in Eq. (1) [12], [13].

][))zy(μ,)yx,(μ(Min

y
Max)zx,(

C,B)z,y(,BA)y,x(or F

SRRSμ , =

×∈×∈

•

 (1)

4 Simultaneous Multi-Modality-Fusion and Fission Between
Modalities

4.1 Fusion Scheme Between Audio-Gesture Modalities

The fusion scheme consists of seven major steps: 1) the user connects to Voice-XML
server via PSTN and internet using telephone terminal and WPS based on wireless
networks (including middleware), and then inputs prescribed speech and KSSL, 2) the
user's speech data, which are inputted into telephone terminal, is transmitted to ASR-
engine in Voice-XML, then ASR results are saved to the MMDS (Multi-Modal Data-
base Server; The MMDS is the database responsible for synchronizing data

Fig. 2. The components for fusion architecture

Fig. 3. The flowchart of the FUI integrating 2 sensory channels with speech and gesture

 An Improved Fusion Design of Audio-Gesture for Multi-modal HCL 313

between speech and KSSL gesture), 3) user's KSSL data, which are inputted into
WPS, are recognized by embedded KSSL recognizer, then the WPS transmits and
saves recognition results to the MMDS, using middleware over TCP/IP protocol
and wireless networks, 4) at this point, the user's KSSL and speech data run the
synchronization session using internal SQL logic of the MMDS, 5) while suggested
the FUI runs a validity check on ASR and KSSL recognition results with pre-scribed
language models by internal SQL logic, the NAT(Noise Analysis Tool) analyzes
noise for user's speech data which is recorded by Voice-XML, 6) According to ana-
lyzed noise and arithmetic result, the FUI gives weight into an individual (gesture or
speech) recognizer, 7) finally, user’s intention is provided to the user through TTS
and visualization. The suggested architecture and flowchart of FUI are shown in
Fig. 2 and Fig. 3.

4.2 Synchronization Between Audio-Gesture Modalities and Noise Analysis

This paper solves the asynchronous control problems between speech and gesture
signals using a web-logic and word-unit input method based on the database (the
MMDS in section 4.1). In other words, for synchronization between speech and ges-
ture signals, after individual speech and KSSL recognizer recognizes inputted speech
and the KSSL recognition models, they transmit recognition results into the MMDS
for weight application. However, the transmission time of recognition results has
some time delay because of asynchronous communication of two input signals. As a
result, the speech and KSSL recognition results based on word-unit are recorded se-
quentially to the MMDS, and while the DB is kept in standby mode via internal web-
logic in case one was not input among the two input signals (where, two input signals
are the recognition results of speech and KSSL), apply weight according to the degree
of SNNR and fuzzy value, in the case where all input values are recorded.

In addition, in noisy environments, speech quality is severely degraded by noises
from the surrounding environment and speech recognition systems fail to produce
high recognition rates [14]. Consequently, in this paper, we designed and imple-
mented NAT for weight decision in individual (gesture or speech) recognizer. The
NAT extracts data samples in mute section as a noise domain, and analysis total sam-
ple frames; speech data section from the 'waveformData array' that contains the actual
waveform data, then it calculates average energy (mean power; [dB]) for two types of
sample frames extracted in the first step, finally, calculate SNNR by Eq. (2), where, P
is average power of noise and speech data.

noise

noisesignal

P

P
dBSNNR

+
=

10
log10)(

 (2)

4.3 Fission Depending on SNNR and Fuzzy Value

In this section, we describe a web logic-based a weight decision rule depending on
SNNR and fuzzy value for the fission between audio-gesture modalities, in FUI that is
an optional language processing interface. We used an average speech recognition rate
as speech probability value for weight decision, and to define speech probability value
depending on SNNR, we achieved repeatedly speech recognition experiments 10 times

314 J.-H. Kim and K.-S. Hong

with the 20 test speech recognition models in noisy and clean environments, for every
5 reagents. In addition, speech recognition rate does not usually change to a 25 dB
SNNR, but if the rate lowers, the speech recognition rate falls rapidly. Therefore, the
FUI provides feed-back function according to SNNR value. In case SNNR critical
value for weight decision is ambiguous, according as feed-back function requests re-
input to user for clear a declaration of intention, more improved language processing is
available. The average speech recognition rates as speech probability value are given
Table 1, together with weight values that are defined depending on SNNR.

Table 1. Weight value according to the SNNR and critical value for the feed-back function

Weight value (%) Average speech recognition rate for the 20 test recognition models (%)
SNNR Critical value Speech (WS) KSSL(WG) Reagent 1 Reagent 2 Reagent 3 Reagent 4 Reagent 5 Average(S) Differ-

ence
more than 40 [dB] 99.0 1.0 98.2 98.4 97.9 98.5 98.2 98.2 0.9

35 [dB] SNNR < 40 [dB] 98.0 2.0 97.8 97.3 96.6 97.1 97.5 97.3 0.3
30 [dB] SNNR < 35 [dB] 96.0 4.0 97.5 96.5 96.6 97.0 97.4 97.0 0.2
25 [dB] SNNR < 30 [dB] 94.0 6.0 97.2 96.5 96.5 96.9 96.9 96.8 0.2
20 [dB] SNNR < 25 [dB] 92.0 2.0 96.9 95.9 96.4 96.8 96.8 96.6 2.2
15 [dB] SNNR < 20 [dB] Feed-Back 92.4 96.2 93.8 95.2 94.1 94.3 11.1
10 [dB] SNNR < 15 [dB] 6.0 94.0 83.6 83.4 83.5 82.6 83.2 83.3 8.8
 5 [dB] SNNR < 10 [dB] 4.0 96.0 71.9. 72.5 70.2 79.5 75.6 74.5 22.4
 0 [dB] SNNR < 5 [dB] 2.0 98.0 53.4 51.3 52.6 51.6 51.3 52.0 14.0

less than 0 [dB] 1.0 99.0 38.5 37.6 37.5 38.2 38.5 38.1 -

GW SWP_W GS ×+×=
 (3)

 P_W : a probability value after weight application
 WS : Defined Weight for Speech recognition mode
 WG : Defined Weight for KSSL recognition mode
 S : speech probability (an average speech recognition rate)
 G : KSSL probability (the critical value depending on normalized fuzzy value)

3.5
 entValue_CurrFuzzy

Value_MaxFuzzy
 entValue_CurrFuzzy

G ==

(4)

 Fuzzy Value_Current : Fuzzy value to recognize current gesture(KSSL)
 Fuzzy Value_Max = 3.5 : The maximum fuzzy value for KSSL recognition

The weight decision processing for fission between modalities consists of three

major steps: 1) as speech and KSSL probability value, it calls an average speech rec-
ognition rate (S) depending on the defined SNNR, and fuzzy value (G) for KSSL
recognition from the MMDS, then apply weights (WS and WG) in called-individual
probability value, 2) and then calculate a probability value (P_W) after weight appli-
cation via by Eq. (3), 3) return the fission result (speech or KSSL recognition result)
by calculated the probability value (P_W) to user. Where, the maximum fuzzy value
for KSSL recognition is 3.5, and the minimum critical value is 3.2 (in programming).
Accordingly, the normalized fuzzy value (G) of the embedded KSSL recognizer is
defined Eq. (4). Because KSSL probability (G) is changed according to Fuzzy
Value_Current, P_W is changed justly.

As a result, if P_W value is over than 0.917, the FUI fissions and returns recogni-
tion result of speech recognizer based on Voice-XML, while the FUI fissions the
embedded KSSL recognizer in case P_W value is less than 0.909. The decision rule
and SNNR critical value for feed-back function are given in Table 2.

 An Improved Fusion Design of Audio-Gesture for Multi-modal HCL 315

Table 2. In case Fuzzy Value_Current is 3.2, a system of measuring of P_W values

Speech KSSL SNNR
WS S WG G

P_W

more than 40 [dB] 0.99 0.982 0.01 0.914 0.981
35 [dB] ≤ SNNR < 40 [dB] 0.98 0.973 0.02 0.914 0.972
30 [dB] ≤ SNNR < 35 [dB] 0.96 0.970 0.04 0.914 0.968
25 [dB] ≤ SNNR < 30 [dB] 0.94 0.968 0.06 0.914 0.965
20 [dB] ≤ SNNR < 25 [dB] 0.92 0.966 0.08 0.914 0.917
15 [dB] ≤ SNNR < 20 [dB] Feed-Back
10 [dB] ≤ SNNR < 15 [dB] 0.06 0.833 0.94 0.914 0.909
5 [dB] ≤ SNNR < 10 [dB] 0.04 0.745 0.96 0.914 0.907
0 [dB] ≤ SNNR < 5 [dB] 0.02 0.520 0.98 0.914 0.906

less than 0 [dB] 0.01 0.381 0.99 0.914 0.909

5 Experiments and Results

The experimental set-up is as follows. The distance between the KSL input module
and the WPS with a built-in KSSL recognizer approximates radius 10M's ellipse
form. In KSSL gesture and speech, we move the wireless data gloves and the motion
tracker to the prescribed position. For every 15 reagents, we repeat this action 10
times in noisy and clean environments. While the user inputs KSSL using data gloves
and a motion tracker, and speak using the blue-tooth headset in a telephone terminal.
Experimental results, the uni-modal and the FUI’s average recognition rate in noisy
and clean environment for 62 sentential and 152 word language models, are shown in
Table 3, respectively.

Table 3. Language recognition results for the 62 sentential and 152 word language models

Uni-modal Language Processing Interface The FUI
KSSL (%) Speech (%) KSSL + Speech (%)

Noise or Clean (%) Noise (%) Clean (%) Noise (%) Clean (%)

Evaluation

Reagent
152 models 62 models 152 models 62 models 152 models 62 models 152 models 62 models 152 models 62 models

Reagent 1 92.8 92.7 83.6 85.7 98.1 94.2 92.7 92.5 98.1 94.2
Reagent 2 93.8 91.7 83.5 84.6 95.4 94.9 93.3 91.5 95.5 94.8
Reagent 3 94.1 92.9 82.4 79.8 95.6 93.2 93.7 92.3 95.7 93.2
Reagent 4 92.9 93.2 85.1 82.8 96.3 93.8 92.3 92.9 96.3 93.8
Reagent 5 93.1 93.3 85.6 85.9 96.7 93.9 93.5 92.7 96.9 93.8
Reagent 6 91.8 92.2 84.6 84.2 95.9 95.5 91.1 91.5 96.1 95.5
Reagent 7 92.7 91.7 84.3 79.9 95.7 92.7 92.5 91.2 95.8 92.7
Reagent 8 94.6 91.4 82.6 78.2 96.8 93.2 94.5 90.9 97.1 93.3
Reagent 9 93.4 93.1 83.4 85.3 97.5 94.6 93.3 93.0 97.6 94.6
Reagent10 93.1 93.1 84.9 82.1 97.3 93.8 92.9 92.8 97.4 94.1
Reagent11 93.7 92.2 83.7 84.6 97.8 96.7 93.6 91.8 97.9 96.7
Reagent12 92.4 93.1 82.9 84.1 96.4 93.9 92.2 93.0 96.3 93.7
Reagent13 92.6 92.5 83.6 83.6 96.6 93.4 92.1 92.1 96.9 93.3
Reagent14 93.3 92.8 84.1 82.5 97.1 95.2 92.8 92.5 97.3 95.3
Reagent15 93.3 93.9 84.1 84.7 97.1 94.2 93.4 93.7 97.3 94.2
Average 93.17 92.65 83.85 83.20 96.71 94.21 92.91 92.29 96.85 94.33

6 Conclusions

Wearable and ubiquitous computing-based multi-modal user interfaces have implica-
tions for accessibility. A well-designed multi-modal application can be used by people
with a wide variety of impairments. Visually impaired users rely on the voice modality

316 J.-H. Kim and K.-S. Hong

with some keypad input. Hearing-impaired users rely on the visual modality with some
gesture (and sign language) input. Other users will be "situationally impaired" and
simply use the appropriate modalities as desired. In addition, the approaches to Multi-
Agent Systems (MAS) varies considerably in many areas, such as computer science,
philosophy, mathematics, linguistics, social science, and so on, but even if one limits
the analysis to logical systems, one finds that different languages are applied to very
similar problems. This study combines natural language and artificial intelligence
techniques to allow human computer interaction with an intuitive mix of speech, ges-
ture and sign language based on the WPS and Voice-XML. The FUI’s average recog-
nition rates for 62 sentential and 152 word language models were 94.33% and 96.85%
in clean environments (e.g. office space), while 92.29% and 92.91% were shown in
noisy environments. Finally, we clarify that this study is a fundamental study for im-
plementation of an advanced multi modal recognizer integrating the human's five
senses such as sight, hearing, touch, smell, and taste, to take the place of the traditional
uni-modal recognizer for natural speech and sign language processing.

Acknowledgement

This research was supported by MIC, Korea under ITRC IITA-2006-(C1090-0603-0046).

References

1. Multimodal Interaction Activity.: Extending the Web to support multiple modes of interac-
tion, http://www .w3.org/2002/mmi/

2. M. Fuchs, P. et al.: Architecture of Multi-modal Dialogue System. TSD2000, Lecture
Notes in Artificial Intelligence, Vol. 1902. Springer-Verlag, Berlin Heidelberg New York
(2000) 433–438

3. M. J. Wooldridge and N.R. Jennings.: Intelligent agents: Theory and practice, Know. Eng.
Review, 10(2):115-152, 1995.

4. R. Fagin, J.Y. Halpern, Y. Moses, and M.Y,Vardi.: Reasoning about Knowledge, MIT
Press, (1995).

5. Scott McGlashan et al.: Voice Extensible Markup Language (VoiceXML) Version 2.0.
W3C Recommendation, http://www.w3.org (1992).

6. J.-H.Kim. et al.: Hand Gesture Recognition System using Fuzzy Algorithm and
RDBMS for Post PC, Proceedings of FSKD2005, Lecture Notes in Artificial Intelligence,
Vol. 3614, Springer-Verlag, 2005, pp. 170-175

7. i.MX21 Processor Data-sheet, http://www.freescale.com/
8. Richard O. Duda. et al.: Pattern Classification, 2nd, Wiley, New York (2001)
9. Dietrich Paulus and Joachim Hornegger.:Applied Pattern Recognition, 2nd, Vieweg (1998)

10. J. Schuermann.: Pattern Classification, A Unified View of Statistical and Neural Ap-
proaches, Wiley&Sons (1996)

11. S.-G.Kim.:Korean Standard Sign Language Tutor, 1st, Osung, Seoul (2000)
12. C.H.Chen, Fuzzy Logic and Neural Network Handbook. 1st, McGraw-Hill, New York

(1992)
13. W. B. Vasantha kandasamy.: Smaranda Fuzzy Algebra. American Research Press, (2003)
14. NIOSH working group.: STRESS...AT WORK NIOSH, Publication No. 99-101,U.S. Na-

tional Institutes of Occupational Health (2006)

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 317–327, 2007.
© Springer-Verlag Berlin Heidelberg 2007

User-Customized Interactive System Using Both Speech
and Face Recognition*

Sung-Ill Kim

Department of Electronic Engineering, Kyungnam University,
449 Wolyoung-dong, Masan City, 631-701 Korea

kimstar@kyungnam.ac.kr

Abstract. In this paper, we discuss the user-customized interaction for intelli-
gent home environments. The interactive system is based upon the integrated
techniques using both speech and face recognition. For essential modules, the
speech recognition and synthesis were basically used for a virtual interaction
between user and the proposed system. In experiments, particularly, the real-
time speech recognizer based on the HM-Net(Hidden Markov Network) was
incorporated into the proposed system. Besides, the face identification was
adopted to customize home environments for a specific user. In evaluation,
the results showed that the proposed system was useful and easy to use for in-
telligent home environments, even though the performance of the speech recog-
nizer was not better than the simulation results owing to the ambient noisy
environments.

1 Introduction

Currently, there are many methods of biometrical identification such as eye iris, retina,
voice, face etc. Among them, the face recognition has been one of the most widely
used biometrics for personal verification. Its advantage is that it does not require
physical contact as well as any advanced hardware. It can be used with existing image
capture devices such as web cam, security cameras etc. The system of face identifica-
tion matches the given input face image with the one stored in its database and a de-
gree of similarity is finally computed. If such score is higher than a certain acceptance
threshold, then the person is classified as a one of the registered users. In the present
paper, the face identification can be used for the interface of user-customized system
in the intelligent home environments [1,2,3,4,5].

When talking about the intelligent home, it means different things to different peo-
ple. Figure 1 shows the basic idea of the interaction between user and intelligent home
environment where the face identification is used for user-customization. The interac-
tive system using face identification is integrated with the essential components such
as speech recognition, and speech synthesis. Assuming that we sit on the sofa that is
interconnected with both touch sensor and face identification subsystem, the user-
customized interaction is then automatically formed so that the intelligent home can
provide you with more convenient and comfortable living environments.

* This work is supported by the Kyungnam University Research Fund, 2007.

318 S.-I. Kim

Fig. 1. Concept of the interactive system based on the techniques such as speech recognition,
speech synthesis, and fingerprint verification

The basic idea mentioned above is based on the fact that the place we spend most
time at home is our living room, particularly on the sofa. The concept is started on the
assumption that the interaction between user and system can be built when user sits
on the sofa. The proposed system is designed to allow users to converse with their
home based on the user-customized interaction where the system puts emphasis on an
easy-to-use and user-friendly man-machine interface. As a consequence, the intelli-
gent home, as an aim of this study, makes it possible to lead the living environments
to the most suitable condition for users by integrating speech recognition with face
identification. For face identification, in this study, it was used to customize the home
environments for a specific user. For speech recognition and synthesis, on the other
hand, they were used for interaction between user and intelligent home environment.

2 The Interface of Speech Recognition Using HM-Net

HMM(Hidden Markov Model) is a mathematical model which has been widely used
in speech recognition systems. In this study, we used HM-Net(Hidden Markov Net-
work) [6,7] which is an efficient representation of context-dependent phonemes for
speech recognition. The HM-Net, which has various state lengths and shares their
states one another, is automatically generated by SSS(Successive State Splitting)
[7,8]. The SSS is an iterative algorithm that progressively grows HM-Net, where each
state in the network is associated with a 2-component Gaussian mixture.

In the algorithm, a state is selected to be split according to which has the largest
divergence between its two mixtures. The state is then split on the contextual and tem-
poral domains, and the one giving greater likelihood is chosen. The affected states are
retrained using the Baum-Welch algorithm [9,10]. The above procedure is iterated un-
til getting to a pre-defined number of states.

The PDT-SSS(Phonetic Decision Tree-Successive State Splitting) [11] based on
the SSS algorithm is a powerful technique to design topologies of tied-state models,

 User-Customized Interactive System Using Both Speech and Face Recognition 319

and is possible to generate highly accurate HM-Net. Each state of HM-Net has the in-
formation such as state index, contextual class, lists of preceding and succeeding
states, parameters of the output probability density distribution and the state transition
probability. If contextual information is given, the model corresponding to the context
can be determined by concatenating several associated states within the restriction of
the preceding and succeeding state lists.

Fig. 2. An example of HM-Net models

Fig. 3. Overall schematic of HM-Net speech recognition system

320 S.-I. Kim

The final result of state splitting is a network of states that efficiently represents a
collection of context-dependent models, as illustrated in figure 2. In contrast to the
training process of the existing HMM, the architecture of the models can be automati-
cally optimized according to the duration of utterances. As a result, the number of
states in vowels increases more than that of states in consonants in terms of the
architecture.

Figure 3 shows an overall schematic of HM-Net speech recognition system. In case
speech signals are given to the system, the acoustic features are first extracted for pre-
processing, and then given to the first and the second pass search modules that use
tree-structured lexicon, HM-Net Triphones, and semantic grammars. The HM-Net
speech recognizer has been proved that it produced better performance than the
conventional HMM in the experiments of phoneme, word, and continuous speech
recognition [12,13].

3 The Interface of Face Identification

The face identification algorithm implements the advanced face localization, the en-
rollment and the matching using robust digital image processing algorithms. The in-
terface has two operation modes such as enrollment and matching. It first processes
the input face image, extracts features and then writes them to the database. In the
mode of face enrollment with features generalization, particularly, it generates
the collection of the generalized face features from a number of the face templates of
the same person. Each face image is first processed and features are then extracted. In
the next step, the collections of features are analyzed and combined into one general-
ized features collection, which is written to the database. The quality of face recogni-
tion increases if faces are enrolled using this mode mentioned above. In the mode of
matching, on the other hand, it performs the matching process between the new face
image and the face templates stored in the database.

In this study, the interface of face identification was adopted for user-
customization of interactive system. In experiments, we used the VeriLook SDK[14]
for the interface of face identification. Table 1 shows the technical specification of
face identification using a PC with 3GHz Pentium 4 processor.

Figure 4 shows the software interface for face identification module made by
VC++. The main application window of the interface has four-pane layout, where two
top panes are used for image display and two bottom panes are used for message

Table 1. Technical Specification of Face Identification

Item Specification
Recommended minimal image size 640 x 480 pixels
Multiple faces detection time(640 x 480 image) 0.1 seconds
Single face processing time 0.15 seconds
Matching speed 100,000 faces/second
Size of one record in the database 2.3 Kbytes
Maximum database size unlimited

 User-Customized Interactive System Using Both Speech and Face Recognition 321

Fig. 4. Interface of face identification (num.1: Face detection pane, num.2: Matching/ enroll-
ment pane, num.3: Application log pane, num.4: Matching results pane)

logging. The face detection pane is used to display the still images, the videos, or the
result of face detection algorithm overlaid on image. The matching/enrollment pane is
used to display images enrolled to face database or used for matching. The application
log pane is used for the system information and the application progress messages.
The match results pane is used for listing ID of the subject in the database, most simi-
lar to the matched image. Subjects are considered similar if their similarity value ex-
ceeds matching threshold set.

4 The Proposed Interactive System

The proposed system can be built by integrating two main module of both HM-Net
speech recognition and face identification, mentioned in the previous chapters. Figure 5
shows the flow diagram of the processing based on the proposed system, which is oper-
ated in real time. It shows how to build the interaction between user and system.

If user sits on the sofa, the system catches signals from touch sensor and then acti-
vates face identification engine to detect face area. If the system recognizes who is sit-
ting on the sofa, it adapts itself to the new circumstances. The system then activates
the speech recognition engine where the virtual interaction between user and system
is built using speech recognition and synthesis [15]. In case speech recognition is ac-
tivated, system provides the user-customized services. It can notify user of the neces-
sary information such as important messages or schedules. In the proposed system,
the list of the registered recognition candidates can be automatically updated accord-
ing to the corresponding recognition results.

Figure 6 shows the main window frame of user interface, which was made by
VC++, with the modules of both speech recognition and face identification. The sys-
tem provides several functions. First, it is possible for user to control multimedia ap-
plication programs such as video, MP3 player, CD player etc. Besides, several kinds

322 S.-I. Kim

Fig. 5. The flow diagram of building interaction between user and system

of electrical appliances such as electrical fans, lamps can be controlled by the power
relay units of print-port interface.

By utilizing the natural human-interfaces such as speech recognition and face iden-
tification, the need for a keyboard, mouse, or remote controller can be eliminated
in real-world applications. Figure 7 shows the touch sensor, which is one of the

Fig. 6. Main window frame of user interface. (num.1: interface for video processing, num.2: in-
terface of face identification, num 3: interface of speech recognition)

 User-Customized Interactive System Using Both Speech and Face Recognition 323

Fig. 7. Touch sensor(left) attached on the sofa(right)

components of hardware interface based on print-port control. It was attached on the
sofa so that the input signals from the sensor activate or deactivate the system in case
someone sits on the sofa.

5 Experimental Results

5.1 Preprocessing for Speech Recognition

All speech data were sampled at 16kHz, quantized at 16 bits, pre-emphasized with a
transfer function of (197.01 −− z), and processed to extract acoustic features using a
25ms Hamming window with a 10ms shift. The feature parameters consisted of total
39th order LPC Mel Cepstrum coefficients including the normalized log-power, the first
and the second order delta coefficients. Table 2 shows the analysis of speech signals.

Table 3 shows the speech database and its contents used for both HMM training
and recognition process, respectively. For the training process, the database of

Table 2. Analysis of speech signals

Item Contents
Sampling rate 16kHz , 16bits
Pre-emphasis 0.97
Window 25 ms Hamming window
Frame period 10 ms

Feature Parameter
13th order LPC MEL Cepstrum + 13th order ΔLPC
MEL Cepstrum + 13th order ΔΔLPC MEL Cepstrum
= Total 39th order LPC MEL Cepstrum

Table 3. Database used in the module of speech recognition

Process Database Contents

Training ETRI
(200 male speakers*280 utterances) + (200
female speakers * 280 utterances) = 112,000
utterances

KLE (3 male speakers * 452 words) = 1,356 words
Word Rec-

ognition YNU
4 male speaker * 200 utterances = 800 utter-
ances

324 S.-I. Kim

ETRI(The Electronics and Telecommunications Research Institute) was used. The da-
tabase used for the recognition, on the other hand, consists of two kinds of database,
one of which is made by KLE(Center for the Korean Language Engineering), and the
other is made by YNU(YoungNam University).

5.2 Results Based on the Proposed System

For the preliminary experiments, the speech recognition was performed using a frame
synchronous Viterbi beam search algorithm with the phonotactic constraint of Korean

Fig. 8. Speaker and task independent word recognition accuracies according to the number of
both mixtures and states using KLE database

Fig. 9. Speaker and task independent sentence recognition accuracies according to the number
of both mixtures and states using YNU database

Table 4. Experimental Conditions for Speech Recognition and Recognition Accuracy

Module Accuracy(%)
Face Identification (40/41)*100=97.6

Speech Recognition (530/738)*100=71.8

 User-Customized Interactive System Using Both Speech and Face Recognition 325

language. Figure 8 and 9 shows the recognition accuracies for word and continuous
speech, respectively. It is noticed in the recognition results that the accuracies, as a
whole, grew gradually with the increase of the number of both mixtures and states.

For experiments, total 41 male college students were participated in the evaluation
of the system. For examining the human performance on the accuracies of the pro-
posed system, we first showed them a demonstration of how to use and operate the
system, and made them to use it for themselves.

Table 4 shows the average recognition accuracies in each module such as face
identification and speech recognition. For the evaluation of speech recognition incor-
porated into the proposed system, total 738 utterances(41 users * 18 utterances) were
used. The evaluation was performed in the laboratory environments with the noises
such as computer cooling fan or buzz of voices. In experiments, we adopted speech
recognizer with 2,000 states and 4 mixtures per state. For the evaluation of face iden-
tification, on the other hand, 41 male college students were first registered in facial
image database and the identification test in each user was then conducted.

4.9
7.3

36.6
41.4

9.8

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

Ranks

Sc
or

es

Fig. 10. Evaluation of the system in terms of how easy system was to use

7.3

24.4

46.3

19.5

2.5

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

Ranks

Sc
or

es

Fig. 11. Evaluation of the system in terms of how useful system would be in real applications

326 S.-I. Kim

As the evaluation using questionnaire, all participants marked ranks from 1- to 5-
point about how easy and how useful they thought the system was to use. We could
get the results as shown in figure 10 and 11 that the proposed system was relatively
easy to use and would be useful in real applications.

6 Conclusion

This study has described the user-customized interactive system based on the speech
and face recognition for intelligent home environments. The results from the experimen-
tal evaluation have shown that the proposed system had relatively good performance.
This means a possibility for building a virtual interaction using the system that might
give us much more convenient and comfortable living environments. However, the ac-
curacy of speech recognition was unsatisfactory owing to the noisy environments, di-
verse speaking rates, and speaking styles of users. From the evaluation, we could obtain
several ideas on the system as future works. Namely, the future works should be con-
ducted on more natural methods of interaction so that the future systems would allow
users to feel more natural in virtual interaction for intelligent home environments.

References

1. Machate, J.: Being natural - on the use of multimodal interaction concepts in smart homes,
HCI(2) (1999) 937-941, 2. Lee, K.F., Hon, H.W.: Speaker-Independent Phone Recognition
Using Hidden Markov Models. IEEE Tran. on Acoustic, Speech and Signal Processing.
37(11) (1989) 1641–1648

2. Kohler, M.: Special Topics of Gesture Recognition Applied in Intelligent Home Environ-
ments. Lecture Notes in Computer Science, 1371 (1998) 285-233

3. Mozer, M.: The neural network house: An environment that adapts to its inhabitants. Proc.
of the AAAI Spring Symposium on Intelligent Environments (1998) 110-114

4. Cook, D.J., Youngblood, M., Heierman, E., Gopalratnam, K., Rao, S., Litvin, A., and
Khawaja, F.: MavHome: An Agent-Based Smart Home. Proc. of the IEEE International
Conference on Pervasive Computing and Communications (2003) 521-524

5. Corcoran, P.M., Papai, F., Zoldi, A.: User Interface Technologies for Home Appliances
and Networks. IEEE Transactions on Consumer Electronics (1998)

6. Suzuki, M., Makino, S., Ito, A., Aso, H., Shimodaira, H.: A new HMnet construction algo-
rithm requiring no contextual factors. IEICE Trans. Inf. & Syst., E78-D(6) (1995) 662-669

7. Ostendoft, M., Singer, H.: HMM Topology design Using Maximum Likelihood Succes-
sive State Splitting. Computer Speech and Language 11 (1997) 17-41

8. Takami, J., Sagayama, S.: A Successive State Splitting Algorithm for Efficient Allophone
Modeling. Proc. of ICASSP’92, 1 (1992) 573-576

9. Huang, X., Acero, A., Hon, H.W.: Spoken language processing: a guide to theory, algo-
rithm, and system development, Prentice Hall (2001)

10. Rabiner, L., Juang, B.H.: Fundamentals of speech recognition. Prentice-Hall International,
Inc. (1993)

11. Hori, T., Katoh, M., Ito, A., Kohda, M.: A Study on HM-Nets using Decision Tree-based
Successive State Splitting. Proc. of ICSP’97, (1997) 383-387

 User-Customized Interactive System Using Both Speech and Face Recognition 327

12. Se-Jin, O., Cheol-Jun H., Bum-Koog K., Hyun-Yeol C., Akinori I.: New state clustering of
hidden Markov network with Korean phonological rules for speech recognition. IEEE 4th
workshop on Multimedia Signal Processing (2001) 39-44

13. Se-Jin, O., Cheol-Jun H., Bum-Koog K., Hyun-Yeol C.: Performance Evaluation of HM-
Nets Speech Recognition System using the Large Vocabulary Korean Speech Databases.
Proc. of Kyushu-Youngnam Joint Conference on Acoustics (2003) 49-52

14. VeriLook SDK(Software Developer’s Kit) version 2.0, Neurotechnologija,. Web Site:
http://www.neurotechnologija.com/

15. i-Talk SDK version 2.2, SL2 Corporation. Web Site: http://www. slworld.co.kr/

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 328–337, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Visualization of GML Map Using 3-Layer POI on
Mobile Device

Eun-Ha Song1, Laurence T. Yang2, and Young-Sik Jeong1,*

1 Department of Computer Engineering, Wonkwang University
344-2 Shinyong-Dong, Iksan, 570-749, Korea
{ehsong,ysjeong}@wku.ac.kr

2 Department of Computer Science, St. Francis Xavier University
Antigonish, NS, B2G 2W5, Canada

lyang@stfx.ca

Abstract. GIS can only be applied to certain areas by storing format, and it is
subordinate to a system when displaying geographic information data. It is
therefore inevitable for GIS to use GML that supports efficient usage of various
geographic information data and interoperability for integration and sharing.
The paper constructs VisualGML that translates currently-used geographic in-
formation such as DXF(Drawing Exchange Format), DWG(DraWinG), or
SHP(Shapefile) into GML format to visualize. In order to provide a flexibility
of a mobile device, VisualGML constructs integrated map preprocess module
which filters geographic information data according to its tag and properties.
VisualGML also provides two major GIS services for user and administrator, it
can be enable visualizing location search this is applied with 3-Layer POI struc-
ture for user. For administrator, it has trace monitoring visualization through
moving information of mobile devices.

1 Introduction

Mobile technology is rapidly emerging as a prominent icon representing present days.
Due to propagation of wireless PDA, car navigation system, and cell phone, the need
for geographic information service is rapidly rising. Current GIS has been developed
with multiple methods and forms in order to display, analyze, process, store, gain
geographic information data. There exist shortcomings on free usage, integration,
application, and sharing due to limited format of GIS; therefore, common inter-
changeable format is necessary. OGC (Open GIS Consortium) has suggested a
GML(Geography Markup Language)[1] specification in order to save and transfer
geographic information containing a geographic aspect that has spatial or non-spatial
attributes. To provide interoperability of GIS, GML gives a structure to data allowing
flexibility of an access to information[2][3][4].

The paper develops VisualGML which visualizes and creates common-format
GML that covers heterogeneity of geographic information data, supporting its inter-

* Corresponding Author.

 Visualization of GML Map Using 3-Layer POI on Mobile Device 329

operability. VisualGML designs IMP(Integrated Map PreProcessor) in order to over-
come insufficient data process memory and low connection speed that is caused by
visualizing geographic information data onto a mobile device. IMP makes geographic
information data lighter-weighted by extracting unnecessary information of file for-
mats like DXF[5], DWG, or SHP[6], and categorizing those into layers. VisualGML
user-centered visualization is based on not just simple GML-based map visualization,
but on hierarchical POI information; it also saves, gains, traces, and manages real-
time movement information of a mobile device.

2 Related Works

There are number of existing GML-base map visualization system: TatukGIS Viewer
1.4[7] by TatukGIS Inc., FME Universal Viewer[8] by SafeSoftware Inc., Master
Map Viewer 2.0[9] by Snowflake Software Ltd., iSMART Explorer 4.4[10] by eSpa-
tial Inc., and GML Viewer by ETRI.

iSMART Explorer 4.4 is very easy to use, has a light-weighted application, and is
connected to OCI(Overseas Consultants Incorporated) DB, thus being much easier to
be analyzed. It finds GML scheme automatically and reexamine, expand, minimize,
and move non-spatial property data; it also allows sufficient spatial editing through
web browser, and provides fast response time for low bandwidth connection. There
exists almost no file format which TatukGIS Viewer 1.4 supports, which also can
process up to 2Gbyte file. It also translates visualized geographic information into
PDF file, and measures distance and size between two points. Also with vector prop-
erty information it displays identical properties of a map with the same color, and
when clicking a vector graphic with a mouse it shows a property window. Similarly,
FME Universal Viewer 2004 displays identical properties with a same color, shows a
property window; additionally, it allows editing properties of geometry.

There exist various map visualization systems besides programs mentioned above;
however, the most support simple visualization and cannot provide user-centered map
information. Also, they are not every useful in that they are offline single application.
VisualGML uses various existing geographic information, extracts core elements for
the map display, and converts them into GML; in other words, VisualGML supports
heterogeneity and interoperability of geographic information data. During the process
of GML conversion, it provides hierarchical location search and map visualization
applied with hierarchical POI DB; moreover, VisualGML gains and saves movement
coordinates of a mobile device, and provides tracking monitoring visualization.

3 VisualGML System

3.1 VisualGML Architecture and Control Flow

VisualGML is mainly composed of a map server and mobile device. Map server man-
ages in lower weight of geographic information data, generating GML file, and tracking
monitoring visualization of a mobile device. Mobile device is user-centered event proc-
ess and visualization. Fig. 1 shows overview of the architecture of VisualGML.

330 E.-H. Song, L.T. Yang, and Y.-S. Jeong∗

Fig. 1. Architecture of VisualGML

Map server carries on map data process which a mobile device requests mainly
through Service Broker. Service Broker receives location coordinates and map area of
a mobile device from Communication Module, orders GML generation, and requests
monitoring visualization. GML Maker generates GML using IMP, which accepts
various map formats and extracts core elements from them for map display, and POI
DB which provides location information to the users. Monitoring Manger visualizes
GML generated by GML Maker onto Monitoring Viewer. A map is initially visual-
ized without location tracking information of a mobile device; however, tracking
monitoring information is visualized when requested by the manager.

Mobile device requests map and mediates visualization are through View Frustum
Manager. After mobile device receives location coordinates from GPS, GPS Coordi-
nate Transformation Module converts the coordinates into TM coordinate system.
Communication Module transfers location coordinates and map area that is to be
requested. View Frustum Manger transfers received GML file through GML Parser.
Parsing GML, GML Parser extracts map property, and sends visualization are through
View Broker. View Broker mediates real-time map visualization under location coor-
dinates change, and manages event process due to user-altered event such as expand,
minimize, or move.

3.2 Integrated Map Preprocessor

Due to massive volume of geographic information data, performance improvement
for visualizing the data onto mobile device is required. File formats such as DXF,
DWG, and SHP that are currently used widely are visualized onto specific applica-
tion. This paper constructs IMP that is a part of preprocessing containing expandabil-
ity of a file format that provides fast access to mobile device and deals with its

 Visualization of GML Map Using 3-Layer POI on Mobile Device 331

heterogeneity. IMP categorizes Importer modules by layer according map format,
extracts their core elements, and reduces their weight and give them attributes.

DXF/DWG Importer extracts geographic information data property of six sections
of DXF and DWG formats. BLOCKS and ENTITIES sections are used when extract-
ing physical information and analyzing through ENTITY Parser. ENTITY Parser
makes symbols or marks used in BLOCKS section into groups. Grouped information
is used when indicating buildings, farmlands, roads, or rivers, and it is displayed as
INSERT in ENTITIES section. INSERT information uses group code layers defined
in BOLCKS sections, and save them into Temp Block Data distinguishing from
ENTITIES section. INSERT property generates Final Object adding coordinates de-
fined in BLOCKS section onto coordinated defined in ENTITIES section.

SHP brings shape information though File Importer and property information
through DBF Importer. Shape information extracts Bounding Box which is maximum
and minimum value of coordinates of main header from *.shp file, and defines area of
a shape. Shape File Handler approaches to record contents in size of Content Length
of record header and opens the contents. Record contents extract the contents accord-
ing to types of the shapes at Shape Type Importer, and waits in order to match the
contents with property information that is to be extracted from *.dbf files. DBF Im-
porter reads *.dbf files and stores its property value into Shape Attribute Table. Shape
Attribute Table matches its values with extracted shape information from Shape Type
Importer and generates Final Object. Fig. 2 shows structure of DXF/DWG and SHP
Importer module.

Fig. 2. DXF/DWF and SHP Importer

Light-Weighted Module categorizes Final Object generated by DXF/DWG and
SHP Importer into specific layers, thus reducing its weight – it refers to national geo-
graphic standard code when categorizing. Extracted layer code is in 4000s (4000 ~
4637) indicating buildings, 3000s (3000 ~ 3999) indicating roads, and 9000s (9110 ~
9233) indicating texts. Fig. 3 shows a file extracted from DXF file of “3 Ga, Hanok
Village, Pungnam dong, Wansan gu, Jeonju, Jeonbuk, 560-033 Korea” by IMP.

332 E.-H. Song, L.T. Yang, and Y.-S. Jeong∗

(a) Resource DXF file (b) IMP extract

Fig. 3. Comparison between DXF file and a file extracted by IMP

3.3 Hierarchical POI

VisualGML does not provide simple map visualization but provides POI service
which contains location information of individual objects. POI service constructs 3-
Layer POI for efficiency of fast search, add, delete, and update of location informa-
tion. As shown in fig. 4, 3-Lay POI structure refers to DXF standard value map.

Fig. 4. 3-Layer POI Structure

For buildings with layer code ‘4’ according to DXF standard code, Meta Layer de-
fines user-centered meta code, and gives identical specific key value to the categories
that fall into game group so that they can be distinguished from other. Meta code is
divided into U-Meta and L-Meta code in order to specialize internally its POI infor-
mation. U-Meta code is defined as upper group and it is divided into 11 types of
codes. Each U-Meta code has L-Meta as a lower code according to its characteristic.
Key value is assigned to its names according to Name Layer. Contents Layer is a
layer that contains POI information such as name, address, phone number, specifics,
or webpage that are to be shown to actual users. POI constructs POI DB defining 14
fields. Table 1 shows major fields of POI DB.

 Visualization of GML Map Using 3-Layer POI on Mobile Device 333

Table 1. POI DB Fields

Filed Remark

Object ID ID of geometry
Gu_cd/Dong_cd Administrative district of geometry
Blg_nm Name of geometry
X_coord/Y_coord Location of geometry
Shape_area Area of geometry
add1 Address of geometry
add2 Detail Address of geometry
Telephone Telephone number of geometry
EX Detail information of geometry
URL Homepage of geometry
Key Hierarchical code of geometry
O/X POI presentation of geometry(enabled/disabled)

3.4 GML Maker

GML Maker reconstructs geometry property and property information extracted by
IMP into GML file. Fig. 5 shows specific structure of GML Maker.

Fig. 5. GML Maker Structure

GML is displayed in different ways according to its map format. Attribute Con-
verter changes data structure of heterogeneous geographic information in order to
parse them into common GML format, and matches properties of Final Object and
GeoMetricData. Referring to Attribute Define that had defined GML property tags,
GML Document Maker provides methods that generate GML schemes and property
elements. The generator method is composed of a generator method that deals with
basic schemes such as defining NameSpace, generating property, starting tag, ending
tag, CDATA configuration, and an element generator method that deals with polygo-
nal properties of Geometry Types such as Polygon, Polyline, or Circle. GML Creator
sorts Geometry Types by GeoMetricData, and calls out an element generator method
and inserts it to basic scheme. When insertion is complete, GML Creator brings

334 E.-H. Song, L.T. Yang, and Y.-S. Jeong∗

specific field information among information in POI DB. FeatureMember generates
GML with Exporter. Fig. 6 shows GML file generated by adding POI information
onto DXF file.

POI

GML

Fig. 6. GML file generated by adding POI information onto DXF file

3.5 GML Parser

GML Parser induced GML parsing through XML Parser, which enhances memory
usage and CPU resource usage by SAX method. Among standard library modules
provided by SAX, GML Parser inherits XMLParser class and defines GMLParser
class. GMLParser class defines individual elements based on GML Schema, and calls
out a handler that is defined as event-type form in order to process the individual
elements.

Fig. 7. GML Parsing Process

 Visualization of GML Map Using 3-Layer POI on Mobile Device 335

GMLParser class processes a tag with key and value of an element. The key is
name of the tag, and the value is the name of function that will carry on starting and
ending tag and is composed of tuple. For example, if the tag is <vgml id=“2” type=
“simple”>, GMLParser class calls out vgml_start_tag[{‘id’:‘2’, ‘type’=‘simple’}].
Function is called out in following method: in case of starting tag, handle_starttag
function is called out, and in case of ending tag, handle_endtag function is redefined
and altered. Fig. 7 shows GML Parsing process.

4 Visualization of VisualGML

Visualization area of VisualGML is “3 Ga, Hanok Village, Pungnam dong, Wansan
gu, Jeonju, Jeonbuk, 560-033 Korea”. Fig. 8 shows running window that displays map
visualization with POI and tracking monitoring of mobile device. The window is
composed of a main window that visualizes the map, a hierarchical POI search win-
dow, user event window that enables expand, minimize and move. POI visualization
emphasizes buildings and its names that were searched under Education-High School
in hierarchical POI search tree. Also selected ‘sungsim girls’ high school’ is displayed
as a pop-up with size of 280*100. Tracking monitoring displays coordinates of mobile
devises that are connected to a current server on 800*700 size map. Moving informa-
tion of three mobile devices were traced and monitored with different colors: red
indicates Mobile_Device_1 moved from ‘jungang elementary school’ to ‘cheongsoo
pharmacy’, green indicates Mobile_Device_2 moved from ‘cheonju tradition mu-
seum’ to ‘sungmoon church’, and blue indicates Mobile_ Device_3 moved from ‘de-
ungyongmoon computer academy’ to ‘myongji oriental medicine clinic’.

Fig. 8. VisualGML Visualization with POI and Trace Monitoring

336 E.-H. Song, L.T. Yang, and Y.-S. Jeong∗

Fig. 9. Movement Visualization of Mobile Devices

Fig. 9 shows that mobile devices with IDs of “1,” “2,” and “3” are connected to a
map server and visualizes GML, having moved certain distance.

5 Conclusions

This paper constructed VisualGML that generates and visualizes map information
based on GML which is a standard format of OGC onto a mobile device. Within the
process of converting maps such as DXF, DWG, SHP into GML, VisualGML embod-
ied IMP for light-weighted map information data and developed GML Maker and
GML Parser for standard map visualization. In order to provide GML-based map with
user-centered location information, VisualGML visualized hierarchical POI as well.
Specifically, for higher efficiency of data process capacity and data storage volume
IMP extracted out unnecessary parts while preserving file’s characteristic through
DXF/DWG and SHP Importer. Hierarchical POI established POI DB based on 3-
Layer POI structure so that it can provide location information as well as hierarchical
search method. VisualGML lastly provided monitoring visualization that can gain and
save movement information of mobile devices.

Acknowledgement

This work was supported by Ministry of Information & Communication in republic of
Korea.

References

1. OpenGIS Consortium, Inc., Geography Markup Language(GML) Implementation Specifi-
cation, http://www.opengeospatial.org/docs/02-023r4.pdf

2. OpenGIS Consortium, Inc., "OpenGIS Location Service Core Services",
http://www.openeospatial.org

3. K. Virrantaus, J. Veijalainen, J. Markkula, "Developing GIS-Supported Location-Based
Service", Web Information System Engineering, Proceedings of the Second International
Conference on, Vol. 2, 3-6, Dec. 2001.

 Visualization of GML Map Using 3-Layer POI on Mobile Device 337

4. Shashi Shekhar, Ranga Raju Vatsavai, Namita Sahay, Thomas E. Burk, Stephen Lime,
"GML, Interoperability, and Standards: WMS and GML based interoperable web mapping
system", Proceedings of the 9th ACM international symposium on Advances in geo-
graphic information systems, Nov. 2001..

5. Autodesk Drawing eXchange Format, http://www.autodesk.com/techpubs/autocad/
acadr14/dxf

6. ESRI, ESRI Shapefile Technical Description. ESRI, INC, http://www.esri.com, 1998.
7. TatukGIS Inc. TatukGIS Viewer 1.4, http://www.tatukgis.com/products/Viewer/

viewer.aspx
8. Safe Software Inc. FME Universal Viewer 2003, http://www.safe.com/products/fme
9. Snowflake Software Ltd. OS Master Map Viewer 2.0, http://www.

snowflakesoftware.co.uk
10. eSpatial Inc. iSMART Explorer4.4, http:/www.espatial.com

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 338–346, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Speaker Recognition Using Temporal Decomposition of
LSF for Mobile Environment

Sung-Joo Kim, Min-Seok Kim, and Ha-Jin Yu

School of Computer Science, University of Seoul,
Dongdaemungu Seoul, 130-743, Korea

{sung|mskim|hjyu}@venus.uos.ac.kr

Abstract. A novel approach to speaker recognition in mobile or IP network en-
vironment is described. In this approach, we use decoded line spectral fre-
quency (LSF) parameters directly from compressed speech packets instead of
using parameters from decompression and analysis procedure. Furthermore, we
reduce the number of LSF series based on a restricted temporal decomposition
method. Consequently, proposed approach gets more than three times faster
than a traditional speaker recognition approach without losing any accuracy ac-
cording to our experiments.

1 Introduction

Recent communication apparatuses are fast adopting mobile or IP networks, because
there are growing needs of mobile and economical communication. Thanks to the
wireless mobile network, people can access each others wherever they are, and digital
packets transferring speech signal make it possible to share a physical link with others
more than ever. Enhanced communication environment detonates new demands for
speech applications like speaker recognition in this environment.

Current mobile or IP networks have several characteristics to apply a traditional
speech processing approach. Firstly, speech signals are digitally compressed with a
coder, mostly code excited linear prediction (CELP) coder [1] for the channel effi-
ciency. Therefore, a traditional speech processing application needs to decompress
those packets first to extract required feature vectors. Secondly, the channel error can
cause some packet losses. It means feature vectors from decompressed speech signal
might have serious distortion comparing with those from original input speech.
Thirdly, the compressed packet itself has the parameters for the speech production
model, especially LPC or LSF parameters, so the process which decompress it and
analyze the decompressed signal to get spectral parameters may be inefficient and
redundant.

When porting a speech application on a mobile phone, you may suffer from lack of
CPU power and memory, since it is directly connected with the system cost. This is
the main obstacle to implementing a speech application on mobile embedded system.
In this point of view, the fixed frame rate analysis to extract necessary speech features
makes too much overhead. So we need to reduce the feature rate in some way for the
mobile embedded system environment.

 Speaker Recognition Using Temporal Decomposition of LSF for Mobile Environment 339

In this research, we try to find and test an efficient feature set for speech processing
in mobile or IP network environment. Especially, we focus on the computational
efficiency for the future implementation of real world application. We choose the
speaker recognition (identification) task as a typical speech processing application in
this paper, since it is relatively small task and easy to implement and test, but we hope
our result can be applied to other speech processing applications like speech recogni-
tion later on.

Here we say the speaker recognition is a technique to determine to whom an input
speech signal belongs. More specifically, it is to identify the unknown speaker as one
of the previously trained speakers. For this task, using mel-frequency cepstral coeffi-
cient (MFCC) [2] feature set and speaker modeling with Gaussian mixture models
(GMM) [3] is the most prevalent approach. Besides, several approaches were pro-
posed to overcome the difficulties of implementing speaker recognition task in the
mobile or IP network environment. Saastamoinen and et. al. studied on implementa-
tion issues during porting a speaker recognition system into a specific mobile phone
model [4]. Aggarwal and et. al. proposed compressed speaker recognition (CSR),
which uses a feature set directly extracted from compressed speech packet and a mi-
cro-clustering technique as a classifier [5]. Although it was for the speech recognition,
Alencar and et. al. presented comparison results of several features which are trans-
formed from LPC and LSF parameters of compressed speech packet [6].

In this research, we use LSF parameters decoded from compressed speech packet
as a feature set for the speaker recognition task. We exclude the transformation of this
parameter into a more discriminative one from this research. However, we do tempo-
ral decomposition of LSF series to get concise vector series. According to a previous
research, restricted temporal decomposition (RTD) can represent LSF vector series
with less number of event vectors and their corresponding event functions almost
transparently [4].

The rest of the paper is organized as follows. In the next session, we introduce the
RTD of LSF parameters briefly. This is followed by the description of speaker recog-
nition system using RTD. Section 4 then presents the experiment setup we used to
show the advantages of the proposed approach and the results. Finally, Section 5
gives the summary and conclusions.

2 Restricted Temporal Decomposition of LSF Parameters

In the area of speech coding, many researchers have studied the efficient quantization
of LSF parameters because they have several merits such as local sensitivity, ease of
stability checking, and simple synthesis filter [1]. It is the reason why all the CELP
coders use LSF parameters as synthesis filter coefficients of speech production model.
Besides, the temporal decomposition proposed by B. S. Atal [8] is an efficient method
of speech coding which decomposes the given vector trajectory into a set of tempo-
rally overlapping event functions and corresponding event vectors. However, the
original temporal decomposition method cannot be applied to LSF parameters be-
cause of their ordering property.

The original temporal decomposition assumes that each event is a superposed compo-
nent of a given vector trajectory, so the distribution of the estimated event vectors is

340 S.-J. Kim, M.-S. Kim, and H.-J. Yu

different from that of the given vector trajectory. In the case of cepstrum or MFCC
parameters, this creates no problem, because each order of those parameters is independ-
ent and has no boundary value. However, LSF parameters are dependent to adjacent
orders and have the ordering property. Therefore, decomposing LSF into superposed
event vectors causes the event vectors not to obtain their respective spectra since they can
be unstable, i.e., the event vectors are no longer LSF parameters.

To solve this problem, Kim and et. al. proposed another restriction on event func-
tions so that the sum of all event functions at any time t is always one. As a result,
event vectors estimated by RTD method preserve the ordering property of LSF pa-
rameters so that they can be quantized efficiently.

Let a given vector trajectory and its corresponding sets of event vectors and func-
tions be X = [x1, x2, ..., xT], A = [a1, a2, ..., aJ], and Φ = [φ1, φ2, ..., φJ]

 T respectively,
where xt = [xt,1, xt,2, ..., xt,p]

T is the p-th order LSF vector sampled at time t, aj = [aj,1,
aj,2, ..., aj,p]

T

 the j-th event vector, and φj = [φj,1, φj,2, ..., φj,T]

T

 the j-th event function.

The temporal decomposition estimates proper event vectors and functions which
minimize

 ∑
=

′−=−=
T

t
ttE

1

22
xxAΦX , (1)

where

tj

J

j
jt ,

1

φ∑
=

=′ ax (2)

φj,t is restricted to the range of [0,1] and to being the maximum value one at its corre-
sponding center C j() . We refer the reader to [7] for details on RTD of LSF algo-

rithm. Here we just describe the brief RTD algorithm as follows.

Step 1. Initialization: Locate the first event at the starting position
Step 2. Segment boundary decision: Find the next local minimum point of spectral

transition measure [11], which will be the end of the current segment. Lo-
cate an event there.

Step 3. Event function estimation: Estimate the initial event functions φj correspond-
ing to the current set of event vectors. Notice that no iteration is needed to
estimate event functions for this step.

Step 4. Event Insertion: If the interpolation error exceeds a given threshold at a cer-
tain location, insert an event, set the LSF vector at there to the event vector,
then go back to step 3.

Step 5. Event vector re-estimation: Re-estimate the event vectors aj corresponding
to estimated event functions

Step 6. Event function re-estimation: Re-estimate the event functions φj correspond-
ing to estimated event vectors. If the results have been converged or re-
estimated a certain number of times, go to step 7. If not, go back to step 5.

Step 7. Going to next segment: Store the events for the current segment. To ana-
lyze the next segment, keep last two events as beginning part of the seg-
ment. Go back to step 2.

 Speaker Recognition Using Temporal Decomposition of LSF for Mobile Environment 341

RTD algorithm which was proposed by Kim and et. al. has distinctive features over
other temporal decomposition algorithm, since it was designed for a speech coder
implementation. First, the way of locating events is simple and definite, so that the
procedure converges very fast. Second, the processing buffer is relatively short since
it uses spectral transition measure to locate an event. Also user can set the maximum
buffer size to prevent too long algorithmic latency. Third, including event insertion
mechanism with a threshold argument, the event rate can be controlled with respect to
user’s need.

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

x 10
4

-4000

-2000

0

2000

4000

0

0.5

1

pi

0

time [sample]

am
pl

itu
de

m
ag

ni
tu

de
fr

eq
ue

nc
y

t w e n i s i k s

(a)

(b)

(c)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

x 10
4

-4000

-2000

0

2000

4000

0

0.5

1

pi

0

time [sample]

am
pl

itu
de

m
ag

ni
tu

de
fr

eq
ue

nc
y

t w e n i s i k s

(a)

(b)

(c)

Fig. 1. Example of RTD

Experimental results showed that RTD could interpolate the original vector trajec-
tory of LSF parameters very well and with the event insertion threshold 0.6, the inter-
polation results was transparent to the original ones [7]. So we set the event insertion
threshold to 0.6 from now on in this paper. Figure 1 shows an example of RTD re-
sults; (a) is the log spectrums of event vectors, and (b) is the corresponding event
function, and (c) is the input speech signal, which is pronouncing ‘26’ in English .

3 Speaker Recognition Using RTD of LSF

We are focusing on the speaker recognition task in mobile or IP network environment
and assuming that the speech signal is compressed and packetized before sending.

342 S.-J. Kim, M.-S. Kim, and H.-J. Yu

This unique situation affects the feature extraction module of the speaker recognition,
but not recognizer or classifier itself. Therefore, we choose a GMM based speaker
recognition as the archetype, which is the most prevalent approach to build a speaker
recognition system. GMM is the most prominent approach for modeling in text-
independent speaker recognition applications. In GMM, each speaker's acoustic
parameter distribution is represented by a speaker dependent mixture of Gaussian
distributions,

∑
=

=
M

i
ii gwp

1

)()|(xx λ , 1
1

=∑
=

M

i
iw (3)

where M is the number of mixtures, wi mixture weights and Gaussian densities gi are,

)()(
2

1
exp

||)2(

1
)(1

2/12/ ii
T

i
i

Dig xxx .

.
(4)

Maximum likelihood parameters are estimated using the EM algorithm. For speaker
identification, the log-likelihood of a model given an utterance X = [x1, x2, ..., xT] is
computed and the speaker associated with the most likely model for the input utter-
ance is chosen as the recognized speaker Ŝ .

)|(logmaxargˆ
1

1
kt

T

t
Sk

pS λx∑
=≤≤

= (5)

In mobile or IP networks, speech signal is compressed before transmission mostly
with a CELP coder [1], and a CELP coder uses LSF parameters as its synthesis filter
coefficients, so we can decode LSF parameters right from the compressed speech
packets. Generally a CELP coder uses 20 ms frame buffer for analyzing speech sig-
nal, so we can get LSF parameters at the rate of 50 Hz.

Besides the filter parameters, energy of each frame is also an important feature for
speaker recognition, but CELP coded packet does not contain the output speech en-
ergy value. It only gives us the gains of excitation signals; exactly speaking, gains for
an adaptive codeword and a random codeword. Since the output of CELP coder is
generated by filtering the sum of those excitation signals, the gains of excitation sig-
nals can be a reasonable substitute of energy parameter for speaker recognition.

When we get LSF parameters and an energy substitute from each compressed
speech packet, it is possible to run speaker recognition in a traditional way. However,
speaker recognition using GMM is very computationally intensive task, so it is burden
to implement a real world application. Therefore, we put RTD process in between
feature extraction and recognition steps as figure 2.

RTD does not distort the original LSF vector trajectory much, but decompose the
whole trajectory into relatively small number of events, which correspond to phoneti-
cally meaningful segments. In the previous research, RTD produces events at about
the rate of 18 Hz. This means the length of feature vector series can be reduced to
almost one third of the origin by using RTD process.

 Speaker Recognition Using Temporal Decomposition of LSF for Mobile Environment 343

Identified
speaker

Feature Extraction
(Parameter
Decoding) RTD of LSF

Compressed
Speech
Packets

Speaker Models
(GMM)

Recognition

Model Training

LSF, gain

LSF’s event vector,
event length, gain

Identified
speaker

Feature Extraction
(Parameter
Decoding) RTD of LSF

Compressed
Speech
Packets

Speaker Models
(GMM)

Speaker Models
(GMM)

Recognition

Model Training

LSF, gain

LSF’s event vector,
event length, gain

Fig. 2. Proposed System Block Diagram

During adopting RTD in speaker recognition, we should notice that an event has its
target vector and weighting function. In RTD, the event vector has the same proper-
ties of original vector, so it can substitute for the LSF vector directly. However, we do
not know how to handle the information in the event functions properly. In case of
speech coding, to re-generate the original vector trajectory at the decoder side, we
should send the information in event functions precisely. So we quantize and send
each event function by its length and length normalized shape. Nonetheless, in
speaker recognition, we do not need to re-generate the original vector trajectory. The
point is whether the information in event function is helpful to discriminate speakers
or not. After all, we just takes the length of event functions as another dimension of
feature vector and feed it to the speaker recognition system in this research.

In summary, proposed speaker recognition system uses 12 dimensional feature vec-
tors which consist of 10 dimensional event vectors, coming from RTD of 10th order
LSF parameters, and the lengths of events, and the energies at every event positions.

4 Experiments Setup and Results

We used the YOHO corpus to development, training and testing of our speaker rec-
ognition system [9]. This corpus was originally collected for speaker verification
systems, but there is no problem to be used for speaker recognition. Actually, this

344 S.-J. Kim, M.-S. Kim, and H.-J. Yu

corpus is suitable to check recognition performance over time, since speakers were
asked to participate for relatively long period of time in 14 sessions over a 3-month
time interval. The particular vocabulary employed in this collection consists of two-
digit numbers ("thirty-four,” "sixty-one", etc), spoken continuously in sets of three
(e.g. "36-45-89"). There are 138 speakers (108 male, 30 female); for each speaker,
there are 4 enrollment sessions of 24 utterances each, and 10 verification sessions of
four utterances each, for a total of 136 utterances in 14 sessions per speaker [9]. We
used total 96 utterances in 4 enrollment sessions of each speaker as the training data
and 40 utterances in 10 verification sessions as the test data. Therefore, speaker rec-
ognition identified to whom each of total 5,520 utterances belongs during the test
stage.

To simulate the speech coder effect in mobile or IP network circumstance, we
chose the IS-96a QCELP coder and encoded all the training and test utterances into
digital packets at the bit rate of 8 kbps. At this bit rate, ten LSF parameters of each
frame are quantized with 4 bits per each and four pitch gains and eight codebook
gains are quantized with 3 bits per each. In real situation, the compressed packets are
the only inputs for speaker recognition, so LSF parameters and gains mentioned
through the experiments below were decoded from the compressed packets by de-
fault. For more details about QCELP coder, we refer the reader to IS-96a, wideband
spread spectrum standard [10].

At first, the ordinary LSF parameter input was tested as a baseline system. We took
every LSF parameters at the rate of 50 Hz from compressed packet and sum of gains
as the substitute of energy while varying the number of mixtures from 16 to 128. The
recognition accuracy rate of the baseline system with 128 mixtures per each speaker
model was 96.79 %. Next, proposed system which uses RTD of LSF parameters was
tested. In this case, the input feature vector’s dimension was increased by one, since
the length of events was added. Although the proposed system used a concise version
of feature vector, it gave slightly better accuracy, 97.25% with 128 mixtures. It shows
that the RTD is very effective method to remove redundant information from LSF
vector trajectory. Finally, to show the clear evidence of RTD effects, we also tested
the performance of the baseline system with feature parameters of only every third
packets. Consequently, the feature vector rate was almost same to the proposed sys-
tem, says 16.67 Hz, but the accuracy was dropped to 94.91%. The whole results of
speaker recognition tests are shown in Table 1.

Table 1. Experiment Results: Speaker Recognition Accuracies

Num. of Mixtures
Conventional

system
Conventional with

frame culling
Proposed System

16 91.07 % 87.68 % 90.74 %
32 94.29 % 91.78 % 94.49 %
64 95.96 % 94.02 % 96.45 %

128 96.79 % 94.91 % 97.25 %

 Speaker Recognition Using Temporal Decomposition of LSF for Mobile Environment 345

Table 2. Comparison of Computational Complexities

Conventional

system
Conventional with

frame culling
Proposed System

Parameter Dim. 11 11 12
Data Rate (Hz) 50.00 16.67 16.74

Complexity Factor 550 183 201
Complexity Ratio 100.0% 33.3% 36.5%

87

89

91

93

95

97

99

16 32 64 128

Number of Mixtures

R
ec

og
ni

tio
n

A
cc

ur
ac

y
(%

)

Conventional system Conventional with frame culling Proposed System

Fig. 3. Tendency of Speaker Recognition Accuracy

Speaker recognition based on GMM requires lots of computations, which are
mainly for calculating Gaussian density values. This computational load is very pro-
portional to the number of speakers to identify, the number of mixtures in GMM per
speaker, the dimensions of a feature vector, and lastly the number of feature vectors in
a test utterance. Therefore, the computational complexity factor can be estimated by
the product of these values. We also calculated this complexity factor in Table 2. As
you can see in the table, the proposed system requires only 37% of computations of
the baseline system. For about the computations for RTD process, since the process
runs just once for each utterance and can be implemented as streaming process, it is
negligible. In our typical simulation at a PC with Pentium4 3 GHz processor, the
proposed system took only 0.19 second to identify each test utterance in average,
while the baseline system took 0.59 second. In other words, the proposed system was
more than three times faster than the baseline system.

346 S.-J. Kim, M.-S. Kim, and H.-J. Yu

5 Conclusions

This paper has presented a novel approach to speaker recognition in mobile or IP
network environment. The proposed approach uses decoded LSF parameters directly
from compressed speech packets, so it eliminates decompression and analysis proce-
dures during feature parameters extraction. It is computationally efficient and could
be more robust if considering the packet losses. Moreover, we introduced the RTD of
LSF process to reduce the number of LSF series without loss of necessary informa-
tion. Empirically RTD process generated events at around 16 Hz for LSF vector series
of YOHO corpus. Experimental results have shown that the proposed approach was
over three times faster than a conventional speaker recognition approach, and gave
97.25% identification accuracy, while the conventional one gave 96.79%. We did not
analyze whether the performance improvement was confident or not and why the
performance was improved using RTD of LSF in this paper, but we guess that the
event vector re-estimation might give such an improvement.

References

1. Kondoz, AM.: Digital Speech, Coding for Low Bit Rate Communication Systemss, John
Wiley & Sons, (1994)

2. Huang, X., Acero, A., Hon, H.: Spoken Language Processing, A Guide to Theory, Algo-
rithm, and System Development, Prentice Hall, (2001)

3. Reynolds, D.A., Rose, R.C.: Robust Text-Independent Speaker Identification Using Gaus-
sian Mixture Speaker Models, IEEE Transactions on Speech Audio Processing, vol. 3, no.
1, (1995) 72-83

4. Saastamoinen, J., Karpov, E.,Hautamaki, V., Franti, P.: Accuracy of MFCC-Based
Speaker Recognition in Series 60 Device, EURASIP Journal on Applied Signal Processing
2005:17, 2816-2827

5. Aggarwal, C., Olshefski, D., Saha, D., Shae, Z.-Y., Yu, P.: CSR: Speaker Recognition
from Compressed VoIP Packet Stream, IEEE Int. Conf. on Multimedia & Expo, Amster-
dam, The Netherlands, July 2005, 970-973

6. Alencar, VFS., Alcaim, A.: Transformations of LPC and LSF Parameters to Speech Rec-
ognition Features, ICAPR 2005, LNCS 3686, 522-528

7. Kim, SJ., Oh, YH.: Efficient quantization method for LSF parameters based on restricted
temporal decomposition, Electronics Letters, 10th June 1999, Vol. 35, No. 12, 962-963

8. Atal, B.: Efficient Coding of LPC parameters by temporal decomposition, Proc.
ICASSP’83, Boston, MA, (1983) 81-84

9. Campbell, J. Jr.: Testing with the YOHO CD-ROM Voice Verification Corpus, ICASP’95,
(1995) 341-345

10. TIA/EIA/IS-96 Speech Service Option Standard for Wideband Spread Spectrum Cellular
System

11. Furui, S.: On the Role of Spectral Transition for Speech Perception, Journal of Acoustic
Society of America 80(4), (1986) 1016-1025

Voice/Non-Voice Classification Using Reliable

Fundamental Frequency Estimator for Voice
Activated Powered Wheelchair Control

Soo-Young Suk1, Hyun-Yeol Chung2, and Hiroaki Kojima1

1 Information Technology Research Institute, National Institute of Advanced
Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono,

Tsukuba, Ibaraki, 305-8568, Japan
2 School of Electrical Engineering and Computer Science, Yeungnam University

214-1, Daedong, Gyungsan, Gyungbuk, 712-749, Korea
{sy.suk,h.kojima}@aist.go.jp, hychung@yu.ac.kr

Abstract. In this paper, we introduce a non-voice rejection method
to perform Voice/Non-Voice (V/NV) classification using a fundamental
frequency (F0) estimator called YIN. Although current speech recogni-
tion technology has achieved high performance, it is insufficient for some
applications where high reliability is required, such as voice control of
powered wheelchairs for disabled persons. The V/NV classification algo-
rithm, which rejects non-voice input in Voice Activity Detection (VAD),
is helpful for realizing a highly reliable system. The proposed V/NV
classification adopts the ratio of a reliable F0 contour to the whole input
interval. To evaluate the performance of our proposed method, we used
1567 voice commands and 447 noises in powered wheelchair control in a
real environment. These results indicate that the recall rate is 97% when
the lowest threshold is selected for noise classification with 99% precision
in VAD.

Keywords: Voice non-voice classification, Voice activity detection, YIN,
Fundamental frequency estimator, Powered wheelchair.

1 Introduction

Powered wheelchairs provide unique mobility for the disabled and elderly with
motor impairments. However, people suffering from severe motor impairments,
such as paraplegia and tremors, find it difficult or impossible to control stan-
dard powered wheelchairs. Sometimes, the joystick is a useless manipulation tool
because the severely disabled cannot operate it smoothly. Using natural voice
commands, like “move forward” or “move left” relieves the user from precise
motion control of the wheelchair.

The aim of our project is to enable severely disabled persons to move inde-
pendently; therefore, we develop powered wheelchairs that can be operated by
inarticulate speech affected by severe cerebral palsy or quadriplegia, for instance.
Although current speech recognition technology has reported high performance,

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 347–357, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

348 S.-Y. Suk, H.-Y. Chung, and H. Kojima

it is not sufficient for safe voice activated powered wheelchair movement. To
cope with the pronunciation variation of inarticulate speech, we adopted a lexi-
con building approach based on intermediate speech coding [1] and data mining
[2], in addition to acoustic-modeling-based speaker adaptation [3]. We also devel-
oped noise-canceling methods, which reduce mechanical noise and environmental
sounds for practical use on the street [4]. However, though our voice command
system has improved recognition performance by various methods, the system
requires a guarantee of safety for wheelchair users in two additional conditions.

- To move only in response to the disabled person’s own voice.
- Do not move to reject non-voice command input.

The first problem is to prevent operation of the powered wheelchair by unau-
thorized persons near the wheelchair user. A speaker verification method can be
applied to solve this problem, but it is difficult to verify when using each short
word commands. Therefore, we are now developing a speaker position detection
system using a microphone array [5][6]. The second problem is that various non-
voice command are inputted when the voice command system is being used in
real environment. So, a high-reliability voice application for powered wheelchair
is thus necessary to reject noise and non-voice commands such as coughing, and
breathing. A general rejection method has achieved a confidence measure using
a likelihood ratio in a postprocessing step. However, this confidence measure
is hard to use as a non-command rejection method because of the inaccuracy
of likelihood when speech recognition deals with unclear voice and non-voice
sounds. Thus, the Voice/Non-Voice (V/NV) classification algorithm, which re-
jects non-voice input in the Voice Activity Detection (VAD) step, can be helpful
for realizing a highly reliable system.

Previous V/NV classification algorithms have generally adopted statistical
analysis of F0, the Zero Crossing Rate (ZCR), and the energy of short-time
segments. A method for voicing decision within a pitch detection algorithm is
presented in [7]. A combination of these methods, a cepstrum-based F0 extractor,
has been proposed [8]. An auditory-based method for voicing decision within
a pitch tracking algorithm appears in [9]. In this paper, we propose a V/NV
classification using an F0 estimator called YIN for non-voice rejection. Here, the
proposed classification method adopts the ratio of a reliable F0 contour over the
whole input interval.

The paper first presents the voice activated wheelchair system and the dis-
abled person’s database in the following section. Next, the F0 estimator and the
proposed V/NV classification algorithm are described in Section 3. In Section 4,
we evaluate the performance of YIN and cepstrum-based V/NV classification.
Lastly, we offer our conclusions in Section 5.

2 System and Database

Our systems aim to assist physically disabled persons to steer and control pow-
ered wheelchairs. Fig. 1 displays a schematic diagram and prototype developed

V/NV Classification Using Reliable Fundamental Frequency Estimator 349

system of the voice activated powered wheelchair control. The proposed system
consists of 8 microphones(dual 4 channel), 8 channel analog/digital board, Pen-
tium M 1.2GHz tablet PC, Pentium M 2.0GHz PC and wheelchair controller.

Segmentation
by the shifting

analysis
window

High-pass filtering &
zero-crossing

measurements

Input
signal

VAD (start & end
determination)

F0 Extraction
(YIN or cepstrum)

MFCC
extraction

Speech
recognition

V/NV
classifi-

cation Based
on F0

contour
Command
verification

In/Out
classification

Microphone array

Confidence
measure

User voice’s
position detection

Noise
Reduction

(a) (a)

c) Display &
Recognition engine

b) Dual 4 channel
microphone array

a) Main processing
system

(b)

Fig. 1. Voice activated powered wheelchair overview. a) System block diagram. b)
Developed powered wheelchair prototype.

First, the microphone array would capture the speech signal. Then, the incom-
ing audio stream would be processed to classify the user’s voice or not using the
position detection module. Also, stream is sent by input for speech recognition
and V/NV classification through noise decrease module. Our recognition engine
are employed an Julian decoder [10] with Mel Frequency Cepstral Coefficient
(MFCC) feature and adapted speaker dependent acoustic model. Specially, en-
gine are used multiple dictionary for inarticulate speech. Table 1 shows example
of multiple dictionary. Finally the recognition result is executed by the powered
wheelchair when other result are satisfied with inner voice and voice using in/out
classification module and V/NV classification module, respectively.

Table 1. Implemented set and multiple dictionary for inarticulate speech recognition

command dictionary

Move Left hidari h i d a: r i:

hidari d a r i q

hidari h i h i i d a: r i

,· · · other 25

Move Right migi m i g i i ,· · · other 15

Move Forward mae m a: a e ,· · · other 13

Move Backward koutai k o u t a i ,· · · other 3

Stop ah a: ,· · · other 5

total 68

350 S.-Y. Suk, H.-Y. Chung, and H. Kojima

Since speech recognition systems are known to demonstrate different results
for speech sounds in real usage from speech sounds that have been read, it is
important for their evaluation to be based on natural spontaneous speech. To
obtain a sample of spontaneous speech affected by disability, which contains spe-
cific personal variations, we developed a voice operated toy robot and a graphical
simulation demo system that uses the same recognition task such as in powered
wheelchair operation.

(a) (b)

Fig. 2. Speech recording environment. (a) Voice operated toy robot system. (b) Graph-
ical simulation demo system.

For analysis of the input devices, each input device achieved speech detection
through each recognition engine at the same time. Currently, we have collected
more than 3000 unclear samples of speech affected by disability, using four types
of microphones (Table 2). Bluetooth transmission capacity is limited by an 8
KHz sampling rate.

Table 2. Microphones and their sampling rates

Type Model Sampling rate

Headset Audio-technica: AT810X 16 KHz

Bone conduction Sony: ECM-TL1 16 KHz

Pin PAVEC: MC-105 16 KHz

Bluetooth Sonorix: OBH-0100 8 KHz

Table 3 lists the recorded speech data used for the experimental evaluation.
For the headset type, 579 inputs are collected. There are also 426 voice com-
mands, 65 various noises, 76 other utterances that are not commands, and ut-
terances of 12 other people. Therefore, V/NV classification is needed to satisfy
voice activated powered wheelchair control requirements while maintaining high
speech recognition accuracy.

V/NV Classification Using Reliable Fundamental Frequency Estimator 351

Table 3. Analysis of the number of recorded data

Type Voice
command

Noise Other
own voice

Other
people

Headset 426 65 76 12

Bone conduction 405 339 88 286

Pin 399 21 90 361

Bluetooth 337 22 64 62

Total 1567 447 318 721

3 Voice Activity Detection Using V/NV Classification

The general VAD uses short time energy and/or ZCR for start and end point
detection in a real-time voice command system with low complexity. However,
VAD has a problem because various sounds are determined as voice sounds. For
the purpose of non-voice rejection, we propose a V/NV classification using a
reliable F0 estimator.

3.1 YIN: Fundamental Frequency Estimator

V/NV classification using F0 information has been strongly tied to the problem
of a pitch detection algorithm (PDA). A PDA can be formulated as an average
magnitude difference function, average squared difference function, or similar
autocorrelation methods in the time domain. In addition, cepstrum analysis is
possible in the frequency domain by applying the harmonic product spectrum
algorithm. Among these F0 extraction methods, we use the well known auto-
correlation method based on YIN that has a number of modifications to reduce
estimation errors [11]. This method has the merit of not requiring fine tuning
and uses fewer parameters. The name YIN (from “Yin” and “Yang” of oriental
philosophy) alludes to the interplay between autocorrelation and the cancellation
that it involves. The autocorrelation function of a discrete signal xt may be
defined as

rt(τ) =
t+W∑

j=t+1

xjxj+τ (1)

where rt(τ) is the autocorrelation function of lag τ at time index t, and W is
the integration window size. YIN achieves a difference function instead of an
autocorrelation function that is influenced in bias value.

dt(τ) =
t−τ/2+W/2∑

j=t−τ/2−W/2

(xj − xj+τ)2 (2)

Here, dt(τ) is the difference function to search for the values of τ for which the
function is zero. The window size shrinks with increasing values of τ , resulting in

352 S.-Y. Suk, H.-Y. Chung, and H. Kojima

the envelope of the function decreasing as a function of lag as illustrated in Fig.
3(a). The difference function must choose a minimum dip that is not zero-lag.
However, setting the search range is difficult because of imperfect periodicity.
To solve this problem, the YIN method replaces the difference function with
the cumulative mean normalized difference function of e.q.(3). This function is
illustrated in Fig. 3(b).

d′t(τ) =

{
1 if τ = 0,

dt(τ)/[(1/τ)
∑τ

j=1 dt(j)] otherwise.
(3)

The cumulative mean normalized difference function not only reduces “too high”
errors, but also eliminates the limit of the frequency search range, and no longer
needs to avoid the zero-lag dip.

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 100 200 300 400 500

a
0

1

2

3

4

5

6

7

8

0 100 200 300 400 500

(a) (b) lag (samples)lag (samples)

Fig. 3. (a) Example of difference function. (b) Cumulative mean normalized difference
function at same waveform.

One of the higher order dips appears often in F0 extraction, even when using
the modified function in e.q.(3). This error is called the subharmonic or octave
error. To reduce the sub-harmonic error, the YIN method finds the smallest
value of τ that gives a minimum of d′t(τ) deeper than the threshold. Here, the
threshold is decided by the value that adds a minimum of d′t(τ) to the absolute
threshold α in Fig. 4 (b). Absolute threshold is possible because of the achieved
normalized processing in the previous step. In the final step, F0 is extracted
through the parabolic interpolation and best local estimation process.

3.2 V/NV Classification

The general V/NV classification algorithm participates in the processing of each
short-time speech segment. However, classification of a whole input segment is
more important in reliable speech recognition in which non-voice rejection is
possible. For this classification, the proposed algorithm decides V/NV from the
ratio of the reliable F0 contour over the whole input interval. The function value
d′t(τ) defined by e.q. (3) is compared with the confidence threshold to decide
the reliability of each F0 frame. Here, the confidence threshold is selected such
that the value is 0.05 to 0.2. Figures 2 and 3 depict examples of reliable F0

V/NV Classification Using Reliable Fundamental Frequency Estimator 353

0

200

400
0

1

- 16K

0

16K
WAVE

0.5

2
1.5

F
re

qu
en

cy
S

am
pl

e
Le

ve
l

Le
ve

l

0 1000050002500 7500
Time (samples)

(c)

1750012500 15000

(a)

(b)

POWER

Confidence
Threshold: 0.1

Fig. 4. (a) Example of a voice waveform. (b) Cumulative mean normalized difference
function calculated from the waveform in (a). (c) Reliable F0 contour in which the
confidence threshold is applied.

:

0

200

400
0

1

- 16K

0

16K
WAVE

0.5

2
1.5

F
re

qu
en

cy
S

am
pl

e
Le

ve
l

Le
ve

l

0 1000050002500 7500
Time (samples)

(c)

1750012500 15000

(a)

(b)

POWER

Confidence
Threshold: 0.1

Fig. 5. (a) Example of a noise waveform. (b) Cumulative mean normalized difference
function calculated from the waveform in (a). (c) Reliable F0 contour where the confi-
dence threshold is applied.

contour extraction. A reliable F0 contour using the cumulative mean normalized
difference function is illustrated in Fig. 4 (b). When the confidence threshold
of YIN-based F0 is 0.1, only high reliability areas are selected, as illustrated in
Fig. 4 (c).

The conventional VAD method using energy and/or ZCR is detected noise
as well as voice in Fig. 5 (a). However, you can see that reliable F0 appears
on only three frames because of the applied confidence threshold 0.1 in Fig. 5
(c). Furthermore, we can prove the performance by the examining that detected
frequency is the inner voice frequency area. For V/NV classification from the
extracted F0 contour, we then compute the ratio of frames with the reliable F0
as follows.

d =
1
M

M∑

j=1

Pth(i) (4)

354 S.-Y. Suk, H.-Y. Chung, and H. Kojima

Pth(i) =

{
1 if Fmin ≤ F0th(i) ≤ Fmax,

0 otherwise.
(5)

Here, M indicates the total number of input frames, and Fmin =60Hz and
Fmax =800Hz are experimentally chosen for a disabled person’s voice. Finally,
an input segment is classified as voice if d exceeds the V/NV threshold value.
The cepstrum-based algorithm can also be used as the confidence threshold for
extraction of the F0 contour as indicated in Fig. 6. However, the F0 extraction
performance of a cepstrum-based algorithm is inferior to YIN, and it is difficult
to determine a suitable threshold in various environments.

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500

Confidence
Threshold: 2

lag (samples)

Le
ve

l

Fig. 6. Example of cepstrum signal to the applied confidence threshold

0.8

0.84

0.88

0.92

0.96

1

0.8 0.84 0.88 0.92 0.96 1

1.5
2
2.5
3

Precision

R
ec

al
l

Confidence
threshold

Fig. 7. Recall-precision curve of noise classification using cepstrum

V/NV Classification Using Reliable Fundamental Frequency Estimator 355

4 Experiment Results

To evaluate the performance of our proposed method, we conducted V/NV clas-
sification experiments using YIN or cepstrum. The sampling frequency was 16
kHz, the window size was 25 ms, and the frame shift was 8 ms. All experiments
were conducted using the 1567 voice commands and 447 noises in Table 2.

Table 4. Confidence threshold analysis of four types of microphones with the best
recall precision

Headset Bone
conduction

Pin Bluetooth

Cepstrum 3 2.5 1.5 2

YIN 0.05 0.1 0.06 0.08 0.07 0.1 0.08 0.1

0.8

0.84

0.88

0.92

0.96

1

0.8 0.84 0.88 0.92 0.96 1

0.06

0.08

0.1

0.2

0.3

Precision

R
ec

al
l Confidence

threshold

Fig. 8. Recall-precision curve of noise classification using YIN

Figures 7 and 8 depict V/NV classification performance and plot recall-
precision curves according to an individual confidence threshold. From the re-
sults, the YIN-based algorithm is superior to the cepstrum-based algorithm.
When the confidence threshold of YIN is 0.08, the V/NV classification provides
the best results with 0.97 and 0.99 rates over recall and precision. In other words,
when the smallest threshold was selected for voice detection at a precision rate
of 1, the miss-error rate of noise is only 4.9%.

Table 4 lists the best confidence threshold of each microphone with the best
recall precision. When YIN uses the F0 extraction method, the confidence thresh-
old is stable at about 0.08. Although the cepstrum algorithm can use the F0

356 S.-Y. Suk, H.-Y. Chung, and H. Kojima

extraction method, it is difficult to decide on a suitable confidence threshold in
each microphone environment.

5 Conclusions

This paper demonstrates a V/NV classification for reliable VAD in a real envi-
ronment voice command system with extraneous sounds such as coughing and
breathing. The proposed method classifies V/NV from the ratio of reliable F0
contour over the whole input interval. We adopted the F0 extraction method
where YIN has the best performance among conventional methods. Our exper-
iment results indicate that the false alarm rate is 4.9% with no miss-errors in
which voice is determined to be non-voice. Therefore, the proposed VAD, which
rejects non-voice input in preprocessing, can be helpful for realizing a highly re-
liable powered wheelchair control system. In addition, our proposed method can
use average F0 information of input voice without additional computation. This
is useful as additional information for a confidence measure of speaker specific
systems. Note that the YIN-based VAD entailed only 2% additional computa-
tion cost compared to using the ZCR-based method on a Pentium 4 3.2GHz
machine.

Acknowledgment

This research is conducted as part of “Development of technologies for support-
ing safe and comfortable lifestyles for persons with disabilities,” funded by the
solution oriented research for science and technology (SORST) program of the
Japan Science and Technology Agency (JST), Ministry of Education, Culture,
Sports, Science and Technology (MEXT) of the Japanese Government.

References

1. Lee SW, Tanaka K and Itoh Y, “Combining Multiple Subword Representations for
Open-Vocabulary Spoken Document Retrieval,” in Proc. IEEE Int. Conf. Acous-
tics, Speech, and Signal Processing, pp. 505–508, 2005.

2. Sadohara K, Lee SW and Kojima H, “Topic Segmentation Using Kernel Principal
Component Analysis for Sub-Phonetic Segments, ” Technical Report of IEICE,
AI2004-77, pp. 37–41, 2005.

3. Suk SY, Lee SW, Kojima H and Makino S, “Multi-mixture based PDT-SSS Algo-
rithm for Extension of HM-Net Structure,” in Proc. 2005 September Meeting of
the Acoustical Society of Japan, 2005.

4. Sasou A, Asano F, Tanaka K and Nakamura S, “HMM-Based Feature Compen-
sation Method: An Evaluation Using the AURORA2,” in Proc. Int. Conf. Spoken
Language Processing, pp. 121-124, 2004.

5. Jonson DH and Dudgeon DE, “Array signal processing,” Prentice Hall, Englewood
Cliffs, NJ, 1993.

6. Sasou A and Kojima H, “Multi-channel speech input system for a wheelchair,” in
Proc. 2006 Mar Meeting of the Acoustical Society of Japan, 2006.

V/NV Classification Using Reliable Fundamental Frequency Estimator 357

7. J. Rouat, Y. C. Liu, and D. Morrisette, “A pitch determination and
voiced/unvoiced decision algorithm for noisy speech,” Speech Communication, vol.
21, 1997.

8. S. Ahmadi and S. S. Andreas, “Cepstrum-based pitch detection using a new sta-
tistical V/UV classification algorithm,” in IEEE Trans. Speech Audio Processing,
vol 7, no. 3, pp. 333–339, 1999.

9. E. Mousset,W. A. Ainsworth, and J. A. R. Fonollosa, “A comparison of several
recent methods of fundamental frequency and voicing decision estimation,” in Proc.
Int. Conf. Spoken Language Processing, vol. 2, pp. 1273–1276, 1996.

10. A. Lee, T. Kawahara and K. Shikano, “Julius — an open source real-time large
vocabulary recognition engine.” In Proc. European Conference on Speech Commu-
nication and Technology, pp. 1691–1694, 2001.

11. de Cheveigne, A., and Kawahara, H., “YIN, a fundamental frequency estimator for
speech and music,” The Journal of the Acoustic Society of the America, vol 111,
2002.

MPEG-4 Scene Description Optimization for

Interactive Terrestrial DMB Content

Kyung-Ae Cha1 and Kyungdeok Kim2

1 School of Computer and Communication Engineering, Daegu University, Korea
chaka@daegu.ac.kr

2 Division of Computer Engineering, Uiduk University, Korea
kdkim@uu.ac.kr

Abstract. The Digital Multimedia Broadcasting (DMB) system was
developed to provide high-quality multimedia contents in the mobile en-
vironment. The system adopts the MPEG-4 standard for its main video,
audio and other media formats. It also adopts MPEG-4 scene descrip-
tion for its interactive multimedia contents. Its animated and interactive
contents are based on BIFS (Binary Format for Scenes), which refers
to the spatio-temporal specifications and behavior of the individual ob-
jects. The more interactive contents are, the more high-bitrate the scene
description should be. However, the bandwidth for allocating meta-data
such as those in scene descriptions is restrictive in the mobile environ-
ment. On one hand, the DMB terminal starts demultiplexing contents
and decoding individual media with its own decoder. After decoding each
medium, the rendering module presents each media stream according to
the scene description. Thus, the BIFS stream corresponding to the scene
description should be decoded and parsed before the audio or visual ob-
ject is presented. For these reasons, the transmission delay of the BIFS
stream causes the delay in the entire audio-visual scene presentation, al-
though the audio or video streams are en-coded in very low bitrate. This
paper presents the effective optimization technique for adapting the BIFS
stream into an expected MPEG-2 TS bitrate with-out bandwidth waste
and for avoiding delay in the transmission of the initial scene description
for interactive DMB contents.

Keywords: T-DMB, BIFS, Scene description Optimization, Interactive
Content, MPEG-4 System.

1 Introduction

Digital Multimedia Broadcasting (DMB) provides broadband multimedia infor-
mation mobile terminals that have limited processing capability and low band-
width. More-over, in the DMB framework, rich, interactive contents can be
further deployed in conjunction with communication channels to access additional
or auxiliary information (such as MPEG-4 scene description, JPEG images, etc.)
associated with au-dio/video contents[1-4]. With these unique characteristics of
MPEG-4, before decoding media stream like video and audio the scene description

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 358–368, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

MPEG-4 Scene Description Optimization 359

bitstream must be first received in a user terminal. However, due to the low band-
width of the wireless net-work, it is difficult to ensure the adequate transmission of
the scene description bit-stream. Hence, for interactive DMB content streaming,
the data rate of the scene description should be tailored to fit the current available
bandwidth.

In this paper, effective techniques in adapting the encoded MPEG-4 scene
description(called BInary Format for Scene) into suitable bitrate of the DMB
transmission packet size with minimum bandwidth waste are presented. The
scene descriptions for the same visible scene and scenario may differ in object
ID assignments, node hierarchy organizations, etc., depending on the scene de-
scription authors’ intentions. So a scene description can be optimized to adopt
its encoded bit size into the given re-source constraints. The research focuses
on developing an efficient scene description optimization technique that makes
it possible to match the expected bit size with the encoded bit stream of the
modified scene description without any major loss in the original scene.

Section 2 presents the overview of the scene description for interactive DMB
multimedia contents. Section 3 explains the optimization of the proposed method,
while section 4 presents the experimental results. In Section 5, conclusions and
further re-search direction are discussed.

2 Scene Description for Interactive T-DMB Contents

In the DMB standard, the audio and visual media formats in multimedia contents
adopt the MPEG-4 AVC(Advanced Video Coding) and the MPEG-4 BSAC(Bit
Sliced Arithmetic Coder), respectively. Moreover, it also adopts MPEG-4 sys-
tem’s object-based coding scheme for scene[1-4]. The scene consists of multiple
objects, each of which can be of any type, such as video, audio, text, graphics,
etc. as well as scene description refers to the spatio-temporal composition of these
objects following the MPEG-4 Core 2D Profile[3,5-8]. The individually encoded
contents are multiplexed and encapsulated as MPEG-4 Sync Layer packets. The
Sync Layer becomes MPEG-2 TS (Transport Stream)[9] in turn. Finally, the
transmission stream is deliv-ered through the Eureka-147 system.

The scene description text is encoded by the BIFS encoder into the BIFS AU
(Access Unit). The packetized ES resulting from the SL packetizer becomes the
payload of the TS packets.

Figure 1(a) shows an example of the portion of a scene description text,
which depicts a rectangular object as geometry. Each text line is numbered
for convenience.

The geometry node(line number 21) identifies a rectangular object with a
width of 100 pixels and a height of 50 pixels. The attributes of the size of the
rectangular node are mandatory to render the corresponding rectangular object
when the scene is presented. On the other hand, the LineProperties node(line
number 17) is used for describing the linear strokes of the geometry object in
its parent Material2D node. When the scene description does not define the

360 K.-A. Cha and K. Kim

Fig. 1. A portion of the Scene description text : (a) original scene description;(b)
optimized scene description of (a)

node, the presentation draws the real rectangular object with the default value
as its line properties. Thus, there is no difference between the original scene
and the optimized scene, which removed the LineProperties node when the
node describes with default values. The scene description text in Figure 1(a)
would be optimized as shown in Figure 1(b), where the rectangular object can
be presented in the same dimension drawing with the default values for its line
stroke and filling attributes.

With this approach of optimization, the removable attributes of the MPEG-4
scene description syntax are categorized. The categorized node type and their
field types of the description, based on the characteristics of individual objects,
are the criterion from which optimization is made. Moreover, the actual encoded
bit size of every node and attribute field are estimated so that the encoded bitrate
of a modified scene description text through optimization can be pre-calculated
without performing the BIFS encoding process. In order to achieve an accurate
estimation value, a practical experiment of the BIFS encoding on every possible
case of scene description modification is done. Through the tedious pre-process,
detailed information on the encoded bitrate of the scene description node by
node and field by field can be obtained. Note that the information is referred to
in the Bit-Size Reference Table in Figure 4 and Figure 5.

3 Optimization of Interactive Scene Description

In this section, the optimization process of the scene description for adapting
available bitrate is explained in detail.

MPEG-4 Scene Description Optimization 361

3.1 Scene Description Parsing

The BIFS parsing is the main part of the proposed system. The modules use the
nested loop approach to analyze the scene description text by reading the whole
input scene description text.

As mentioned above, object nodes in the scene description are composed of
various fields and their assigned values. We categorize three kinds of tokens fol-
lowing with their characteristics.

Reserved Simple Tokens : Simple tokens are already reserved strings in the node
parsing table(NODE table) that is constructed on the pre-process stage for scene
description parsing. For example, the followings are included this category: ”chil-
dren,” ”choice,” and so on. These tokens should be matched one of the node
parsing table elements.

Related tokens : Related tokens should have their actual attribute values so that
they can determine the visible attributes of corresponding objects. For example,
”emissiveColor,” ”lineStyle,” ”size,” ”radius,” ”URL,” etc. belong to this cate-
gory. These are also parsed with their assigned values by checking their following
numeric, string or boolean type variables.

Combination Tokens : The combination tokens are composed of more than two
different tokens that are associated by the dot (.) notation. In this case, each
sub token is considered as a Related Token. These combination tokens are used
in the condition nodes, rout nodes, and time related nodes.

Figure 2 shows the BIFS parser’s processing steps. The module gets an original
BIFS text and reads strings line by line through the scene description. According
to the criterion for splitting tokens such as backspace, parentheses or square
brackets, the parser recognizes individual tokens and then compares the NODE
table entries and the tokens. The result from token matching process, tokens are
classified one of the three types.

In order to detect the interactive scenario of the scene description as well as
the spatio-temporal relationship of the objects, the following data structures are
defined. The tokens and their related information such as field values are stored
in the containers as following their features.

Multimedia object information container : Objects’ attribute information and
their related sensor information which are used to realize the animated sce-
nario of objects are written in this container. The actual assigned values
of Transform2D, Material2D, LineProperty, TouchSensor, and other link
nodes are in this container.

Rout information container : This has the assigned values of nodes that describe
user interactive events and responsible actions. These are source object IDs for
route node, action command, and their corresponding destination object ID.

Condition information container : The container is composed of action event
types of condition nodes, such as their node ID, action command, destination
node ID, and field values to represent the corresponding results of the action.

362 K.-A. Cha and K. Kim

Fig. 2. Processing steps of BIFS Parser

Update OD (Object Descriptor) container : Information used to specify the de-
scriptors of video, image, and audio objects are described in this container.

Figure 3 depicts the relationship between the containers and scene tree at-
tributes. The object nodes and fields are constituted hierarchally so the scene
description parsing result can be represented as tree structure. However, the op-
timization process doesn’t need the whole information of the scene tree. Thus the
selective values are stored in the related containers as described above. Moreover,
information containers provide the prospective view of the scene organization to
the optimization process.

3.2 Optimization of Scene Description

The optimal selection process of the objects in an MPEG-4 scene is performed
in multiple steps. First, a set of attribute nodes, which affects the visual point
of the original scene at a lesser degree, is removed in the sense that the modified
scene is under the condition that the sum of the bit rates does not exceed the
available bit size. If this condition cannot be met, then the next step removes a set
of attributes that can be represented by using some default values without any
object dropped under the same constraint. Figure 4 and the following expiations
represent the optimization steps.

The Optimization Processor detects and removes the information from the
original scene description, the group nodes and switch nodes in turn. And then,
IDs of object nodes, rout nodes and conditional nodes are renamed in order to
save bits for scene description. Finally, some attribute of object nodes are re-
moved if they are not necessary. These processes are performed with information
from containers and Bit-Size Refer Table.

MPEG-4 Scene Description Optimization 363

Fig. 3. Scene Tree and related Containers

Fig. 4. Optimization processing module

Group Optimization: There are many BIFS visual nodes to manage scenes dif-
ferent ways in grouping and rendering. In scene description, the group concept is
used to handle a set of objects more effectively and conveniently on the aspect
of authoring. In rendering aspects, the grouping objects do not affect the render-
ing, thus, grouping information can be removed from the scene description. In this
step, it should be checked whether the description contains a sub-group or group
ID, and, if contained, it would be deleted from the scene description text.

Switch node filtering: Different from other nodes, the switch node can be deleted
from the scene description text even though it has its children nodes, and if the
switch node is not used in other condition nodes or time related nodes. If there
is a switch node on an object node, this step checks whether the switch node ID
is used in the condition node or in the time node. When it is determined that
the ID has not been used again, it removes the switch node.

364 K.-A. Cha and K. Kim

Node ID Optimization: During authoring time, authors can declare their own
intentions on the object node IDs, thus every scene description text may have
different node ID assignments. Every node ID uses up 1 byte per character, thus
it is efficient in reducing the bit size of BIFS to give all node IDs with shorter
strings. Based on the rule that the first letter should start as a letter of the
alphabet, we give two cipers ID per node, which is composed of one leading al-
phabet letter and one succeeding digit number. The letter identifies each object,
and the digit number identifies the attributes node of the object.

Node Attribute Optimization: As shown in Figure 1, some nodes or fields with
default values can be removed. This process detects this kind of attributes from
the object information container and removes the related nodes or fields. At this
stage, the removal ensures that low level attributes are deleted first. For example,
material2D attribute node cannot be removed as long as its line property node
exists.

The BIFS parser and Optimization processes, which are explained above, are
operating and interacting as seen in Figure 5.

Fig. 5. Scene Description Optimization System Structure

The BIFS parser reads the scene description first, and stores the results of
parsing in Token tables. At the same time, the Scene Analyzer module extracts
attribute values from the input text and generates Object node Information
Containers. In addition, the module constructs the scene structure and bitrate
information of the original scene with the generated information. And then, the
Scene Optimizer modifies the scene description to adapt an expected bit size by
communicating with the Bitrate Analyzer module that predicts accurate BIFS
sizes of the modified scene description in previous encoding by referring to the
Bit-Size Reference Table. Finally, according to the modified scene information,
optimized scene description text is generated and encoded to the BIFS stream.

MPEG-4 Scene Description Optimization 365

Fig. 6. User interface

4 Experiment Results

The proposed system is implemented by using Microsoft Visual C++ under the
Windows platform. Figure 6 depicts the user interface snapshot of our system.
The left part of the figure shows the optimization process visually, while the
right part shows the modified scene description text when modification occurs.
Moreover, the two text boxes at the top represent estimated bitstream sizes of
BIFS, in bytes.

The sample contents used in the experiment are composed of various objects
and its scene description describes several sub-groups and sensor nodes for in-
teractive scenarios, as seen in Table 1.

Table 1. Sample content specifications

Content No. Content No.1 Content No.2 Content No.3

Original BIFS Size 3058bytes 4069bytes 2724bytes

Number of Group 8 10 8

Multimedia Object Information Video: 1 Video: 1 Video: 1
Audio: 1 Audio: 1 Audio: 1
Image: 7 Image: 9 Image: 7
Rectangle: 12 Rectangle:16 Rectangle: 10
Total:21 Total: 27 Total: 19

Number of Sensor Touch Sensor: 13 Touch Sensor: 18 Touch Sensor: 11

Each content is composed of one video and one audio object as main audio-
visual content. Several image and geometry object that are used to depict menu
buttons and hot-spots are specified in the scene description. In addition, the in-
teractive scenario also described using sensor nodes and rout nodes. For example,
if user clicks a certain image object(button form) while the presentation, the cor-
responding text object which shows a products’ information appears in the scene.

366 K.-A. Cha and K. Kim

Fig. 7. A portion of the scene description text for Content No.1 : (a) the original scene
description; (b) the optimized scene description

The scene descriptions of the sample contents are reconstructed by following
the optimization process. At each step, the optimized scene description’s bitrate
are checked as seen in Table 2. Although the descriptions can be specified as
different constitution types, samples followed the generally published scene de-
scription specification ways. As a result of the proposed optimization technique,
the scene descriptions are reduced in terms of their encoded bit size down to
53.2% at the most, compared to the original descriptions.

Figure 7 shows a portion of the scene description text for content No.1.
Figure 7 (a) presents the original description and Figure 7 (b) shows the op-
timized description for an audio object and an image object. As can seen, the
fields that are assigned with default values and the OrderedGroup node are re-
moved.Moreover, the node IDs are re-assigned with strings in two ciphers.

Figure 8(a) shows the presentation of content No. 1 at a time instance,
while figure 8(b) represents the snapshot of its optimized scene at the same
instance.The optimized scene is modified through the three optimization pro-
cesses resulting from the table 2s Content 1. There is no difference in the two

Table 2. The optimization results of the sample descriptions

Content No. Content No.1 Content No.2 Content No.3

Original BIFS Size 3058bytes(100%) 4069bytes(100%) 2724bytes(100%)
Group Optimization 3001bytes(98.1%) 4000bytes(98.3%) 2667bytes(97.9%)
Node ID Optimization 2196bytes(71.8%) 2925bytes(71.9%) 1961bytes(72%)
Node Optimization 1664bytes(54.4%) 2251bytes(55.3%) 1450bytes(53.2%)

* Percentage (%) = (Optimized BIFS Size)/(Original BIFS Size)×100

MPEG-4 Scene Description Optimization 367

Fig. 8. Presentation of Content No.1 : (a) original scene; (b) scene using optimized
BIFS

scenes, so it can be said that the optimization process was operating properly.
In order to verify that the behaviors of the two scenes are same, we compare the
parsing results with the original parsing tree of the original scene description. As
a result, the number of leaf nodes which means the each object in the scene, is
same as that of original scene. Moreover the nodes related with the events such
as touchsensors or conditional nodes are same with those of the original one.

5 Conclusions

In this paper, the effective algorithm to the TS bit size of the payload adaptive
technique for the scene description of the interactive DMB content is proposed.

The features of the object nodes and their encoded bit size when the scene
description text is transformed to the binary format were studied. The adap-
tive tool, based on optimization rules, was also designed and implemented. The
research showed that the proposed optimization method reduced the scene de-
scription bitrate efficiently with-out losses in the original information. Basically,
optimization should proceed in the scope of not changing the original scene. But
if the size of the bitstream becomes bigger than expected after optimization,
inevitable losses through optimization should be processed. Thus, when there is
a difference between the optimized scene and the original, the scene should be
updated in real time by using BIFS commands. Research in utilizing command
stream generation is ongoing.

References

1. G. Lee, S. Cho, K. Yang, Y. Hahm and S. Lee: Development of Terrestrial DMB
Transmis-sion System based on Eureka-147 DAB System, IEEE Transactions on
Consumer Electron-ics, Vol. 51, Issue 1, (2005) 63–68

2. V. Ha, S. Choi, J. Jeon, G. Lee, W. Jang, W. Shim: Real-time Audio/Video Decoders
for Digital Multimedia Broadcasting, Proc. of the 4th Int. Workshop on System-on-
Chip for Real-Time Applications, (2004)

368 K.-A. Cha and K. Kim

3. The basic interface between the transmitter and the receiver for video service for
Terrestrial digital multimedia broadcasting in the VHF band, Telecommunications
Technology Association, (2005)

4. J. Signes, Y. Fisher, A. Eleftheriadis: MPEG-4’s binary format for scene description,
Signal Processing: Image Communication, vol.15, issues 4-5, (2000) 321–345

5. Olivier Avaro, Alexandros Eleftheriadis: MPEG-4 Systems: Overview, Signal
Process-ing: Image Communication 15, (2000) 281–298

6. WG11 (MPEG) MPEG-4 Overview document, ISO/IEC JTC1/SC29/WG11 N4668,
(2002)

7. A. Puri, A. Eleftheriadis: MPEG-4: An Object-Based Multimedia Coding Standard
Supporting Mobile Applications, Mobile Networks and Applications, vol. 3, (1998)
5–32

8. C. Herpel, A. Eleftheriadis: MPEG-4 Systems: elementary stream management, Sig-
nal Processing: Image Communication, Vol. 15 No. 4–5, (2000) 299–320

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 369–378, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Distributed Wearable System Based on Multimodal
Fusion

Il-Yeon Cho1, John Sunwoo1, Hyun-Tae Jeong1, Yong-Ki Son1, Hee-Joong Ahn1,
Dong-Woo Lee1, Dong-Won Han1, and Cheol-Hoon Lee2

1 Digital Home Research Division,
Electronics and Telecommunications Research Institute, Daejeon, Korea
{iycho,bistdude,htjeong,handcourage,hjahn,hermes,

dwhan}@etri.re.kr
2 System Software Laboratory, Department of Computer Engineering

Chungnam National University, Daejeon, Korea
clee@cnu.ac.kr

Abstract. Wearable computer can be worn anytime with the support of unre-
stricted communications and variety of services which provides maximum
capability of information use. Key challenges in developing such wearable
computers are level of comfort that users do not feel what they wear, easy and
intuitive user interface and power management technique. This paper suggests a
wearable system that consists of a wristwatch-type gesture recognition device
and a personal mobile gateway that functional input/output modules can be
freely plugged in and taken out. We describe our techniques implemented dur-
ing our wearable system development: 1) multimodal fusion engine that recog-
nizes voice and gesture simultaneously, 2) power management technique and 3)
gesture recognition engine. Finally, we evaluate the performance of our multi-
modal fusion engine, and show the power consumption measurement data of
our system built with the power management technique.

1 Introduction

People these days do not rely on PCs anymore as wire(less) internet spreads with the
trend of computers, communications, and electronics appliances merging together into
one. Instead, there is an increasing demand for new information terminal devices
which can connect to the network anytime and anywhere with a method that’s most
familiar and convenient. These information terminal devices enable us to use variety
of information freely and conveniently. This phenomenon tells us a factor which in-
fluences the success or failure in this digital industry; how many diverse tasks we do
is not a factor, instead, it is how easy and simple we do the tasks with a user-friendly
and intuitive interface. Computer, fashion and clothing industry are merging together
into one in order to satisfy the needs of user interface, and these trials are putting
ahead the appearance of new-concept information terminal devices.

Wearable computers provide efficient services with various functions by combin-
ing functions of personal devices that are scattered and overlapped [1]. Sony devel-
oped GestureWrist that recognizes user’s hand gesture as an input [2]. U. Anlinker

370 I.-Y. Cho et al.

studied trade-offs between the required computing and the allocation of communica-
tion resources during the wearable system design process where the wearable system
has input/output module distributed on human body [3].

In this paper we suggest a distributed wearable system that is constructed with the
WPGB (Wearable Pointing and Gesture Band) and WPS (Wearable Personal Station).
WPGB is a small wristwatch type device loaded with a compact gesture engine sup-
porting a low power operation and WPS is loaded with the multimodal fusion engine
that analyzes the gesture recognition result from WPGB and voice recognition result
from the WPS itself so that the user’s intended command can take place.

Fig. 1. Design of Wearable System

2 System Architecture

This section describes our proposed system design concept with the structure and
functions of hardware and software.

2.1 Design Considerations

Fig. 1 illustrated the construction of suggesting system. As the name stands, the main
function of WPGB is to select the object that needs to be controlled and send com-
mands using arm gestures. Default function when not selecting the other objects is to
control the wearable system on the user. It is designed to handle applications such as
selecting and controlling one of the devices near the user, and transferring current
contents or services to other devices freely. Applications such as content and service
transfer are possible between the two WPGB users. WPGB communicates to WPS
through Zigbee communication and uses IrDA for selecting devices to be controlled.

Multimodal fusion engine runs in WPS so that it can merge a gesture recognition
result from WPGB and voice recognition result from the WPS and recognize to one
final command. WPS has a Text-To-Speech (TTS) module as well to give user feed-
backs according to recognition results.

2.2 WPGB (Wearable Pointing and Gesture Band)

We designed WPGB to have small form factor and power consumption. For the
processor we used i.MX21 [4] that supports voltage scaling and frequency scaling.

Modality
Fusion

gesture

ZigBee

WPS

WPGB Target
SystemIrDA

WLAN

Bluetooth

Voice

command

ACK

select

Wearable System

ACK

ACK

 A Distributed Wearable System Based on Multimodal Fusion 371

Multi-Chip Package (MCP) memory and uni-colored OLED are used to build WPGB.
We made the power supply circuit that changes the system power level dynamically
through our application program.

There is a Kionix KXP84 3-axis accelerometer sensor [5] and a piezo-electronic
sensor equipped in the WPGB in order to recognize gestures and distinguish the start-
ing point of each gesture command using finger tapping recognition, respectively.
Additionally to give the user feedbacks, there are small-sized vibration motor, buzzer
and an OLED. Fig. 2 shows our WPGB prototype.

(a) Prototype (b) Software Structure

Fig. 2. Wearable Pointing and Gesture Band

Operating Systems that runs WPGB is ETRI-RTOS (eRTOS). eRTOS (see Fig. 2(b)
has basis from the compact, low power operating system called iRTOS [6]. Current
kernel size of the eRTOS is around 25KBytes and it operates well in the low capacity
RAM/ROM systems.

2.3 WPS (Wearable Personal Station)

WPS is a main platform of our system suggested through this work. It has a perform-
ance of an average PDA system with the size and shape that is convenient to carry. It
provides functions for a personal mobile gateway. In order to provide such functions,
it supports WLAN, Bluetooth, Zigbee communication, and has dimension of 80mm x
54mm x 19mm. It runs on PXA272 [7] processor and supports both embedded Linux
and WinCE operating system. It is designed to be geared and used with various

Fig. 3. Expandability of WPS

WPS
Main Module

WPS with
LCD ModuleWPS with

HMD Module

WPS with
AV Module

etc

WPS
Main Module

WPS with
LCD ModuleWPS with

HMD Module

WPS with
AV Module

etc

372 I.-Y. Cho et al.

peripheral modules in a selective way depending on the services. Fig. 3 illustrates the
WPS module which can change its functionality and system configuration by pairing
with various output modules.

3 Core Technologies

This section describes core technologies that are implemented in our system sug-
gested through this paper. The core technologies are multimodal fusion engine, low
power scheme, gesture recognition engine and gesture segmentation cue method.

3.1 Multimodal Fusion Engine

We used PowerASR voice recognition engine from HCILAB for the WPS voice rec-
ognition. PowerASR is the voice recognition engine developed for the embedded
system use that is user-independent and supports the recognition of variable vocabu-
lary (maximum of 200 words in a database) [8].

Fig. 4. Structure of Multimodal Fusion Engine

Advantages of the multimodal input system compare to the uni-modal system are
known as the reduced uncertainty and improved input accuracy in noisy environment
[9]. Methods of multimodal fusion are divided into two in overall: input feature level
fusion and semantic level fusion [10]. Our study chose semantic fusion strategy since
it is easy to add a new modality, and is convenient in maintaining. Software architec-
ture of our multimodal fusion engine is shown in Fig. 4.

Operation sequence of the multimodal fusion engine is as follows. Fusion engine
extracts rules from the ActionXML file using the ActionXML Parser then saves the
rules in Rule database. User and system events that are recorded and time-stamped in
Service Daemon and Modality recognition engine are sent to Hypothesis engine
through the Service Daemon Adaptor. Hypothesis engine deduces what user intended
to command by referencing System Environment Information Data, History DB and
Rule DB where the past deduced results are recorded. Deduced results in this manner

ActionXML
(Rule)

ActionXML
Parser

History DB

Verifier

Feedback
Generator

Hypothesis
Engine

Rule DB

TTS Engine Audio User

Environment
Info. Data

Service Daemon

ASR

Gesture
Recognition

Engine

S
ervice D

aem
on

 A
dap

to
r

Others
…

Modality Recognition
Engines Modality Fusion Engine

 A Distributed Wearable System Based on Multimodal Fusion 373

are verified in Verifier and are sent to Service Daemon. Verifier finds an error and
notifies user via Feedback Generator.

Voice recognizer returns two candidates of recognition result, and gesture
recognizer returns one that is the most likely to what the user intended to commend.
Combinations of the two (voice + gesture) recognition results are assigned to the
commands according to user’s needs and registered in ActionXML file. The following
example shows how the two commands in different modalities are combined into one
in order to achieve mutual complementary benefits. We get the mutual complemen-
tary benefits when the voice and gesture commands are defined for the same purpose.
For instance, both the voice command “NEXT” and gesture command “[RIGHT]”
can be mapped to the “ ” key in the keyboard. It can be useful in a noisy environ-
ment where the voice recognition results are often poor.

Within the mutual complementary policy described above, the following cases will
be considered “recognition fail” by the multimodal fusion engine and there will be no
resultant action.

- Both the voice and gesture recognizer fail to give recognition results.
- Voice and gesture recognizer give different recognition results.
In contrast, the following are the cases of “recognition success”.
- Both the voice and gesture recognizer give same recognition results.
- Only one of the two recognizer gives a successful recognition result.

Excluding the “recognition fail” case shown above, user can define the combina-
tions of voice and gesture in the ActionXML file and assign them to the final com-
mands user wants. Or, the user can find the cases of “recognition success” shown
above and register them in the ActionXML file. Combinations that are not registered
in the ActionXML file are processed as a recognition failure. However, for the particu-
lar combinations of voice and gesture that are often recognized wrong, we can over-
come this to a certain level by registering them to ActionXML file. The following is an
example of overcoming such case.

If the voice recognizer frequently misses to recognize the user’s voice command

“NEXT” and confuses as “TEXT”, then the user can register “TEXT” as same as
“NEXT” in ActionXML file so that the result of “TEXT” is recognized by the fusion
engine as “NEXT”. In this case, user may not want to assign “TEXT” command.

Our multimodal fusion engine suggested through this work is designed light

enough to be operated together with the voice recognizer, speech synthesizer, and
gesture recognizer within an embedded system such as our WPS system. It is imple-
mented to reduce the deduction (reasoning) procedure which takes a considerable
amount of time in the fusion engine by letting the user to define multimodal fusion
rules into ActionXML file directly. Finally it results in the load reduction of our fusion
engine so that it can be run on a lower performance embedded system that has small
resources.

3.2 Dynamic Power Management (DPM)

WPGB hardware supports the following features for DPM application: WPGB uses
Freescale’s i.MX21 as CPU. The CPU frequency can be configured as 133MHz and

374 I.-Y. Cho et al.

66MHz. System bus frequency can be changed from 16MHz ~ 66MHz. The CPU
core voltage can be changed from 1.4V ~ 1.5V.

DPM and policy in WPGB are implemented based on the methods suggested in
[11-13] while considering WPGB hardware and software property.

3.3 Gesture Segmentation Cue

Generally, a hand gesture occurs subsequently after the previous hand movements
that maybe meaningless. In order to correctly analyze a user’s intended gesture com-
mand during such continuous hand movements, recognition engine has to know the
starting point and ending point of the gesture. This kind of gesture segmentation is-
sues are being a problem [14]. In our early development stage, we solve this gesture
segmentation problem by using a button that can be worn on a finger as illustrated in
Fig. 5(a) so that user can press the button only when making a meaningful gesture.
However, this system can be inconvenient for everyday life. In order to overcome this
inconvenience, we developed FingerTapButton that recognizes the bone-conduction
sound by touching a thumb and second finger and uses it as a hand gesture segmenta-
tion cue, which can avoid the use of mechanical buttons. WPGB only monitors data
from the time when the user taps his or her fingers until the user finishes gesture
command and stays still. Fig. 5(b) illustrates the basic principle of FingerTapButton.

(a) (b)

Fig. 5. Basic principle of FingerTapButton

3.4 Gesture Recognition Engine

We define 8 commands that are sufficient to control general multimedia appliances.
Each command is mapped to forearm gestures by considering our intuitive gestures
used in the real world.

Table 1. Defined gesture table

Commands Gestures Commands Gestures

Device Selection

Device Cancel

Right/Next Left/Previous

Volume up

Volume down

Play

Stop

Finger
Tapping

Bone-conduction sound
produced by finger tapping

Sensor

Button

 A Distributed Wearable System Based on Multimodal Fusion 375

The x, y and z sensor data will be sampled only when the user makes meaningful
gestures starting with FingerTapButton. Each gesture data is normalized to have the
fixed height of data range, and sub-sampled to filter out the noise and reduce the data
size to lessen the load when the engine analyzes the input. The preprocessed data is
analyzed and characterized in terms of 1) the maximum and minimum values of the
acceleration along each axis, 2) where they occur in time-vs.-acceleration plots and 3)
quantitative comparison of them in order to find parameters for the software recogni-
tion engine so that it can recognize each command. In addition, as the command set
increased, more geometric characteristics were considered such as the starting/end
value and vertex (local maxima/minima) locations of each input vector. This method
of extracting characteristic information and classifying them with the rule-based rec-
ognition engine is used to distinguish gesture commands [15].

4 System Evaluation

This section describes the use of our multimodal fusion engine that is implemented in
our suggesting wearable system.

4.1 Recognition Enhancement Through Multimodal Fusion

As mentioned previously, advantage of multimodal fusion engine is its improved
recognition rate compare to that of individual recognition engine. In order to measure
the performance of our fusion engine, we used 6 gestures and 66 voice commands.
There were 5 test subjects (all males) and each subject was asked to make each com-
binational voice and gesture command for 10 times.

Fig. 6 shows the comparison of voice only recognition rate, gesture only recognition
rate, and voice + gesture recognition. As shown in the Fig. 6, recognition rate using the
fusion engine is better than using the voice or gesture recognition engine alone.

Fig. 6. Recognition rate of Voice/Gesture vs. multimodal fusion

4.2 Power Consumption of WPGB

WPGB hardware is designed to minimize the power consumption, and the operating
system runs the WPGB supports a power supply control interface for each compo-
nent. In order to measure the power consumption, we measured the current of the
system using Agilent 34411A digital multi-meter (in 2000 samples/sec) with the sup-
ply voltage of 3.7V from Agilent E3648A power supply.

Voice/Gesture Recognition vs. Modality Fusion

86%

88%

90%

92%

94%

96%

98%

R
ec

og
ni

tio
n

Ra
te

Voice
Gesture
Modality Fusion

Voice/Gesture Recognition vs. Modality Fusion

86%

88%

90%

92%

94%

96%

98%

R
ec

og
ni

tio
n

Ra
te

Voice
Gesture
Modality Fusion

376 I.-Y. Cho et al.

Table 2. DPM Policy

WPGB DPM Policy
WPGB Task

Operating
State Default Idle Scaling Load Scaling

FINGERTAP TASK 133/66@1.5V1 133/66@1.5V 88/44@1.45V

GESTURE TASK+1 133/66@1.5V 133/66@1.5V 133/66@1.5V

ICONVIEW2 TASK-1 133/66@1.5V 133/66@1.5V 66/33@1.425V

IDLE IDLE 133/66@1.5V 66/16@1.4V 66/16@1.4V

Considering the CPU requirements of the WPGB tasks, we decided the operating
state and applied DPM policy defined in section 3.2. Table 2 shows the WPGB DPM
policy of the four tasks.

Fig. 7 shows the measurement data for each policy. Portion noted as 1 in the fig-
ure is when the WPGB recognizes the starting point of a gesture using the Finger-
TapButton and gives vibration feedbacks through the vibration motor, 2 is when it
collects the accelerometer sensor data and recognizes the gesture, and 3 is when the
gesture results are being displayed on OLED.

Average current and power consumptions are shown in Table 3. As illustrated in
the table, we achieved an improvement of 30% in power saving under Idle Scaling
policy when compared to non-DPM system where the Idle Scaling policy has a power
saving mode only in the system idle state. Under Load Scaling policy which has pow-
er saving modes in both the idle state and task operation, there is almost an improve-
ment of 33% in power saving.

Fig. 7. Current Profile with DPM Policies

When considering the capacity of the battery (300mAh) that powers the WPGB, it
has around 3 hours of system run time when DPM default policy is applied, however
by applying the DPM Load Scaling policy its run time increases by an hour.

1 CPU frequency / system bus frequency @ CPU voltage.
2 Display of recognition results on the OLED.

DPM Default

40

60

80

100

120

140

160

180

0 1 2 3 4 5

Time (sec)

C
u
rr

en
t

(m
A
)

DPM IS(Idle Scaling)

40

60

80

100

120

140

160

180

0 1 2 3 4 5

Time (sec)

DPM LS(Load Scaling)

40

60

80

100

120

140

160

180

0 1 2 3 4 5

Time (sec)

1 32 1 32 1 32

 A Distributed Wearable System Based on Multimodal Fusion 377

Table 3. Power Consumption of WPGB

Policy
Average Current

Consumption (mA)
Average Power

Consumption (mW) Power Saving (%)3

DPM Default 98.50 364.46 -

DPM IS 68.11 252.01 30.85

DPM LS 65.63 242.83 33.37

5 Conclusions

We presented our prototype that consists of a wristwatch type Wearable Pointing and
Gesture Band (WPGB) and a small sized Wearable Personal Station (WPS) that the
functional input/output modules can be freely plugged in and taken out. WPGB is
loaded with a compact low power gesture recognition engine in order to support ges-
ture command based user interface in the wearable computing environment. WPS has
a mass storage with a communication gateway and has multimodal fusion capability.

By measuring and analyzing the performance of our multimodal fusion engine, we
showed that using both voice and gesture input in a mutual supportive way results in a
better recognition rate compared to when using a single input modality. We also
showed that using a DPM technique gives us power savings by measuring and analyz-
ing the power consumption rate in our WPGB system where it is operated by the
DPM enabled eRTOS.

References

1. T. Starner: The challenges of wearable computing Part 1. IEEE Micro Vol. 21. No. 4. July
(2001) 44-52

2. J. Rekimoto: GestureWrist and Gesture Pad: Unobtrusive Wearable Interaction Devices.
Proc. IEEE International Symposium on Wearable Computers (2001) 21-27

3. U. Anliker et al.: A systematic approach to the design of distributed wearable systems.
IEEE Trans. Computers, Vol.53. No.8. (2004) 1017-1033

4. i.MX21 Applications Processor Reference Manual, MC9238MX21RM, Rev.2 (2005)
5. ±2g Tri-Axis Digital Accelerometer Specifications, Part Number: KXP84-2050, Rev 1,

Kionix Inc (2006)
6. H.S. Park, et al.: Design of Open Architecture Real-Time OS Kernel. KISS, Vol. 2.

(2002) 418-420
7. Intel PXA27x Processor Family Developer’s Manual (2006)
8. http://www.hcilab.co.kr
9. A. Corradini, M. Mehta, N.O. Bernsen, and J.C. Martin: Multimodal input fusion in hu-

man-computer interaction. Proc. the NATO-ASI Conference on Data Fusion for Situation
Monitoring, Incident Detection, Alert and Response Management (2003) 18-29

10. P.R. Cohen, M. Johnston, , D.R. McGee, S.L. Oviatt, J. Pittman, I. Smith, and J. Clow:
Quickset: Multimodal Interaction for Distributed Applications. Proc. the 5th International
Multimedia Conference, ACM Press (1997) 31-40

3 Compare to DPM Default.

378 I.-Y. Cho et al.

11. B. Brock and K. Rajamani: Dynamic Power Management for Embedded Systems. Proc.
IEEE International SOC Conference (2003) 416-419

12. IBM and MontaVista Software: Dynamic Power Management for Embedded systems.
http://www.research.ibm.com/arl/projects/dpm.html (2002)

13. CE linux forum: Power Management Specification _R2”, http://tree.celinuxforum.org/
CelfPubWiki/Power ManagementSpecification_5fR2 (2004)

14. P.A. Harling and A.D. N. Edwards: Hand tension as a gesture segmentation cue. Proc.
Gesture Workshop on Progress in Gestural Interaction (1996) 75-88

15. J. LaViola: A Survey of Hand Posture and Gesture Recognition Techniques and Technol-
ogy. Technical Report CS99-11. Dept. of Computer Science, Brown University. Provi-
dence, Rhode Island (1999)

Randomized Approach for Target Coverage

Scheduling in Directional Sensor Network�

Jian Wang, Changyong Niu, and Ruimin Shen

Department of Computer Science and Technology
Shanghai Jiaotong University, Shanghai, China, 200030

{jwang,cyniu,rmshen}@sjtu.edu.cn

Abstract. Recently directional sensors have been widely deployed as
they are more practicable under constraints of manufacture, size and
cost. One common functionality of networks formed by such directional
sensors is to monitor a set of discrete targets continuously. Large scale de-
ployment makes sensor recharge impossible. By abundant deployment,
it is reasonable and necessary to select subsets of sensors to operate
alternatively so as to prolong the network lifetime. Such problem has
been proved to be NP-Complete. This paper approximates network life-
time problem by randomized algorithm. Through constructing elemen-
tary sessions, which denotes active subset of sensors covering all targets,
and linear programming, the approximating solution is derived within
extremely less duration comparing to previous works. Simulation results
demonstrate the algorithm’s performance and sound explanation is also
presented.

1 Introduction

Sensor networks consist of large number of sensors that measure their envi-
ronment. Each sensor is equipped with a sensing module, small processor and
wireless communication antenna. The sensors are scattered around a field to col-
lect information specific to applications about targets. The information gathered
varies from seismic, acoustic, magnetic, to video data. For example, the sensors
can be deployed in a battlefield to monitor enemy troops. When data is gathered
by sensors, it is processed if necessary and then transferred to the base station
through wireless antenna. Usually the base station has high computation and
communication capability, and processes all gathered information according to
specific application requirements.

As for manufacture, size and cost, different directional sensors emerge in the
real-world. Such sensors have a finite sensing angle. It can not operate as omni-
directional one do. Often such sensor equips with rotation capability to enhance
device flexibility. Thus it could operate in different directions so as to cover much
larger sensing area. The sensor is usually powered by battery, which makes it
very resource constrained. The sensor goes dead quickly if being active continu-
ously, while sensor networks are desirable to last for long period of time, such as
� This work is partially supported by the NFSC under Grant 60672066, China.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 379–390, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

380 J. Wang, C. Niu, and R. Shen

months or even years. Finding non-disjoint active subsets of sensors and schedul-
ing them alternatively is feasible to prolong the network lifetime [1]. However,
such problem is proved to be NP-Complete. The approximating algorithms pro-
posed in [1] have long computation time when sensor network becomes larger.
This motivates us to search for faster algorithm.

To be self-contained, we consider the following scenario from [1] in this pa-
per. A target set with known locations are designated in the two-dimensional
Euclidean field. A fixed set of directional sensors are randomly scattered within
such field to cover these targets. The sensing region of directional sensor is of
sector of sensing disk, centered at the sensor with uniform sensing range. If di-
rectional sensor faces to a direction, it indicates sensor can sense such direction
and such direction is referred as sensing direction. The sensor covers the tar-
get only when the target is within sensing region. Usually the sensor network
is deployed with abundant sensors guaranteeing network connectivity. Thus it
is possible to cover all targets through selecting and scheduling sensor subsets
to operate alternatively. The problem now being studied is how to select and
schedule subsets to achieve maximum lifetime of directional sensor network.

Our algorithm assumes location information is available to targets and sensors,
as well as algorithms running on the powerful base station. It computes the operat-
ing schedules and informs sensorswhen and how long to operate in which direction.
Based on location of sensors and targets, sensing angle, and sensing range, aug-
mented bipartite graph is constructed for original directional sensor network. Next,
elementary session is defined as basic scheduling unit. By finding all of them, the
optimal lifetime is achieved by linear programming technique. However, the num-
ber of all elementary sessions is extremely huge. Thus, Randomized algorithm pro-
posed finds a subset of them and gets approximating solution within much shorter
computation time. The remainder is organized as follows: Section 2 discusses re-
lated works. The formulation of lifetime problem and randomized algorithm are
presented in Sec.3. In Sec.4, simulation results and sound explanation for time re-
duction are given. We conclude in Sec.5 with future work.

2 Related Work

Sensing coverage is one of common tasks in sensor networks. Usually the sensors
are deployed densely so as to achieve high redundancy in coverage and network
connectivity. Such coverage is often categorized into two types: One is field cover-
age, where full field is covered and no coverage hole is tolerated at any time. The
other is target coverage, where a set of discrete targets needs to be monitored
continuously by at least one sensor during whole lifetime.

For power limitation and recharging difficulty, there have many woks prolong-
ing the network lifetime of omnidirectional sensor networks. In field coverage
category, sleeping protocols, such as PEAS [2], PECAS [3], OGDC [4] achieve
longer network lifetime through different strategies. Each of them tries to cover
the largest area of interesting. [5] introduces k-coverage, where each point in
field is monitored by at least k sensors. Thus it improves network fault-tolerance.

Randomized Approach for Target Coverage Scheduling 381

[6] utilizes Voronoi diagrams to identify redundant sensors and turns them off.
Consequently, it achieves full coverage with minimal sensors. [7] provides a self-
scheduling scheme, where differential coverage is provided by adjusting sensor’s
scheduling parameters, where sensors dynamically schedule themselves while
guaranteeing a certain degree of coverage according to parameters more than
operating time. [8] organizes sensors into subsets and derive optimal scheduling
of these subsets, where lifetime is maximized and all service constraints are sat-
isfied. The problem is formulated as a generalized maximum flow graph and the
optimality is found by linear programming.

In target coverage category, a set of discrete targets is designated. Accord-
ingly, lifetime problems are studied intensively. [9] assumes that each sensor only
monitor one target at a time, and constructs operating timetable for each sensor.
[10] minimizes the breach of coverage and subsets derived upon bandwidth con-
straints. It organizes sensors into mutually exclusive subsets which are activated
properly, and permits that not of all targets need to be covered by one subset.
[11] requires that each target must be covered by at least one sensor in each sub-
set, where subsets may overlap with each other. [12] groups sensors into disjoint
subsets, each of which covers all the targets, and only one subset is active. The
objective is to maximize number of those subsets.

Directional sensor research attracts more attention recently. [13] analyzes the
probability of full area coverage, where each node is fixed to one direction. [14]
strives to find a minimum set of directions that can cover maximal targets, where
each node could rotate to different directions. The resulting subsets of sensors
are not allowed to be overlapped. [1] strives to find non-disjoint subsets of sensors
covering all targets and schedule them alternatively to achieve optimal lifetime
of directional sensor network. This paper considers the lifetime problem in di-
rectional sensor network and it belongs to target coverage category. In [14] the
subsets are not overlapped and [1] relaxes such constraint. Our work continues to
allow overlapped sensing regions, which is not considered in [1]. In the following,
sensor and directional sensor will be used interchangeably.

3 Formulation and Randomized Approach

For convenience, the notations and assumptions following [1] are described first.
Then the lifetime problem of directional sensor network covering a set of dis-
crete targets is formulated. And partition algorithm finding sufficient directions
of each sensor is proposed. Further, augmented bipartite graph is constructed
upon relationships between directions and targets. Finally, elementary session
is introduced and randomized approach approximates the optimal lifetime. As
proved in [1], the NP-Complete feature of lifetime implicates the number of el-
ementary sessions extremely huge. However, most sessions remains dependent
to others. Randomized approach finds enough number of them to approximate
solution by linear programming technique.

382 J. Wang, C. Niu, and R. Shen

3.1 Notations and Assumptions

� M : the number of targets.
� N : the number of sensors.
� am: the mth target, 1 ≤ m ≤ M .
� si: the ith sensor, 1 ≤ i ≤ N .
� A: the set of targets, A = {a1, a2, · · · , aM}.
� S: the set of sensors, S = {s1, s2, · · · , sN}.
� di,j : the jth direction of si, 1 ≤ i ≤ N , 1 ≤ j < ∞.
� ci: the number of di,j for sensor si.
� 1: unit lifetime during which sensor could operate actively.
� xy (node): coordination function that provides location for node.
� �: sensing angle of sensor.
� r: sensing range of sensor.

The target is covered means that it is within sensing direction of at least one
sensor. In Fig.1, am, 1 ≤ m ≤ 3 denotes target, si, 1 ≤ i ≤ 3 denotes direc-
tional sensor, and di,j , 1 ≤ i, j ≤ 3 represents direction of sensor si. In addition,
d1,1, d2,3, d3,1 reflect current sensing directions of sensor s1, s2, s3, respectively.
Consequently, a2, a3 are covered by sensor s3 in Fig.1.

Fig. 1. Directional sensor network [1]

1a

2a

3a

1,3d

2,2d

3,1d
1s

2s

3s

Fig. 2. Augmented bipartite graph of Fig. 1

The maximum lifetime of directional sensor network in context of target cov-
erage is defined as: Given target set A, sensor set S, coordination function
xy (node), sensing range r, sensing angle �, and the constraint that each of
the targets is covered by at least one sensor, the maximum or optimal network
lifetime, during which the constraint is satisfied, and corresponding schedules
for each sensors are formalized as following:

Maxmize
∑

k

tk, k ∈ {1, · · · , K} (1)

Subject to
Sk ⊆ S, ∃K ∈ [1, ∞), ∀k ∈ {1, · · · , K} (2)

Randomized Approach for Target Coverage Scheduling 383

am ≺ si, si ∈ Sk, ∀m ∈ {1, · · · , m}, ∀k ∈ {1, · · · , K}, ∃i ∈ {1, · · · , N} (3)

∑

k

indicator (si ⊆ Sk) ∗ tk ≤ 1, ∀i ∈ {1, · · · , N} (4)

indicator (X) =

{
1 X is true
0 otherwise

(5)

The objective function (1) is to maximize sum of lifetime tk for each sensor subset
Sk. Constraint (2) indicates it is desirable to find K of subsets Sk. Constraint
(3) guarantees every target am is covered by at least one active sensor si in
each subset Sk, where am ≺ si means target am is located in sensing direction of
sensor si. Constraint (4) ensures that no sensor use more than initial power. The
constraint of direction conflict [1] is not explicitly reflected in above formulation
because conflict is avoided in the randomized algorithm by defining elementary
sessions. Note that the power consumption in terms of rotation as well as message
transmission is not considered in this paper. Such omission could reveal more
insight of sensor scheduling and they will be studied in future works.

3.2 Partition Algorithm for Sensing Directions

As rotation capability compensating for coverage limitation, sensor could ro-
tate to different directions to enhance utility of coverage in context of specific
application requirement. Theoretically sensor has infinite directions by rotating
continuously. Here Partition algorithm is proposed to find all independent direc-
tions for each sensor, where independent directions represent no equal of their
subsets of covered targets.

Algorithm 1: Partition algorithm for sensing directions

Input: sensor si, target set A, sensing range r, sensing angle �, coordinate
function xy (node)

Output: collection of target subsets: csi = {csi
1, · · · , csi

j , · · · } ⊆ A, csi
j
= ∅

1. Let B = ∅; csi = ∅

2. FOR each a ∈ A
3. IF ‖xy (a) − xy (si) ‖2 < r THEN B = B ∪ {a} END
4. END
5. IF B is ∅ THEN RETURN ∅ END
6. Let V = ∅

7. FOR each a ∈ B
8. Compute offset angle de with respect to positive axis X , and V = V ∪ de
9. END

10. FOR each de ∈ V

384 J. Wang, C. Niu, and R. Shen

11. Get target set csi
j where each target is within angle de and de − �. Note

comparison is done in context of arithmetic module 2π
12. csi = csi

j ∪ csi

13. END
14. RETURN csi

This algorithm searches for all independent directions of sensor si, where no
direction could be derived by any other ones. ci = |csi|. Obviously, such ci has
great impact on complexity of computation.

3.3 Augmented Bipartite Graph and Elementary Sessions

Figure 2 is an instance of augmented bipartite graph, where vertexes consist of
targets, directions, and sensors. The left column of vertexes represents all targets
A. The middle one is collection of directions of different sensors {di,j}. The last
denotes sensor set S. With partition algorithm above, each sensor finds set of
independent directions, under which target subset is covered. Then augmented
bipartite graph is constructed: each target am links to each direction di,j , where
it is covered. And sensor si connects to all its independent directions {di,j}. No
explicit links between targets and sensors appear in the graph. The graph is well
organized for clarity. Furthermore, the links within augmented bipartite graph
are labeled with three rules.

Rule 1 : the link between target am and direction di,j is represented by xm,i,j ∈
{0, 1}. As continuous coverage is concerned, at least one direction covers am.
That means

∑
i,j xm,i,j ≥ 1. xm,i,j = 1 here means sensor si in direction di,j

covers target am.
Rule 2 : the link between direction di,j and sensor si is represented by yi,j :

yi,j =

{
1 xm,i,j = 1
0 otherwise

(6)

Rule 3 : As the sensor si is only in one direction at any instant, at most one
direction could be selected. That is

∑
j yi,j ≤ 1

Elementary session is defined as operation state vector of all sensors, where
all targets are covered as well as no superfluous sensor is activated. That means
if any sensor is removed from elementary session, some target is uncovered
absolutely.

Constructs Cartesian tuples for {xm,i,j} within above 3 rules and Fig.3 is
formed. The collection of yi,j of each row represents an elementary session,
while the collection of xm,i,j reflects current sensing direction of each sensors.
In Fig.3, same elementary session may correspond to different sets of sensing di-
rections. Thus by removing duplicated elementary sessions, Fig.3 has four rows
left: {#1,#2,#3,#7}. Let each row scheduled for periods t1, t2, t3, t4, respec-
tively. The maximum network lifetime is transferred into linear programming
problem:

Maximize t1 + t2 + t3 + t4 (7)

Randomized Approach for Target Coverage Scheduling 385

Var

Row
3,1,1x 2,2,1x 3,1,2x 1,3,2x 2,2,3x 1,3,3x 3,1y 2,2y 1,3y

#1 1 0 1 0 1 0 1 1 0

#2 1 0 1 0 0 1 1 0 1

#3 1 0 0 1 1 0 1 1 1

#4 1 0 0 1 0 1 1 0 1

#5 0 1 1 0 1 0 1 1 0

#6 0 1 1 0 0 1 1 1 1

#7 0 1 0 1 1 0 0 1 1

#9 0 1 0 1 0 1 0 1 1

Fig. 3. All elementary sessions for Fig.2

Subject to

⎡

⎣
1 1 1 0
1 0 1 1
0 1 1 1

⎤

⎦ ∗

⎡

⎢⎢⎣

t1
t2
t3
t4

⎤

⎥⎥⎦ ≤

⎡

⎣
1
1
1

⎤

⎦ , and 0 ≤ ti ≤ 1, i ∈ {1, 2, 3, 4} (8)

Resolving the problem and getting the solution: [t1, t2, t3, t4]T = [0.5, 0.5, 0, 0.5]T .
That means network lifetime T =

∑
i ti = 0.5 + 0.5 + 0 + 0.5 = 1.5. Thus, it

indicates that network lifetime T reaches 1.5 times longer than individual sensor
lifetime.

3.4 Randomized Approach for Lifetime

Now the randomized approach for lifetime of directional sensor network is pro-
posed. Given target set A = {a1, a2, · · · , aM}, sensor set S = {s1, s2, · · · , sN}.
First, partition algorithm finds direction collection of each sensor. Then they
forms large set D={di,j , 1 ≤ i ≤ N, 1 ≤ j ≤ ci}. As every target am needs to be
covered continuously, thus it must locate within some direction di,j . According to
combinatorial theory, it has at most ξ = PM

|D| different cases for given targets set
A. Obviously, some cases are infeasible because of direction conflicts, while some
others may use inexistent link xm,i,j . In addition, some feasible choice even use
superfluous sensors. Consequently, removing them still guarantees target cover-
age and prolongs network lifetime. Finally, the maximum lifetime is achieved by
finding all elementary sessions as well as linear programming technique. How-
ever, ξ increasing exponentially makes it impracticable for large scale network.
Randomized approach approximates lifetime by reasonable size of elementary
session set.

Algorithm 2: Random production of elementary session

Input: augmented bipartite graph AG, target set A, sensor set S

386 J. Wang, C. Niu, and R. Shen

Output: random elementary session v

1. Let U = A; v = [0]1∗N

2. WHILE U is not ∅

3. Select target u ∈ U randomly
4. Select d randomly from directions flowing out from target u in graph AG
5. Set corresponding bit in v to 1 for sensor of direction d
6. U = U− {all targets covered by d simultaneously}
7. Remove d and those directions conflicting with d in AG, as well as corre-

sponding sensor
8. Check AG and remove those links with one vertex left
9. END

10. RETURN v

This algorithm ensures that elementary session covers target set A, where no
conflicting directions and superfluous sensors are selected.

Algorithm 3: linear programming for elementary session matrix

Input: the matrix V , each column accommodate an elementary session

Output: time period tj for each elementary session

Maximize
∑

j

tj (9)

Subject to

V ∗

⎡

⎢⎣
t1
...

t|V |

⎤

⎥⎦ ≤

⎡

⎢⎣
1
...
1

⎤

⎥⎦ , tj ≥ 0, j = 1, · · · , |V | (10)

where |V | denotes column number of matrix

This algorithm is effectively implemented by existing linear programming
tools, such as Matlab.

Algorithm 4: Randomized approach for lifetime of directional sensor network

Input: target set A, sensor set S, direction set D, the minimum difference of
lifetime between successive iterations ζ

Output: maximum lifetime T , duration tj of each elementary session vj

1. Construct augmented bipartite graph AG with direction set D, target set A,
and sensor set S

2. Let T = 0; Δ = 0; V = ∅; ϕ = 200; round = 4

Randomized Approach for Target Coverage Scheduling 387

3. DO
4. round=round-1
5. Get elementary session set Z = {v1, · · · , vϕ} by running algorithm 2

repeatedly.
6. V = V ∪ Z
7. Get tj for each vj ⊆ V, j = 1, · · · , |V | by algorithm 3
8. Δ =

∑
j tj − T ;

9. T =
∑

j tj
10. IF Δ ≥ ζ THEN round=4 END
11. WHILE round > 0
12. RETURN T and {tj , 1 ≤ j ≤ |V |}

In algorithm 4, the matrix V accommodates elementary session as column,
and Δ holds the lifetime difference in successive iterations. In addition, ϕ is set
as 200 as it is used in our simulations. Algorithm 4 introduces elementary session
matrix by randomization. Then it determines the lifetime by linear programming.
If lifetime difference between successive iterations drops below specified value ζ,
the algorithm terminates the loop and returns lifetime T as well as duration set
{tj}. Obviously, the elementary session vj ∈ V is basic scheduling unit denoting
each sensor sleeping or working.

In this paper we assume sensors have uniform sensing range, sensing angle,
unit lifetime. However, the randomized algorithm proposed in this subsection
is independent to them. Heterogeneous sensing range and sensing angle only
impact result of algorithm 1, while algorithm 3 adapts heterogeneous initial
sensor lifetime by modifying right part of the constraint, i.e. full one vector of
column [1, · · · , 1]T . That means the randomized algorithm is general enough to
apply in many other settings.

4 Simulation

We evaluate the randomized algorithm through simulations running on a com-
puter with 1.5 GHz CPU and 512 MB memory. The algorithm is implemented
upon the Matlab, which provides strong optimization toolboxes. For fair com-
parisons, the directional sensor network is configured similar to [1] as follows:
N sensors with homogeneous sensing radius r and sensing angle �, as well as
M targets are scattered randomly in a region of 400m × 400m. The directions
{di,j} for each sensor si are searched by partition algorithm. The minimum life-
time difference between successive iterations ζ is set as 0.0001, the number ϕ
of elementary sessions in bulk is set as 200. In addition, each result is averaged
over 10 runs through random scattering sensors and targets.

Network Lifetime. Here the initial lifetime of sensor is set as 1 and sensing
angle � is set as 2π

3 , while W = 3 for feedback and progressive algorithms in [1].

388 J. Wang, C. Niu, and R. Shen

Figure 4 shows the relationship between the network lifetime and number
of sensors when M = 10, r = 100m. The network lifetime linearly increases as
N increases. The randomized algorithm lies between progressive and feedback
ones.

When number of sensor is fixed as 50 and that of targets is fixed as 10, we
study the relationship between lifetime and sensing range in Fig.5. The lifetime
increases as sensing range becomes larger. It is obvious that more targets could
be covered with large sensing range. The similar result will appear when sensing
angle � becomes large or W in [1] drops down. The randomized algorithm still
performs similarly to two others.

Now in Fig.6, we reveal the relationship between lifetime and number of tar-
gets when N = 50, r = 100m, W = 3, � = 2π

3 . All of three algorithms get similar
results and feedback one seems to be better according to network lifetime met-
ric. In these three figures, we conclude that the randomized algorithm performs
between progressive and feedback ones according to metric of network lifetime.

20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

Number of sensors

Li
fe

tim
e

Feedback
Progressive
Randomized

Fig. 4. Lifetime vs. number of sensors

75 100 125 150 175 200
0

2

4

6

8

10

12

14

Sensing range [m]

Li
fe

tim
e

Feedback
Progressive
Randomized

Fig. 5. Lifetime vs. sensing range

Runtime. We fix network with r = 100m, M = 10 targets. For feedback
and progressive algorithm in [1], the W is set as 3, while sensing angle � of
randomized algorithm is set as 2π

3 . Figure 7 presents the runtime of progressive,
feedback, and randomized algorithms. When sensor number N is low, three
algorithms complete computation quickly. However, the feedback and progressive
ones incurs large computation time when N = 80. Note that Fig.7 plot time as
logarithmic scales. Feedback one incurs 15600 seconds and progressive requires
1800 seconds. On the contrary, the randomized one only consumes less than 7
seconds. Recall that both feedback and progressive run upon a computer with 3
GHz CPU and 1 GB memory, while randomized algorithm is on 1.5 GHz CPU
and 512 MB memory. That is to say, randomized algorithm performs 500 times
faster than progressive one, as well as even higher ratio to feedback one with
little lifetime loss.

Randomized Approach for Target Coverage Scheduling 389

5 10 15 20
2.5

3

3.5

4

4.5

5

5.5

6

Number of targets

Li
fe

tim
e

Feedback
Progressive
Randomized

Fig. 6. Lifetime vs. number of targets

20 30 40 50 60 70 80
10

0

10
1

10
2

10
3

10
4

10
5

Number of sensors

R
un

tim
e

[s
ec

on
d]

Feedback
Progressive
Randomized

Fig. 7. Runtime vs. number of sensors

Faster ability of randomized algorithm implies that it could apply to larger
directional sensor network. Now we give three reasonable explanations:

1. The algorithms in [1] encounter too many conflicts among directions. Each
time they get the result of linear programming problem, many of them are
useless due to conflicts. Even the large and stable number of variables in
linear programming makes the computation harder because the complexity
of linear programming is O

(
n3

)
, where n is the number of variables. On

the contrary, elementary sessions help randomized algorithm avoid direction
conflict.

2. Sensor directions are not properly selected. Some of them are unnecessary.
The partition algorithm in this paper finds all independent directions of each
sensor.

3. Too much duplication makes randomized algorithm effective. In Fig.3, there
exists same elementary session corresponding to different direction subsets.
When sensor set and target set becomes larger, such phenomena occur even
frequently. Thus there is not necessary to exhaust all direction subsets to
approximate the optimum lifetime.

5 Conclusion

This paper studies targets coverage in directional sensor network. Due to abun-
dance of sensors and limited sensing angle, there emerges a natural problem for
how long the directional sensor network could operate with all targets being
covered continuously. The lifetime is proved to be NP-Complete in [1]. Thus
the approximating solution is searched for. We propose the randomized algo-
rithm for lifetime, which greatly reduces computation time more than 500 times
on average, when directional sensor network becomes larger, with little lifetime
loss comparing to algorithms in [1]. Future work includes exploring much faster

390 J. Wang, C. Niu, and R. Shen

and more accurate algorithm for lifetime, incorporating power consumption of
rotation and communication, and extending such randomized algorithm into
decentralized equivalent.

References

1. Yanli Cai, Wei Lou and Minglu Li.: Target-Oriented Scheduling in Directional
Sensor Networks. to be appeared in IEEE INFOCOM 2007

2. F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang.: PEAS: a robust energy conserv-
ing protocol for long-lived sensor networks. in Proceedings of IEEE International
Conference on Network Protocols (ICNP) 2002.

3. C. Gui and P. Mohapatra.: Power conservation and quality of surveillance in target
tracking sensor networks. in Proceedings of ACM MobiCom 2004, ,Sept. 2004,
Philadelphia, PA, USA.

4. H. Zhang and J. C. Hou.: Maintaining sensing coverage and connectivity in large
sensor networks. in Ad Hoc & Sensor Wireless Networks, An International Journal,
2005.

5. J. Lu, L. Bao, and T. Suda.: Coverage-aware sensor engagement in dense sensor
networks. In Proceedings of the International Conference on Embedded and Ubiq-
uitous Computing - EUC 2005, Dec. 2005.

6. K. Shih, Y. Chen, C. Chiang, and B. Liu.: A distributed active sensor selection
scheme for wireless sensor networks. in Proceedings of the IEEE Symposium on
Computer Computers and Communications June 2006.

7. T. Yan, T. He, and J. Stank Stankovic.: Differentiated surveillance for sensor net-
works. In Proceedings of 1st International Confer Conference on Embedded net-
worked sensor systems, 2003.

8. M. Perillo and W. Heinzelman.: Optimal sensor management under energy and
reliability constraints. In Proceedings of the IEEE Conference on Wireless Com-
munications and Networking, March 2003.

9. H. Liu, P. Wan, C. Yi, X. Jia, S. Makki, and P. Niki.: Maximal lifetime scheduling
in sensor surveillance networks. in IEEE INFOCOM 2005, March 2005, Miami,
Florida, USA.

10. M. X. Cheng, L. Ruan, and W. Wu.: Achieving minimum coverage breach un-
der bandwidth constraints in wireless sensor networks. in IEEE INFOCOM 2005,
March 2005, Miami, Florida, USA.

11. M. Cardei, M. T. Thai, Y. Li, and W. Wu.: Energy-efficient target coverage in
wireless sensor networks. in IEEE INFOCOM 2005, March 2005, Miami, Florida,
USA.

12. M. Cardei an and D. Du.: Improving wireless sensor network lifetime through
power-aware organization. in ACM Wireless Networks, May 2005.

13. H. Ma and Y. Liu.: On coverage problems of directional sensor networks. in
Proceedings of International Conference on Mobile Ad-hoc and Sensor Networks
(MSN), 2005.

14. J. Ai and A. A. Abouzeid.: Coverage by directional sensors in randomly deployed
wireless sensor networks. Journal of Combinatorial Optimization, vol. 11, no. 1,
Feb. 2006, pp. 21-41.

Efficient Time Triggered Query Processing in

Wireless Sensor Networks

Bernhard Scholz1, Mohamed Medhat Gaber2,
Tim Dawborn1, Raymes Khoury1, and Edmund Tse1

1 The University of Sydney
Sydney, NSW, Australia

2 CSIRO
Hobart, TAS, Australia

Abstract. In this paper we introduce a novel system that comprises
techniques advancing the query processing in wireless sensor networks.
Our system facilitates time triggered queries that are scheduled in a
distributed fashion among sensor nodes. Thus, time synchronisation is
of paramount importance. Since accurate time synchronisation requires
more energy, our system allows a trade off between precision of time
and energy according to the user requirements. To minimize the commu-
nication overhead for query processing, our system employs new query
execution mechanisms.

We have implemented our query processing system on SunTM Small
Programmable Object Technology (SPOT) sensor network platform. The
system was entirely programmed in Java enabling an object oriented
design and implementation. It provides a friendly graphical user interface
for query management and visualisation of results.

Keywords: Wireless communications and ad hoc networks, distributed
query processing, communication and energy optimisations, time trig-
gered protocols.

1 Introduction

With the advent of smart sensor devices, wireless sensor networks are an emerg-
ing research field [1,2]. Wireless sensor nodes form a wireless ad-hoc network
with a large number of nodes which operate without direct human interaction.
The applications of wireless sensor networks are diverse and include environment
and habitat monitoring [3], traffic control [4], health monitoring [5], supply-chain
management [6], security and surveillance systems, and smart homes.

In this work we are concerned with distributed query processing [1,7] in sen-
sor networks. Users are typically interested in continuous streams of sensed data
from the physical world. Query processing systems [8,9,10] provide a high-level
user interface to collect, process, and display continuous data streams from sen-
sor networks. These systems are high-level tools that allow rapid-prototyping
of wireless sensor network applications. In contrast, writing wireless sensor net-
work applications in a systems language such as C is tedious and error-prone.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 391–402, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

392 B. Scholz et al.

A query processing system abstracts from tasks such as sensing, forming an
ad-hoc network, multi-hop data transmission, and data merging and aggrega-
tion. A state-of-the-art distributed query system for wireless sensor networks is
TinyDB [8] that employs a subset of SQL as an underlying language for queries.
In this system the user specifies declarative queries that perform the sensing
tasks. For example the query select avg(temp) from nodes reports the aver-
age temperature of the area covered by the sensor network.

TinyDB forms a routing tree with all sensors in the network. The root of
the routing tree is the base station (aka. gateway) that is connected to a PC.
Every other node in the wireless sensor network maintains a parent node that is
one step closer to the base station. Queries are flooded throughout the network
and the query answers are collected and propagated through the routing tree.
The query processing consists of three phases: (1) the query preparation phase
inputs, parses, and optimises a query at the user’s PC, (2) the broad-casting
phase injects the sensing and collecting task into the sensor network, and (3)
the data collecting phase makes results flowing up and out of the network to the
PC where the results are displayed and stored in a disk-based DBMS for later
access.

This paper describes a new query processing system for a new wireless sensor
network platform Sun SPOT [11,12], that has been developed at Sun Research
Labs. This new platform has a 32bit ARM Risc processor, an 11 channel 2.4GHz
radio, and approx. 100 times more memory than a state-of-the-art platform such
as Berkley Motes [13]. The platform is programmed in JavaTMand features a sen-
sor board for I/O and an 802.15.4 radio for wireless communication. The Sun
SPOT system runs “Squawk VM” that is a lightweight J2METM virtual ma-
chine (VM). The VM executes wireless sensor network applications “on the bare
metal”, i.e., directly on the CPU without any underlying OS, saving overhead
and improving performance. With more memory and a faster CPU alternative
design decision can be made to minimise energy-costly communication by ap-
plying new time-triggered protocols for aggregation.

We have designed and implemented a time-triggered query engine for wireless
sensor networks, called SSDQP, which is a distributed query processor that runs
on each Sun SPOT. The new platform is programmed in Java. Hence, a clean
object-oriented design of the engine was possible.

The contribution of our work is as follows:

– a new design of an acquisitional distributed query (ACQP) system that is
time-triggered,

– a time synchronisation mechanism of the nodes that allows a trade-off be-
tween cost and accuracy,

– a new communication model for ACQP.

The paper is organised as follows: In Section 2 we survey the related work. In
Section 3 we give an overview of our ACQP system. In Section 4 we discuss the
trade-off between power consumption and time accuracy of the time synchroni-
sation. In Section 5 we show the advantages of merging results at node level. In
Section 6 we draw our conclusion.

Efficient Time Triggered Query Processing in Wireless Sensor Networks 393

2 Related Work

Distributed query processing in wireless sensor networks has been an active
research area over the last few years. TinyDB [8] and Cougar [14] represent
the first generation of query processing systems in wireless sensor networks.
The main objective in these systems has been to preserve the limited power by
attempting to reduce the communication overhead. This in turn prolongs the
network lifetime.

TinyDB and Cougar [15] provide an SQL-like query language. Sensor data is
viewed as a single virtual table. The data is appended at time intervals specified
in the query termed as epochs. Results from every sensor find their way to
the root node (the node that connects directly to the base station) through
a routing protocol. Query lifetime has been introduced for the first time in
query processing systems to serve the sensor network applications. The user can
specify how long the query should be processed. Pushing computation is used
in two forms: partial aggregation and packet merging. In partial aggregation,
distributive query operators are used in-network. Intermediate results are then
passed to the root to integrate the results. On the other hand, packet merging
is used to reduce the communication overhead produced from sending multiple
packet headers. Query optimisation is done locally at the central site. Once the
query is optimised, the network is flooded through the routing tree to ensure
every child node has heard the query. Multiple trees could be formed to allow
simultaneous query processing. However, overlay among routing trees can lead
to performance decay.

Open issues that have not been addressed in TinyDB and Cougar [15] in-
clude multi-query optimisation, storage placement and heterogeneous networks.
In multi-query optimisation, the resource utilisation is an open research issue.
Storage placement is how to choose nodes that are representative of in-network
data and what fault tolerance techniques are required if the storage node fails.
TinyDB and Cougar consider only homogeneous networks in which all nodes
have the same power. Heterogeneous networks provide new research challenges
to the community.

3 Sun SPOT Distributed Query Processing (SSDQP)

The Sun SPOT Distributed Query Processing system consists of two programs:
(1) the query engine that is executed on the Sun SPOTs and (2) the control
system on the user’s PC that is connected to the base station.

The query engine is implemented as a set of time-triggered tasks. The task
scheduler of the query engine executes a task if the start time of the task has
been reached. The task scheduler maintains the active tasks in a time queue.
Furthermore, tasks can be periodically executed with a fixed time period and
the number of repetitions is parameterisable. Tasks can be added and removed
from the time queue of the task scheduler. The start time of a task is “global”
throughout the network such that sensing and communication can be done in

394 B. Scholz et al.

Fig. 1. Screenshots of SSDQP

a synchronised fashion. The query engine has a time synchronisation task that
keeps the clocks of the Sun SPOTs in the network in sync.

Query tasks are composed of relational algebra operations that operate on
relational tables. Since all sensor readings of the Sun SPOTs are integer values,
the system does only support integer attributes in the relational tables. The
query engine supports all the fundamental query operators including selection,
projection, join and aggregation. In addition to these basic functionalities, there
are

– the sense operation that reads the values of the sensors and creates a result
table with the sensor readings,

– the forward operation that takes the input table and forwards the table to
the parent node in the routing tree,

– the merge operation that receives result tables from the children in the rout-
ing tree, merges the tables, and gives as a result the merged tables.

The query operations are represented as expression trees in the query engine.
A string representation of the expression tree is used for its contruction, which
is sent from the control system to a Sun SPOT node. To minimise the size of

Efficient Time Triggered Query Processing in Wireless Sensor Networks 395

2 3 4 5
100

110

120

130

140

150

160

Levels

P
ow

er
 U

se
d

(%
 o

f P
ow

er
 U

se
d

by
 T

al
le

st
 T

re
e)

2 2.5 3 3.5 4 4.5 5
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 10

−8

Levels

P
ow

er
 U

se
d

(J
)

(a) Tree levels vs. power consumption (b) Tree levels vs. power consumption

2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Levels

D
el

ta
 (

s)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
2

2.5

3

3.5

4

4.5
x 10

−8

Delta (s)

P
ow

er
 U

se
d

(J
)

(c) Tree levels vs. accuracy (d) Accuracy vs. power consumption

Fig. 2. Power Consumption

messages (and therefore energy), a basic data compression method is used. The
data compression achieves compression rates of about 62% in practice.

The control system runs on the user’s PC that is connected to the base station.
It is also written in Java. The control system

– inputs and parses SQL queries, optimises the queries, and translates them
into distributed relational query operations, which are deployed in the net-
work,

– collects the data from deployed queries,
– manages deployed queries, (i.e., status of deployed queries, termination of

deployed queries, etc.),
– provides the global time to all nodes in the network,
– displays and depicts results of queries.

The control system has also a friendly graphical user interface for query input
and result visualisation as shown in Figure 1. The system is fully written in
Java following true object-oriented software engineering practices. This gives
our system the advantage of simple system maintenance and extension.

396 B. Scholz et al.

4 Accuracy Guaranteed Efficient Time Synchronisation

Wireless senor networks are dynamic. New nodes join the network and others die
frequently. Static time synchronisation is infeasible in such computing environ-
ments. Consequently, time synchronisation techniques run frequently consuming
the network energy and shortening its lifetime. Accurate time synchronisation
leads to accurate query results due to the low time shifts among network nodes.
The performance of time synchronisation techniques degrades with the increase
in the network size. This occurs due to the increase in the number of hops to
reach distant nodes from the base station. This problem could be overcome by
increasing the power level of network nodes. This in turn decreases the number
of hops to reach distant nodes. Thus, accurate time synchronisation is achieved
at the cost of higher energy consumption. We have developed a parameterised
optimiser in our SSDQP system that makes a trade-off between accuracy of
time synchronisation and consumed energy. The user inputs an acceptable level
of time shift (Δ) between the system time at the base station and the system
time at a node in the network. Depending on the application the time shift Δ
varies. Our optimiser chooses a network tree topology that minimises the con-
sumed energy (E) and achieves a level of time shift Δ′ ≤ Δ. Let us assume
that the number of hops of node u to the base station is denoted as hu and
the energy that is consumed for a single hop is e. The total energy E for time
synchronisation is given by

E =
∑

u∈T

e · hu (1)

where T is the topological tree used for time synchronisation. The achieved time
accuracy Δ′ depends on the maximum hu in the network, i.e., Δ′ = μ maxu∈T hu

where μ is the time shift introduced by a single hop. We seek for a topology such
that E becomes minimal and Δ′ < Δ.

4.1 Experimental Study

The aim of our experimental study is to provide simulation-based evidence of the
significance of our efficient time synchronisation approach described earlier. The
experimental setup is described in the following: Considering a full binary tree
of height (number of levels)= 5. The radio power setting(I) to reach a parent

– 1 level above is I = p = p
– 2 levels above is I = p + p

3 = 4p
3

– 3 levels above is I = p + 2p
3 = 5p

3
– 4 levels above is I = p + p = 2p

where p is the power setting required to reach a parent one level above. The delta
between levels is calculated with a normal distribution, μ = 0.4s. The goal of our
first experiment is to show the trade-off between accuracy of time synchronisation
and the energy consumed. By varying the number of levels in the routing tree, de-
pending on the accuracy of time synchronisation required, it can be shown that a

Efficient Time Triggered Query Processing in Wireless Sensor Networks 397

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
7.3

Scenario

D
el

ta
 (

s)

Threshold

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (Query Executed)

D
el

ta
 (

s)

Threshold
Optimised
Unoptimised

(a)Delta Variations (b) Optimisation on the accuracy

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

x 10
−8

Time (Query Executed)

P
ow

er
 U

se
d

(J
)

Optimised
Unoptimised

(c) Power consumption over time

Fig. 3. Accuracy vs. Power Consumption

trade-off between time synchronisation and power consumption of a node can be
achieved.A reduction in the number of levels of the tree is accomplished by increas-
ing the radio power level of a node so that it can transmit data to its grandparents,
great-grandparents, etc. effectively skipping levels. For a tree with 5 levels, trees
with 4, 3 and 2 levels can be constructed from the nodes of the original tree, given
that all nodes are able to transmit to one another with a high enough radio power
level. For a given delta in time synchronisation required by the users query, one
routing tree from these 4 trees can be selected in order to achieve the delta, with
a trade off in power. As shown in Figures 2(a)-(d), a reduction in levels of the tree
increases power consumption (for one time synchronisation of the entire tree) sub-
stantially, however will yield a smaller delta.

In the first experiment we provide evidence that with no optimisation of the
routing tree, the accuracy of time synchronisation achieved can exceed the accu-
racy pre-specified by the user. Assuming a system operating with a fixed routing
tree which has been designed to achieve maximum power efficiency, the tree
which is being operated on has 5 levels and various subtrees may be synchro-
nised depending on the query scenario executed. Suppose that the user requires
a maximum delta in time synchronisation of 2s. As shown in 3(a), although for

398 B. Scholz et al.

Sensing & Processing Transmitting Receiving Idle

Level 1

Level 2

Level 3

Level 4

Level 5

Begin of
Interval

End of
Interval

Begin of
Interval

End of
Interval

t t

(a) TAG/TinyDB (b) SSDQP

Fig. 4. Communication Model

some small subtrees the accuracy of the synchronisation is achieved, for queries
executed over larger subtrees, the delta exceeds the desired threshold delta.
This is done at the cost of unnecessary power consumption, which, in time, can
substantially reduce the lifetime of the network. Take again a system with a
fixed routing tree however this time it has been designed to achieve maximum
accuracy in time synchronisation. Assuming that the user requires a maximum
delta of 4s, as shown in 3(b), the unoptimised system always achieves a delta
substantially below the threshold in all scenarios. Our system, which selects a
tree based on the delta, also achieves a delta below the threshold however it is
much closer to the threshold. 3(c) shows the power consumption over time of
the network as a whole with each system, as various queries are executed. As
shown, there is a significant difference in power consumption, particularly when
large subtrees are being operated on (queries 7 and 8).

5 Communication Model

In the design of SSDQP we had the choice to either adopt the communication
model ofTinyDB [8] (and TAG [16] respectively) or to create a new communication
model. Since the Sun SPOTs have more memory and more computational power
than Berkley Motes; we designed a new communication model. This new commu-
nication model is optimised for repetitive queries and has following properties:

– timeliness of sensing, i.e., all nodes in the network sense at the same time,
and

– minimised communication overhead achieved by a synchronised merge of
results. Therefore, the new communication model uses less energy.

The communication model of TinyDB and TAG [16] is illustrated in Fig. 4(a).
The partial information of a query flows up the network toward the root node.

Efficient Time Triggered Query Processing in Wireless Sensor Networks 399

Query
Id

Message
Header

Table
Data

(Child 1)

Query
Id

Message
Header

Table
Data

(Child k)

Query
Id

Message
Header

Table
Data

(Parent)

Table
Data

(Child 1)
. . . .

Table
Data

(Child k)

Table
Data

(Parent)

Merge
Operator

....

Fig. 5. Merge Operator

In a sensing interval (aka. epoch) a sensor node has four different states: a
sensing and processing state, a sending state, a receiving/listening state, and an
idle state. If the node is an inner node in the tree, the sequence of states is as
follows: (1) receiving state where all the information of the children is gathered,
(2) sensing and processing state, (3) sending state in which the information is
forwarded to the parent node in the tree network and (4) followed by the idle
state. If the node is a leaf node, then the receiving state is omitted because there
are no children attached to the sensor node.

The disadvantage of the TinyDB/TAG model is that the point in time when
the sensing and processing is performed depends on the tree level in the net-
work. Note that for queries that do not have aggregation (e.g. AVG, SUM, etc)
the sensed data is directly forwarded to the root node without aggregation. The
information is “bubbled up” the network tree. In contrast, the SSDQP communi-
cation model de-couples sensing from the aggregation as illustrated in Fig. 4(b).
The task scheduler of a sensor node performs two tasks for a single query: the
first task performs sensing, and the second task performs the aggregation and
the forwarding to the parent node. Both tasks are time-triggered. The second-
task needs to be scheduled such that there is enough time for the children to
provide their aggregated information. Therefore, the point in time of the sec-
ond task depends on the child that needs the longest time span to provide the
information, i.e. the child whose sub-tree has greatest depth. Even for simple
queries without aggregation the partial information of query is merged at all
levels before forwarded to the parents in the network tree.

Partial information collected by several sensor nodes is sent in a packet struc-
ture consisting of three parts: message header, a query identification, and the
actual partial result of a query. The packet structure imposes communication
overhead stemming from the message overhead of the Sun SPOT network as well
as book-keeping information for the query system. We seek for a communication
model that minimises the total number of packets to reduce the communication

400 B. Scholz et al.

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000
Total Bytes Sent

Tree

N
um

be
r

of
 s

en
t d

at
a

TinyDB
SSDQP

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80
Total Packets Transmitted

Tree

N
um

be
r

of
 P

ac
ke

ts

TinyDB
SSDQP

(a) Number of Bytes (b) Number of Packets

1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000

12000

14000
Total Time of Transmission

Tree

T
im

e
T

ak
en

 (
m

s)

TinyDB
SSDQP

(c) Latency

Fig. 6. Comparison with TinyDB communication model

overhead. We achieve this in our model by a synchronised merge operation. This
means that a node merges the information of its own data and the data of its
children before forwarding it to its parent node. If there are n nodes in the net-
work, we need for one epoch exactly n messages whereas TinyDB/TAG forwards
the information without merging the partial information or an on the fly merging
in the network layer is used. The consequence is that in the worst case TinyDB
has O(n2) messages for a single query.

The merge operation of a node is depicted in Figure 5. The disadvantage of
the merge operation is that more memory is needed in a sensor node and that
the latency of a query increases because a time slack for merge operations is to
be taking into account for.

A simulation of both communication models was conducted on 8 network
trees of various depth and density. For the simulation we used the query select
* from sensors. The comparison of both communication models is shown in
Fig. 6. The first bar-chart in Fig. 6(a) shows the total amount of bytes sent
for a single epoch. The information sent in the SSDQP communication model is
significant less because there are significant less packets sent in total (cf. Fig. 6(b)).

Efficient Time Triggered Query Processing in Wireless Sensor Networks 401

The total number of sent bytes is proportional to the energy used for the trans-
mitter of the radio and has a great impact on the longevity of the nodes in
the network. Especially for trees with larger depth the SSDQP communication
model is superior to the communication model of TinyDB because the commu-
nication overhead for a single message packet is large in comparison to the data
length of a sensor reading.

However, establishing well defined merge points for an inner node increases
the latency (cf. 6(c)), i.e. the time span between the begin of an epoch and the
point in time when the base station receives the result of a query. Because the
information is immediately streamed from the nodes, the TinyDB model is more
responsive.

6 Conclusion

In this paper, we have presented our novel distributed query processing sys-
tem (SSDQP). The system is built on the new Sun SPOT platform from Sun
Microsystems. Special considerations in the system design have been paid to pre-
serve energy by minimising the required communication overhead. This paper
has proven experimentally that our time synchronisation optimiser can achieve
the required accuracy while minimising the required energy. An experimental
comparison between our system and TinyDB has shown that our system out-
performs TinyDB in terms of communication overhead.

References

1. Zhao, F., Guibas, L.: Wireless Sensor Networks – An Information Processing
Approach. Elsevier / Morgan-Kaufman, Amsterdam (2004)

2. Culler, D.E., Hong, W.: Introduction. Commun. ACM 47(6) (2004) 30–33
3. Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A., Estrin,

D.: Habitat monitoring with sensor networks. Commun. ACM 47(6) (2004) 34–40
4. Chen, L., Chen, Z., Tu, S.: A realtime dynamic traffic control system based on

wireless sensor network. In: ICPPW ’05: Proceedings of the 2005 International
Conference on Parallel Processing Workshops (ICPPW’05), Washington, DC, USA,
IEEE Computer Society (2005) 258–264

5. Lu, K.C., Wang, Y., Lynch, J.P., Lin, P.Y., Loh, C.H., Law, K.H.: Application of
wireless sensors for structural health monitoring and control. In: Proceedings of
KKCNN Symposium on Civil Engineering, Taiwan (2005)

6. Liu, W., Zhang, Y., Lou, W., Fang, Y.: Managing wireless sensor networks
with supply chain strategy. In: QSHINE ’04: Proceedings of the First Interna-
tional Conference on Quality of Service in Heterogeneous Wired/Wireless Networks
(QSHINE’04), Washington, DC, USA, IEEE Computer Society (2004) 59–66

7. Woo, A., Madden, S., Govindan, R.: Networking support for query processing in
sensor networks. Commun. ACM 47(6) (2004) 47–52

8. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional
query processing system for sensor networks. ACM Trans. Database Syst. 30(1)
(2005) 122–173

402 B. Scholz et al.

9. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed
diffusion for wireless sensor networking. IEEE/ACM Trans. Netw. 11(1) (2003)
2–16

10. Demers, A., Gehrke, J., Rajaraman, R., Trigoni, N., Yao, Y.: The cougar project:
A work in progress report (2003)

11. Simon, D., Cifuentes, C., Cleal, D., Daniels, J., White, D.: Java on the bare metal of
wireless sensor devices: the squawk java virtual machine. In: VEE ’06: Proceedings
of the 2nd international conference on Virtual execution environments, New York,
NY, USA, ACM Press (2006) 78–88

12. Microsystems, S.: (Sun spot world) http://www.sunspotworld.com/.
13. Hill, J., Horton, M., Kling, R., Krishnamurthy, L.: The platforms enabling wireless

sensor networks. Commun. ACM 47(6) (2004) 41–46
14. Yao, Y., Gehrke, J.: The cougar approach to in-network query processing in sensor

networks. SIGMOD Rec. 31(3) (2002) 9–18
15. Gehrke, J., Madden, S.: Query processing in sensor networks. IEEE Pervasive

Computing 03(1) (2004) 46–55
16. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggregation

service for ad-hoc sensor networks. In: OSDI ’02: Proceedings of the 5th symposium
on Operating systems design and implementation, New York, NY, USA, ACM
Press (2002) 131–146

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 403–414, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dependable Geographical Routing on Wireless Sensor
Networks

Yue-Shan Chang1, Ming-Tsung Hsu2, Hsu-Hang Liu3, and Tong-Ying Juang1

1 Dept. of Computer Science and Information Engineering, National Taipei U.
151, University Road, Sanhsia, Taipei County, 237, R.O.C.

{ysc,juang}@mail.ntpu.edu.tw
http://web.ntpu.edu.tw/~ysc/

2 Institute of Information Management, National Taiwan U.
No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan

d94725004@ntu.edu.tw
3 Institute of Information Management, National Taipei U.
151, University Road, Sanhsia, Taipei County, 237, R.O.C.

hsuhang.liu@gmail.com

Abstract. Geographic routing protocols on Wireless Sensor Network (WSN)
had been researched for many years, but they did not concern with the fault
problem. In this paper, we propose an approach to enhance dependability of
existing geographical routing protocols to deal with the fault problem and
consider the routing problem based on the fault map via query-driven models.
For query-driven model, a novel algorithm, called Relay Node Selection
Algorithm (RNSA) is proposed, which selects a few relay nodes as temporary
destinations. Simulation shows that the success rate of data transmission
originated from base station can be raised substantially and the hop count is also
reduced via the selected relay nodes.

1 Introduction

Most applications of WSNs [1] sensors were deployed over harsh environment such
as chemical reactor and battlefield that with high temperature, high noise, and various
interferences, which could incur probably sensor nodes work or communication
improperly. Of course that will raise invalid respond to seek or requester [2]. A fault
estimation model was proposed and based on it to construct fault map [3]. The
principle of the model is that the sensor nodes transmitted the detected event to cluster
head with some extra sensed data, such as outward temperature and noise. While the
desired event sensed by nodes, it transmits the extra sensed data to cluster head. The
cluster head will calculate the fault probability according to the extra sensed data and
send it back to base station. The fault map can be considered as the information about
the location and fault probability of sensor nodes. As the increase of sensed events,
the base station can know the distribution of fault nodes in the network gradually.

The development of geographical routing protocols [4, 5] were expanded in WSNs
since recent advances in small, low-power and inexpensive Global Positioning
System (GPS) receivers and other location services [6, 7]. These routing protocols are

404 Y.-S. Chang et al.

concerned with the distance relation among sensor nodes and the remaining energy of
sensor nodes. However, when the fault nodes are met in the process of routing, they
deal with the problem by retransmitting data. Obviously this behavior is not energy
efficient for WSNs. Furthermore, the fault nodes may send the invalid respond to seek
or requester. For the reasons, the existing routing protocols can not handle the fault
problem. Thus, with the fault information, data retransmission and invalid respond
can be avoided by making decision in advance.

The objective of the paper is to develop the strategies that assist the existing
geographical routing protocols to deal with the fault problem in WSNs. We consider
the routing problem with the fault map via query-driven data delivery models. For
query-driven model, a novel algorithm, called Relay Node Selection Algorithm
(RNSA) is proposed, which represents the fault regions as convex hull [8] and selects
a few of relay nodes as temporary destinations. The advantage of RNSA is low cost,
since the base station only need to add the location information of the relay nodes to
data packets and exploit existing geographical routing protocols to reach the
interesting region. Simulation shows that the success rate of data transmission
originated from base station can be raised substantially and the hop count is also
reduced via the deployment of relay nodes found by RNSA.

The rest of paper is organized as follows. Section II describes the preliminaries of
our research including basic assumption, useful definition, and routing with fault
information. The proposed routing algorithms: RNSA is depicted in Section III and
Section IV shows numerical performance results. Section V reviews the existing
geographical routing protocols in WSNs. Finally, we draw the main conclusion and
future work.

2 Preliminaries

2.1 Basic Assumptions

The communication behaviors among sensor nodes are the key function of the sensor
networks. The sensor nodes route data between the base station and sensor nodes in a
hop-by-hop way by communicating with each other within the communication range
r. All sensor nodes inside the communication range r of node x are considered as
neighbors of x, as shown in Fig. 1. To sum up, the network model is represented as a
unit disk graph (short for UDG) G (V, E), where V is the set of sensor nodes and
E ⊆ V x V is the set of bidirectional communication links between pairs of nodes.

To facilitate the discussion, we make some reasonable assumptions as follows:

1. Sensor nodes are location-aware.
2. Sensor nodes have the location of their neighbors.
3. The deployment of sensor nodes is dense.
4. The generation of fault nodes is with dependency.
5. Sensor nodes have the fault probability of their neighbors.
6. Base station has the fault probability of sensor nodes in the whole network.

For 1 and 2, each node can get the location information of itself via GPS or other
location services and then broadcasts to its neighbors. For 3, each sensor node has at

 Dependable Geographical Routing on Wireless Sensor Networks 405

Base Station

Fig. 1. The network model

least one neighbor. For 4, fault nodes generated by random fault unlikely cause large
range of fault region on the terrain, thus they can be bypassed easily by selecting
another neighbor. For 5 and 6, these assumptions derive from the process and result of
fault map construction.

2.2 Definitions

Before describing proposed approach, we list some definition used in the approach.
The convex hull of a geometric object is the smallest convex set containing that
object. Because of the characteristic of convex polygon, the adjacent fault nodes are
included by minimum number of sensor nodes and redundant paths that get into the
fault region are avoided by representing the fault region as convex hull. For example,
as shown in Fig. 2, due to the routing path have got into the fault region, it may fail
inside the region or increase redundant path. Hence, the computational complexity of
finding relay nodes and the failure rate of routing can be reduced using convex hull.
Convex set and convex hull are defined as follows:

Definition 1. Convex Set: A set S is convex if whenever two points P and Q are
inside S, then the whole line segment PQ is also in S.

Definition 2. Convex Hull: The convex hull of a Convex Set S = {P} is the smallest
2D polygon W that contains S. That is, there is no other polygon L with S ⊂ L ⊆ W.

To define the fault region is the prior assignment before RNSA is introduced. One
may notice that the target needed to be avoided is the fault region, neither fault node
nor fault line, since they can be bypassed easily by selecting another node. To start
with, the fault nodes are decided by whether its fault probability is greater than the
threshold. Next, the communication links among those fault nodes are established.
Lastly, the fault region represented as convex hull is found by containing all the fault
nodes inside the connected graph with cycle. We define the fault/normal node and
fault region as follows:

Definition 3. Fault node: A node x in a sensor network graph G (V, E) is a fault node
if the probability of x > α, where α is the threshold of fault probability.

406 Y.-S. Chang et al.

Fig. 2. A fault region is represented by convex hull

Definition 4. Normal node: A node x in a sensor network graph G (V, E) is a normal
node if the probability of x <= α, where α is the threshold of fault probability.

Definition 5. Fault region: Given a sensor network graph G (V, E), a fault region (the
convex hull in Fig. 3) is represented as convex hull by containing all fault nodes
inside the connected cycle sub-graph Gs (Vs, Es) of G (V, E) that is not included by
the same property of sub-graph, where Vs is the vertex set of fault nodes that are
connected with each other and Es ⊆ Vs x Vs is the edge set that consists of
communication links between any pair of fault nodes in Vs. Besides, any of two
conditions below must be satisfied:

In order to bypass the fault regions, we select a few relay nodes and consider them as
temporary destinations. Data packets replace the location of destination on each relay
node and the path can be navigated to avoid those fault regions. The definitions of
border node and relay node are as follows:

Definition 6. Border node: A node x in a sensor network graph G (V, E) is a border
node if it is on the border of the fault regions.

Definition 7. Relay node: A node x in a sensor network graph G (V, E) is a relay
node if it is outside of all the fault regions and be one of the nearest neighbors among
the border nodes that are on the shortest path found by RNSA.

2.3 Routing with Fault Information

According to our assumptions, the base station knows the fault probability of sensor
nodes in the whole network, thus it finds the path to sensor nodes that locate behind
the fault regions in a centralized way when data source is at base station. Conversely,
since sensor nodes only know the fault probability of its neighbors due to energy
constraint, they find the path to base station or other sensor nodes in a distributed way
when data source is on sensor nodes.

Since the base station knows the fault probability of sensor nodes in the whole
network, how to exploit them to find the routing path and increase the success rate of
routing is our design goal. First of all, a fault region is formed by adjacent fault nodes
and be represented as convex hull. Then considering the scenario below, base station

 Dependable Geographical Routing on Wireless Sensor Networks 407

wants to make queries in an interesting region, so it must find the path to bypass the
fault regions effectively. Although base station has the fault probability of sensor
nodes in the whole network, it may not know the position of normal nodes that have
never sensed interesting events. Therefore, our idea is to find a few relay nodes
around the fault regions and use them as temporary destinations.

In Fig. 3(a), the base station (the large circle in black) wants to query the
interesting region (the large square in black) and the fault region (the convex hull)
must be avoided on routing path. First, the destination of data packets set to the relay
nodes (the middle circles in black). After the packets pass through all relay nodes
orderly, the destination of the packets will be replaced with actual destination (the
central node of the interesting region). Finally, the routing path (the black line) can be
built effectively, since it neither around the fault regions tightly nor get into the fault
regions. Similarly, Fig. 3(b) shows the same process of bypassing three fault regions.
In addition, it is low cost in the process of routing, since we only need to add the
location of the relay nodes to data packets and exploit the existing geographical
routing protocols to reach interesting region. In order to focus on routing problem,
convex hull, fault region, and relay node are defined below and the details of RNSA
are introduced in the next section.

Fig. 3. Relay nodes for bypassing fault regions: the line in black and gray present the routing
path built with relay nodes and without relay nodes respectively. (a). One fault regions (b) three
fault regions.

3 Routing Algorithms

We now describe our algorithms, the Relay Nodes Selection Algorithm (RNSA) is for
query-driven model, and explain how to integrate them with the existing geographical
routing protocols.

3.1 Relay Nodes Selection Algorithm

When there is only one fault region between base station and interesting region, the
relay nodes can be simply found in the upper or lower side of it. However, there are
possibly more than one fault regions due to the harsh environment of sensor networks.

408 Y.-S. Chang et al.

Therefore, the purpose of RNSA is to find the relay nodes among various fault
regions. The steps are shown as Fig. 4.

In the first step, the threshold is set for defining fault nodes, as the black nodes in
Fig. 5(a). In step 2, the fault regions are found by connecting the fault nodes within
the communication range and represented as convex hulls by containing all fault
nodes belong to the connected graph with cycle, as the convex hulls in Fig. 5(b). The
algorithm of Graham Scan [8] is applied to find convex hull here. Step 3 is to find the
first fault region crossed by the line between base station and interesting region, as
shown in Fig. 5(c). However, if there is no fault region between base station and
interesting region, RNSA will be terminated since the path can directly reach
interesting region. In order to optimize the routing path, all possible fault regions
should be considered, thus step 4 is to find the convex hull that includes the first fault
region, base station and interesting region, as shown in Fig. 5(d). Next, it is checked if
the border node of the convex hull is crossed by any fault regions. If it does, finding
the new convex hull that contains the fault regions crossed by the convex hull. It is
repeated until that the border of the convex hull is not crossed by any fault regions.
This is shown in Fig. 5(e). Step 6 is to find all possible paths among the border nodes
that have normal neighbors inside of the minimum convex hull and the paths crossed
by any fault regions should be erased, as the lines in Fig. 5(f). Then the shortest path
can be found using Dijkstra algorithm [9] in step 7, as the bold line in Fig. 5(g).
Eventually, the final step is to find the nearest neighbor of border nodes on the
shortest path as relay nodes, as the large circles in black in Fig. 5(h). The order of
relay nodes is according to the order of the border nodes on the shortest path from
base station to interesting region.

1. Set the threshold for defining fault nodes;
2. Define fault regions and represent them as convex hulls;
3. Find the first fault region crossed by the line between base station and interesting

region;
4. Find the convex hull that includes the fault region, base station and interesting

region;
5. Find the minimum convex hull whose border do not be crossed by any fault

regions;
6. Find all the paths among base station, interesting region and border nodes;
7. Find the shortest path between base station and interesting region;
8. Find the nearest neighbor of the border nodes on the shortest path as relay nodes;

Fig. 4. Steps of RNSA

Then, we analyze the time complexity of RNSA. The time complexity of RNSA is
O(m*nlgn) + O(N2). O(m*nlgn) is for executing step 2, where nlgn is for Graham
Scan, m is the number of fault regions and n is the number of fault nodes. O(N2) is for
executing Dijkstra algorithm in step 7, where N is the number of border nodes.

 Dependable Geographical Routing on Wireless Sensor Networks 409

Fig. 5. Result of RNSA algorithm

//Initially

Relay node list = arrange the relay nodes from base station to interesting region;

Destination node = the first node in the relay node list;

//When sensor nodes receive data packets

If (this senor node is the destination node)

If (there still have relay nodes in the relay nodes list){

Set the next relay node as the destination node;

Forward to next node using the existing geographical routing protocol;

}

Else

Broadcast the data packets to all nodes inside of the interesting region;

Else

Forward to next node using the existing geographical routing protocol;

Fig. 6. Apply the relay nodes to the existing geographical routing protocols

410 Y.-S. Chang et al.

3.2 Routing Protocol Via Relay Nodes

After the executing above steps, the relay nodes are applied as the temporary
destinations and the routing path can be built effectively by integrating with the
existing geographical routing protocols, as the bold line in Fig. 5. The algorithm is
shown in Fig. 6.

4 Simulation

We first introduce the simulation environment includes its parameters. Then the
advantages of our algorithms are presented by comparing with various criteria.

4.1 Simulation Environment

We implement the proposed algorithms to evaluate the performance using Java. The
simulation parameters are listed in Table 1. 1000 sensor nodes are deployed in a 500m
x 500m area and the transmission range of each node is 35m. The base station is
located at (0, 500) and the interesting region along with sensed node are located at
(480, 20). In addition, the position of fault region is generated randomly and the fault
probability of nodes decreases progressively from the center of fault region. For the
effectiveness of the evaluation, the well-known GPSR is chosen as the geographical
routing protocol in our simulation.

Table 1. Parameters used for simulations (the parameters with star will vary for evaluating the
performance)

Network Size 500m x 500m *Number of Nodes 1000

*Communication Range 35m *Number of Fault Regions 4
*Radius of Fault

Regions
60m Location of Base Station (0,500)

Location of Interesting
Region and Sensed Node

(480,20)
Geographical Routing

Protocol
GPSR

4.2 Simulation Result

For judging the effect of bypassing fault regions, the criteria of RNSA are considered
as success rate and hop count and the following metrics are evaluated: (1) number of
fault regions, (2) radius of fault regions, (3) communication range, and (4) density.
Besides the success rate and hop count, correct probability of routing is also
considered as the criteria of the per-node rule, since its goal is to control the
dependability of routing.

In Fig. 7(a), the success rate of GPSR with relay nodes is higher than GPSR about
15 percent even if number of fault regions is increasing. The difference of hop count
presented in Fig. 7(b) is unapparent. This is because the fault regions generated
randomly are not always located close to the shortest path between base station and
interesting region. Furthermore, the hop count is counted only when the routings are

 Dependable Geographical Routing on Wireless Sensor Networks 411

successful simultaneously. Fig. 9 shows the impact of radius of fault regions. The
success rate of GPSR with relay nodes is still superior and the difference of hop count
is raised with the increase in radius of fault regions, as shown in Fig. 8(a) and 8(b)
respectively.

0

20

40

60

80

100

2 4 6 8 10 12 14

Fault Regions

S
u

c
c
es

s
R

a
te

[p
e
rc

e
n

t]

GPSR with RN

GPSR

0

10

20

30

40

50

2 4 6 8 10 12 14

Fault Regions
H

o
p

C
o

u
n

t

GPSR with RN

GPSR

(a) (b)
Fig. 7. The impact of number of fault regions (the success rate and hop count of routing without
fault regions are 99% and 23 respectively). (a) success rate (b) hop count.

The next two metrics will add a new comparable routing path: GPSR without fault
regions. It ignores all fault regions and is referred to the optimal outcome. The impact
of communication range is shown as Fig. 9. The success rate of GPSR with relay
nodes is close to GPSR without fault regions with the increase of communication
range, as shown in Fig. 9(a). The reason is that the routing path could be found easily
when the number of neighbors of sensor nodes is raised. Fig. 9(b) shows that the hop
count of GPSR with relay nodes is between GPSR without fault regions and GPSR.
The same as communication range, the increase of density represents number of
neighbors of sensor nodes is raised in Fig. 10, thus the routing path could be found
easily. The hop count of GPSR with relay nodes is also between GPSR without fault
regions and GPSR.

0

20

40

60

80

100

20 40 60 80 100 120 140

Radius of Fault Regions [meters]

S
u

c
c
es

s
R

a
te

[p
e
rc

e
n

t]

GPSR with RN

GPSR

0

10

20

30

40

50

20 40 60 80 100 120 140

Radius of Fault Regions [meters]

H
o

p
C

o
u

n
t

GPSR with RN

GPSR

(a) (b)

Fig. 8. The impact of radius of fault regions (the success rate and hop count of routing without
fault regions are 99% and 23 respectively). (a) success rate (b) hop count.

412 Y.-S. Chang et al.

(a) (b)

0

20

40

60

80

100

25 30 35 40 45

Communication Range [meters]

S
u

c
c
e
ss

R
a
te

[p
e
rc

e
n

t]

GPSR without FR

GPSR with RN

GPSR

0

10

20

30

40

50

25 30 35 40 45

Communication Range [meters]

H
o

p
C

o
u

n
t

GPSR without FR

GPSR with RN

GPSR

Fig. 9. The impact of communication range. (a) success rate (b) hop count

(a) (b)

0

20

40

60

80

100

400 600 800 1000 1200

nodes

S
u

c
c
e
ss

R
a
te

[p
e
rc

e
n

t]

GPSR without FR

GPSR with RN

GPSR

0

10

20

30

40

50

400 600 800 1000 1200

nodes

H
o

p
C

o
u

n
t

GPSR without FR

GPSR with RN

GPSR

Fig. 10. The impact of density. (a) success rate (b) hop count

To sum up, the simulation result shows that the success rate of the data trans-
mission originated from base station can be raised substantially and the hop count is
also reduced via the deployment of relay nodes.

5 Related Works

Most of the routing protocols for sensor networks require location information for
sensor nodes [11]. Also, it has been shown [12] that routing protocols that do not
exploit geographical location information are not scalable.

Sensor nodes select the next-hop neighbor within its communication range in
various ways. Finn [10] proposed the greedy routing scheme, which selects the closest
neighbor to the destination as next-hop. Compass routing scheme [13] selects the
neighbor that minimizes the angle between the line to the destination and the line to
the neighbors.

Next, we review some geographical routing protocols for WSNs. Greedy perimeter
stateless routing (GPSR) [4] uses the positions of routers and a packet destination to
make packet forwarding decisions and makes greedy forwarding decisions using only
information about a routers’ immediate neighbors. When a packet reaches a region
where greedy forwarding is impossible, the algorithm recovers by routing around the
perimeter of the region. Comparing with GPSR, geographical and energy-aware

 Dependable Geographical Routing on Wireless Sensor Networks 413

routing (GEAR) [5] uses extra energy aware neighbor selection to route a packet
towards the target region. Each node keeps an estimated cost and a learning cost of
reaching the destination through its neighbors. The estimated cost is a combination of
remaining energy and distance to destination. The learned cost is a refinement of the
estimated cost that accounts for routing around holes in the network. This strategy
attempts to balance energy consumption and thereby increase network lifetime.
Variable transmission range protocol (VTRP) [14] allows the transmission range to
increase in various ways. Thus, data propagation exhibits high fault-tolerance by
bypassing obstacles or fault sensor nodes and increases network lifetime since critical
sensors close to the base station are not overused.

6 Conclusions and Future Work

In this paper, we have proposed our algorithms based on the fault map: RNSA is for
query-driven model, and integrated with the existing geographical routing protocols.
The simulation result shows the outperformance of our algorithms. The success rate
of the data transmission originated from base station can be raised substantially and
the hop count is also reduced via the deployment of relay nodes.

The threshold for defining fault nodes is concerned with the dependability and the
success rate of routing. Improper threshold will cause routing with high dependability
but low success rate or high success rate but low dependability. Thus, how to dynamic
adjust the threshold according to the fault situation of network is the first future work.
Similar to the fault nodes, the sensor nodes with low remaining energy may generate
invisible obstacles in the terrain. These blocks areas will multiply and grow as time
goes on due to the energy constraint of sensor nodes. Therefore, the second future
work will consider both the fault probability and remaining energy of sensor nodes.

References

1. Akyildiz, F., Su, W., Sankarasubramaniam, Y., Cayirci E.: Wireless sensor networks: a
survey. Computer Networks 38 (2002) 393-422,.

2. Krishnamachari, B., Iyengar, S.: Distributed bayesian algorithms for fault-tolerant event
region detection in wireless sensor networks. IEEE Transaction on Computers 53 (2004)
241-250.

3. Chang, Y. S., Juang, T. Y., Lo, C. J., Hsu, M. T., Huang, J. H.: Fault estimation and fault
map construction in cluster-based wireless sensor networks. IEEE International
Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, Vol. 2. (2006)
14 – 19.

4. Karp, B., Kung, H. T.: GPSR: Greedy perimeter stateless routing for wireless networks.
6th Annu. Int. Conf. on Mobile Comput. Netw., Boston, MA, (MobiCom 2000), 243–254.

5. Yu, Y., Estrin, D., Govindan, R.: Geographical and energy-aware routing: a recursive data
dissemination protocol for wireless sensor networks. UCLA Computer Science
Department Technical Report, 2001.

6. Ji, X., Zha, H.: Sensor positioning in wireless ad-hoc sensor networks using multidimen-
sional scaling. INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE
Computer and Communications Societies Vol. 4, (2004) 2652 – 2661.

414 Y.-S. Chang et al.

7. Hongyang, C., Ping, D., Yongjun, X., Xiaowei, L.: A robust location algorithm with
biased extended Kalman filtering of TDOA data for wireless sensor networks.
International Conference on Wireless Communications, Networking and Mobile
Computing, Vol. 2, (2005) 883 – 886.

8. O'Rourke, J.: Computational Geometry in C (Second Edition), Cambridge University
Press, 1998.

9. Skiena, S.: Dijkstra Algorithm. §6.1.1 in Implementing Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley,
(1990) 225-227.

10. Finn, G. G.: Routing and addressing problems in large metropolitan scale Internetworks.
ISI Res. Rep. ISU/RR-87-180, (1987).

11. Al-Karaki, J. N., Kamal, A. E.: Routing techniques in wireless sensor networks: a survey.
IEEE Wireless Communications, Vol. 11, No. 6, (2004) 6-28.

12. Jain, R., Puri, A., Sengupta, R.: Geographical routing using partial information for
wireless ad hoc networks. IEEE Personal. Communication, Vol. 8, No. 1, (2001) 48–57.

13. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. 11th
Canadian Conference Computer Geometry, 1999.

14. Boukerche, A., Chatzigiannakis, I., Nikoletseas, S.: A new energy efficient and fault-
tolerant protocol for data propagation in smart dust networks using varying transmission
range. Computer Communications, Vol. 29, No. 4, (2006) 477-489.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 415–424, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Minimization of the Redundant Coverage for
Dense Wireless Sensor Networks

Dingxing Zhang1,2, Ming Xu1, Shulin Wang1, and Boyun Zhang1

1 School of Computer, National University of Defense Technology, Changsha, China
2 Computer Department,

Guangdong Technical College of Water Resources & Electric Engineering, Guangzhou, China
green_cordillera@yahoo.com.cn

Abstract. Density control is a promising method to conserve system energy and
prolonging lifetime of wireless sensor networks. In this paper, we address the
issue of maintaining sensing coverage of surveillance target in large density
wireless sensor networks and present an efficient technique for the selection of
active sensor nodes. First, the At Most k-Coverage Problem (AM k-Coverage)
is defined and modeled as a nonlinear integer programming. Second, Genetic
Algorithm which is a quasi-parallel method to construct set cover is designed to
solve the multi-objective nonlinear integer programming. And later by using
Genetic Algorithm, a central algorithm is designed to organize a sensor network
into coverage sets. Finally, Experimental results show that the proposed
algorithm can construct the coverage sets reliably and reduce the number of
active sensor nodes which is helpful to reduce system energy consumption and
prolong the network lifespan.

Keywords: AM k-Coverage, coverage sets, multi-objective optimization,
genetic algorithm, Pareto-optimal.

1 Introduction

Tiny and low-cost sensor nodes have made possible the applications of a large
number of sensors to accomplish a large sensing task. Since sensor nodes are usually
deployed in the ground where access to the area of the objectives to be monitored is
difficult or dangerous, it is out of the question to replace or recharge the battery
energy. Density control is a promising approach to conserving system energy and
extending lifetime of wireless sensor networks. Thus, the coverage problem poses
another important issue when controlling density.

Most of previous researches on density control focus on dividing the sensor
network into disjoint subsets that every subset completely covers all sensing objects.
In [5], [10], for the individual targets coverage, authors designed dominating set
algorithms. Cardei and Du [3] address maximum disjoint coverage sets problem and
mold the disjoint sets as disjoint coverage sets that every set can completely monitor
all the target points. Therefore, they proposed an efficient method to extend the sensor
network lifetime by dividing the sensors into a maximal number of disjoint coverage
sets. For many sensor network applications, it is preferable to only cover target
objects as full as possible while minimizing energy consumption due to the following

416 D. Zhang et al.

factors. First, since these coverage subsets are in active mode alternately, the coverage
quality can be guaranteed statistically by setting an appropriated subset number even
if few blinds occur in coverage subsets. For dense sensor networks, that is, the
coverage blinds are not static and can be covered by another subset at another time as
long as it is within the sensing range of certain sensor nodes. Second, as the sensing
task always correlates with particular application, to improve the coverage quality in
practice, the redundant target objects often are set when a target is very important.

Some of previous researches on coverage problems focus on constructing a
mathematic model to obtain solution of the problems. Chakrabarty et al [2] adopted
the first ILP (Integer Linear Programming) model to study grid sensing field problems
in which the ILP model contains quadratic constraints. Cardei et al. [4] improved the
network lifetime by further relaxing the constraints of disjoint set covers, i.e., one
node can be in multiple set covers.

In the paper, we limit the upper bound of coverage degree on each target to
guarantee a lower redundancy. Since we do not limit the lower bound of coverage
degree, coverage blinds (i.e., targets are not covered by any sensor nodes in a
coverage subset) may occur when a coverage subset is constructed. In the problem,
we hope that minimal sensor nodes and blinds occur in coverage subsets. To solve
these two problems, one of possible method is to consider the joint optimization on
the minimum size of coverage subset and the number of coverage blinds. Thus, an
Integer Nonlinear Programming model with (n+m) variables and 2m constraints is
presented in this paper.

Due to the multiobjective optimality conditions, the resulting optimization problem
gives rise to a set of optimal solutions, instead of a single optimal solution. In the
parlance of multi-criterion decision-making, multiple optimal solutions are Pareto-
optimal [1]. Taking many other Pareto-optimal solutions in the search space into
account, we can not think that any of them is optimal besides choosing better
solutions from the set of obtained Pareto-optimal solutions according to application
requirements. Let us illustrate this aspect with a two-objective optimal problem
shown in Figure 1. The figure considers f1 and f2 two objectives, both of which are to
be minimized. The point A represents a solution which incurs a near-minimal f2, but is
highly accident-prone. On the other hand, the point E represents a solution which is
near least f2. If both objectives are important goals of design, we cannot really say
whether solution A is better than solution E, or vice versa. One solution is better than
other in one objective, but is worse in the other. In fact, there exist many such
solutions (like solution C) which also belongs to the Pareto-optimal set and one
cannot conclude about an absolute hierarchy of solutions A, B, D, or any other
solution in the set without any further information. All these solutions are known as
Pareto-optimal solutions.

Since GA often deals with a population of points, it can capture multiple Pareto
optimal in the population. Moreover, GA can encode the solution in a chromosome-
like data structure to represent the solution of the problem.

The major contributions of this paper are as follows. First, we propose At Most k
Coverage Problem (AM k-Coverage) to construct the maximal number of cover
sets. The degree of coverage is flexible in this framework. Second, the central
algorithm is proposed to divide the dense the wireless sensor network into coverage
subset based on GA, which is a quasi-parallel method.

 Minimization of the Redundant Coverage for Dense Wireless Sensor Networks 417

Fig. 1. The concept of Pareto-optimal solutions is illustrated

The rest of the paper is organized as follows. In Section 2, we propose the basic
hypothesis and problem definition. Section 3 presents multiobjective optimization
using GA to solve the problem raised in the section 2. Section 4 presents the Central
algorithm based on GA. Detailed results of performance evaluations are presented in
Section 5. Finally in Section 6, we conclude the paper.

2 The Basic Hypothesis and Problem Definition

2.1 Basic Hypothesis and Problem Definition

We consider the wireless sensor network with a large number of sensor nodes which
are randomly deployed are close to the target objects which have all known the
coordinate. These sensor nodes gather data which are sent to base stations (i.e., central
data collector nodes). The sensing data might be processed at the base stations or at
the local sensor nodes. Besides, sensor networks can be assumed as follows: (1) all
the sensor nodes are static and have the same computation capabilities. (2) Each
sensor node has two power states: active and asleep, and energy dissipation is
negligible in the sleeping state. (3) Devices can be time-synchronized so that activity
decisions can occur in rounds. (4) Like most existing algorithms, sensor nodes know
their respective positions since positioning issue has already been addressed [8].

Given a set of sensors, a set of targets and the sensor-target coverage map, we limit
the upper bound of coverage degree on each target to guarantee a lower redundancy. We
give the definition of the At Most k Coverage Problem (AM k-Coverage) as follows:

Definition 1. AM k-Coverage: Given a sensor network with n sensor nodes and a
target set T with m targets, we find a family of coverage sets, such that (1) we
minimize the number of sensor nodes in coverage sets and the coverage blinds, (2)
each target is covered by at most k sensor nodes.

As wireless sensor networks are often deployed randomly by aircrafts, it is difficult
to guarantee uniformly distributing sensor nodes in real-world. Thus, a flexible frame
to construct coverage sets has to be designed. In AM k-Coverage definition, each
target object is covered by at most k sensor nodes while differ from the previous work
in this field [16].

2.2 Multi-objective Integer Programming Formulation

In this section, we present the Multi-objective Integer Programming Formulation for the
AM k-Coverage problem. We are first given a set of n sensor nodes S={s1,s2,… ,sn}

418 D. Zhang et al.

and a set of targets T={ t1,t2,… ,tm }. In addition, a relational matrix C=(cij)n×m between
sensor nodes and targets is given, where cij is a Boolean variable, for i=1…n, j=1…m, if
the target tj is covered by sensor si, then cij=1, otherwise cij=0. Let define the Boolean
variable xk (k=1…n) as follows: xk=1, if the sensor node sk is selected in a coverage set,
otherwise, xk=0. Using the variables above, we were able to formulate the relational
problem.

Definition 2. Total Overlapping Coverage of Single Target (TOC): Let S = {si|
i=1…n} be a wireless sensor network and a target set T with m targets tk (k=1…m),
the Total Overlapping Coverage of the target tj is defined as

1

n

ij ii
c x

=∑ (j=1…m).
In the definition TOC, the term

1

n

ij ii
c x

=∑ is the coverage overlapping of the target tj.
We also define the following Boolean variable yp(p=1…m) which indicates whether
or not target tp is covered by at least active sensor node(yp =0, if target tp is covered by
at least an active sensor node, otherwise, yp =1). Thus, in certain coverage subset, the
total cost of coverage blinds is denoted as

1

m

p pp
v y

=∑ ,where pv is the weigh of the
target point p. According to the above, AM k-Coverage can be formally defined as
follows: Given a sensor network with n sensor nodes and a target set T, we find a
family of sensor nodes to construct a coverage set, to minimize the total cost of
coverage blinds

1

m

p pp
v y

=∑ and the total sensor nodes
1

n

i ii
w x

=∑ in the coverage set,
TOC of each target is at most k, i.e.,

1

n

ij ii
c x k

=
≤∑ , j=1…m, where k is some given

integer. Without loss of generality, we assume that the cost for keeping a node awake
is the same for all sensor nodes. We can further formulate the combinational
optimization problem, AM k-Coverage, as the following multiobject integer
programming problem:

Objective: Minimize ()1 1 2 1

n

n i ii
f x x x w x

=
=∑…

Minimize ()2 1 2 1

m

m j jj
f y y y v y

=
=∑…

Subject to
1

1, 1
n

j ij ii
y c x j m

=
+ ≥ =∑ …

1

0, 1
n

j ij ii
y c x j m

=
= =∑ … (1)

1

n

ij ii
c x k

=
≤∑ , j=1…m

xi,yj∈{0,1}, i=1…n, j=1…m

where iw , kv are respectively the weigh of the sensor node i and the target object k.
The constraint

1
1, 1

n

j ij ii
y c x j m

=
+ ≥ =∑ … and

1
0, 1

n

j ij ii
y c x j m

=
= =∑ … guarantee

that yj =0 is not simultaneous with
1

0
n

ij ii
c x

=
=∑ . That is, if the variable yj ≠0, then

formulate
1

0
n

ij ii
c x

=
=∑ and vice versa. The constraint,

1

n

i iji
x c k

=
≤∑ for all j=1…m,

guarantees that each target is covered by at most k active sensors at the working
duration of each coverage set.

Obviously, there are 3m constraints in the problem (1), of which 2m is linear and m
nonlinear. However, we carefully analyze the constraints

1
1, 1

n

j ij ii
y c x j m

=
+ ≥ =∑ … and

1
0, 1

n

j ij ii
y c x j m

=
= =∑ … , they only indicate a dependent relation between the vector x

and y. That is, if we obtain the solution vector ()1 2x nx x x= … , accordingly, the

solution vector ()1 2y my y y= … can be solved. Thus, we only determine the

 Minimization of the Redundant Coverage for Dense Wireless Sensor Networks 419

vector x first, the vector y then is obtained by applying the constraints

1
1

n

j ij ii
y c x

=
+ ≥∑ and

1
0, 1

n

j ij ii
y c x j m

=
= =∑ … . Moreover, it is not complex to solve

the vector y from x (i.e., if
1

0
n

ij ii
c x

=
=∑ , then yj=1, otherwise yj=0). The constraints

in the problem (1) can be reduced by pre-treating constraints
1

0
n

j ij ii
y c x

=
=∑

and
1

1,, 1
n

j ij ii
y c x j m

=
+ ≥ =∑ … .So the key problem is to find the solution vector

()1 2 nx x x" which is very difficult to obtain its optimal solution. In the next section,

we will apply GA to find the approximately optimal solution.

3 Multi-objective Optimization Using Genetic Algorithms

3.1 Individual Representation and Population Sorting

The first step in designing a genetic algorithm is to devise a suitable representation
scheme. In the paper, we use a n-bit binary string as the chromosome structure, a
value of 1 for the i-th bit implies that sensor node si is in the solution. Figure 2
illustrates a typical example of a chromosome.

Fig. 2. Binary representation of an individual’s chromosome

The paper uses Kalyanmoy Deb.[11] and Srinivas N.[12] proposal to handle the
problem (1) . The last solutions are close to the true optimum solution [11], [13]. In
this method, the population of GA is composed of different Pareto optimal fronts
including unfeasible individuals. Since Pareto optimality defines how to determine the
set of optimal solutions, the main idea of our algorithm is to simultaneously find
multiple Pareto optimal solutions so that decision maker can choose the most
appropriate solution for the current situation. To show our algorithm, we refer to the
following terminologies.

Pareto Dominance: A solution x is said to dominate the other solution y or x is non-
dominated by y, if objective vector u = (f1(x), … , fk(x)) dominates the objective
vector v = (f1(y), … , fk(y)). (denoted by u v≺). i.e., u is partially less than v,
i.e., ∀ i∈{1, …, k}, fi(x) ≤fi(y)∧ ∃ j ∈ {1, … , k}: fj(x)<fj(y). For a constrained
multiobjective optimal problem, we further define that a solution x is said to
constrained-dominate a solution y, if any of the following conditions is true:
(1)Solution x is feasible and solution y is not. (2) Solution x and y are both infeasible,
but solution x has a smaller overall constraint violation. (3) Solutions x and y are
feasible and solution x dominates solution y.

Pareto Optimality: A solution x∈Ω is said to be Pareto optimal with respect to Ω if
and only if there is no y that dominates x. All Pareto optimal solution consists of a
Pareto Optimal Set.

420 D. Zhang et al.

Pareto Front: For a given multiobjective optimal problem F(x) and Pareto optimal
set P*, the Pareto front is defined as: PF*:= {u = F(x) = (f1(x), …, fk(x)) so that x∈P*}.
i.e., a set of Pareto optimal solutions is called the Pareto-optimal front.

In the population, all individuals consist of feasible and unfeasible individuals. We
sort all individuals using non-domination-sort way. First, all these non-dominated
individuals are assumed to compose the first non-dominated individuals. Then,
excluding the first non-dominated individuals temporarily, we process the rest
feasible individuals using the same way to classify the second non-dominated
individuals. The process is continued until all feasible individuals are classified.

However, the literate [14] does not aim at the constrained multiobjective optimal
problems. Moreover, an important issue concerning the use of the binary
representation is that the genetic operators may produce infeasible resulting solutions.
To handle constraints, we hope that unfeasible individuals evolve towards feasibility
guided, and that, feasible individuals have greater probability of selection than
unfeasible individuals. After sorting all feasible individuals using non-domination-
sort way, the same method is applied to sort all unfeasible individuals in the current
population based on overall constraint violation. Thus, all individuals are ascending
sort in the current population. Here, an individual x is unfeasible, if and only if

 () { }1
1 0x

n

ij ii
feasible max c x k , j m

=
= − = ≤∑ … (2)

Further we define the constraint violation of an individual x for the j-th target as
follows:

 1 1
, if 0

(,)=
0, otherwise

n n

ij i ij ii i
j

c x k c x k
violate x t = =

⎧ − − >⎪
⎨
⎪⎩

∑ ∑ (3)

Then an individual x has an overall constraint violations
1

(,)
m

jj
violate x t

=∑ .
Now, we decide each individual rank and the crowding distance corresponding to

their position in the front they belong. All the individuals in the first front are given a
rank of value 1, the second front individuals are assigned rank 2 and so on. After
assigning the rank the crowding distance in each front is calculated based on the
literate [13]. So we will not give its description here.

3.3 Selection, Crossover and Mutation

We use tournament selection technique to generate a new population. Although SBC
is designed to simulate the operation of a single-point binary crossover directly on
real variables, we use (SBX) [14] operator for crossover and polynomial mutation
[14]. To aim at binary variables, we slightly modify the genetic crossover and
mutation operators from the original.

First, a random number μ that distributes uniformly between 0 and 1 is created. The

following probability distribution function is used to create a sample β

 () ()
() ()2

0.5 1 if 0 1

0.5 1 otherwise

x x
p x

x

η

η

η

η − +

⎧ + ≤ ≤⎪= ⎨
+⎪⎩

 (4)

 Minimization of the Redundant Coverage for Dense Wireless Sensor Networks 421

whereη is a given crossover distribution index. Then the sample β is chosen such that

 ()
0

p x dx
β

μ=∫ (5)

After finding β from the above probability distribution, the children solutions c1,c2
are calculated as follows:

() () () ()1 1 2 2 1 20.5 1 1 , 0.5 1 1i i i i i it p p t p pβ β β β⎡ ⎤ ⎡ ⎤= + + − = − + +⎣ ⎦ ⎣ ⎦ (6)

1 2
1 21 , if 1 1 , if 1

,
0, otherwise 0, otherwise

i i
i i

t t
c c

⎧ ⎧≥ ≥
= =⎨ ⎨
⎩ ⎩

(7)

Choose a sampleδ from the following polynomial probability distribution such that
()

0
p x dx

δ
μ=∫ , where ϕ is a given mutation distribution index.

() ()()0.5 1 1p x xϕϕ= + − (8)

After finding δ from the above probability distribution, the children solutions ic are

calculated as follows:

ij ijy p δ= + , 1, if 1

0, otherwise
ij

ij

y
c

≥⎧
= ⎨
⎩

 (9)

To summarize our modified GA for AM k-Coverage, the following steps are used.

Algorithm 1: Genetic Algorithm Overview
1: Given maximal iterative times max_gen, a collection S of sensors, a collection T

of targets and the sensor-target coverage map.
2. Generate an initial population P of size M. every individual is chosen uniformly

at random from the decision space X={0, 1}n.
3. for gen=1 to max_gen
4: Sort the population;
5: Individual selection operation using tournament selection technique

according to the individual fitness;
6. Make use of SBX operator for crossover and polynomial mutation to obtain

offsprings;
7. gen=gen+1;
8. end for
9: return Pareto Optimal Set.

4 Central Algorithm Based on GA

Once the wireless sensor network is deployed, the sensors send their coordination and
cover information to the central node. The central node divides the sensor network
into cover sets by running Algorithm 2 and broadcasts back the sensor schedules.

For a centralized approach, targets must have fixed locations as well as the
deployed sensors to work effectively. When the solution is available, it is transmitted

422 D. Zhang et al.

to each sensor in form of a coverage set index. The index is used as battery
scheduling, that is, a sensor has to be in the sleep mode or in the active mode. Clearly,
the disadvantage of centralized algorithms is that they rely on the network’s ability to
transmit data from every single node to the central node and vice versa. Fortunately,
some work has been already done on this subject so we will not consider it here.

Algorithm 2: Central Algorithm for Dividing Coverage Set Based on Algorithm 1
1: Initialize Cover set index, i.e., cover_index=1；
2: While (S≠Φ) do
3: Call Algorithm 1 to obtain Pareto Optimal Set P={x1…xp}
4: Choose a better subset Ps ={xs1…xsr} from the Pareto Optimal Set P according

to the current application
5: for i=1 to r
6: each xsi determines a coverage set ()cov _S er index
7: ()cov _S S S er index← − .
8: cov _ cov _ 1er index er index← + .
9: 1i i← +
10: End for
11: End while
12: Return {S1…Scover_index}.

The idea of algorithm 2 is like this: Call Algorithm 1 to obtain a Pareto Optimal
Set. Each element in the set denotes a coverage set, for instance, given a sensor
network with 10 nodes, a element X=(1,1,0,0,0,1,0,1,0,0) denotes that s1, s2, s6, s8 are
in the same coverage set. However, a few elements may be in a Pareto Optimal Set,
and we have to choose some suitable elements according to current application. It is
trivial for the approach so we will not consider it here. The process is continued until
all sensor nodes are assigned to at least a coverage set.

 5 Implementations and Experiments

In the section, different case studies are presented to show the efficiency of the
algorithm. Throughout all these experiments, the average results are given over
different problem setting. The deployment problem parameters are randomly
generated using a uniform random generator. In all experiments, the crossover
distribution indexη and mutation distribution index crossoverϕ set 20.

In the first set of experiments, the convergence of Algorithm 1 is tested in the
experiment. We assume that 600 sensor nodes with sensing radius 50m and 100 target
points is randomly located in a 400m ×400m area to form a random distributed map.
We restrict that each target object is covered by at most 5 sensor nodes. The initial
population size is set to 50. We repeated the experiment 50 times with a crossover
probability of 0.9.

Figure 3 shows the efficiency of Algorithm 1 with different iterative times. As
shown in Figure 3, the Pareto front changes towards the Pareto-optimal front. The
experimental results have shown that the algorithm is very robust by searching for the
feasible region and better to maintain a representative sampling of solutions along the
Pareto-optimal surface.

 Minimization of the Redundant Coverage for Dense Wireless Sensor Networks 423

Fig. 3. Comparison of different convergence results is obtained when the number of iterative is
5, and 40 respectively

In the second set of experiments, we consider between 10–50 target points and 90
sensor nodes with a sensing range of 250m randomly distributed in a 500m ×500m
area to form a random distributed map. We restrict that each target object is covered
by at most 2 sensor nodes and set coverage blinds 0.

Figure 4(a) compares the number of coverage sets output by Algorithm 2 and MC-
MIP in [3]. The sensing range of each sensor node in this experiment is 250m. Figure
4(b) shows the comparison of the number of coverage sets output by Algorithm 2 and
MC-MIP in [3]. Here we set the sensing range of each sensor node between 100m and
300m with an increment of 20m. The result shows that the algorithm 2 obtains more
coverage sets than MC-MIP in [3].

(a)

(b)

Fig. 4. Comparison of the number of coverage sets output by Algorithm 2 and MC-MIP

6 Conclusion and Future Works

In this paper we address the issue of constructing a minimal coverage set for a target
set and propose AM k-Coverage for this problem. We also design a method based on
GA to organize a sensor network into coverage sets in parallel. Experimental results
show that the proposed algorithm can construct the coverage sets reliably and reduce
the number of active sensor nodes which is helpful to reduce system energy
consumption and prolong the network lifespan.

424 D. Zhang et al.

However, in large scale sensor networks, the centralized approach obviously
consumes a great deal of energy when it collects and issue the coverage information
from and to every node. As part of our future work, we will design a distributed and
localized algorithm based on the algorithm 2.

References

1. Steuer, R. E.: Multiple criteria optimization: Theory, computation, and application. New
York : Wiley(1986)

2. K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho.: Grid coverage for surveillance and
target location in distributed sensor networks. IEEE Trans. on Comput., 51(12)(2002)
:1448–1453

3. M. Cardei, D.Z. Du: Improving wireless sensor network lifetime through power aware
organization. ACM Wireless Networks (2005), 11 (3)

4. Cardei M, Thai MT, Li Y, Wu W: Energy-efficient target coverage in wireless sensor
networks. in Proceedings of 24th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), Vol. 3 (2005)1976–1984

5. M. Cardei, J. Wu, M. Lu, and M. O. Pervaiz: Maximum network lifetime in wireless
sensor networks with adjustable sensing ranges. Proc. of IEEE International Conference on
Wireless and Mobile Computing, Networking and Communications (WiMob) (2005)

6. F. Dai, and J. Wu, An extended localized algorithm for connected dominating set
formation in ad hoc wireless networks. IEEE Transactions on Parallel and Distributed
Systems Vol. 15, No. 10. (2004) 908–920

7. F. Harary, and T. Haynes: Double domination in graphs. Vol. 55. ARS Combinatoria
(2000) 201–213

8. H. Koubaa and E. Fleury: On the performance of double domination in ad hoc networks.
Proc. of IFIP Medhoc(2000)

9. J. Shaikh, J. Solano, I. Stojmenovic, and J. Wu: New metrics for dominating set based
energy efficient activity scheduling in ad hoc networks. Proc. of the International
Workshop on Wireless Local Networks (WLN) (2003)

10. F. Dai and J. Wu: On constructing k-connected k-dominating set in wireless networks.
Proc. of IPDPS (2005)

11. Kalyanmoy Deb.: An Efficient Constraint Handling Method for GAs. Computer Methods
in Applied Mechanics and Engineering, Vol. 186, No. 2/4(2000)311–338

12. Srinivas N. and Deb K.: Multi-Objective function optimization using non-dominated
sorting genetic algorithms.Evolutionary Computation. 2(3) (1994), 221–248.

13. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan: A Fast Elitist Non-Dominated Sorting
Genetic Algorithm for Multi-Objective Optimization:NSGA-II. in Proceedings of Parallel
Problem Solving from Nature -PPSN VI. Springer (2000)849–858

14. Kalyanmoy Deb and R. B. Agarwal: Simulated Binary Crossover for Continuous Search
Space. Complex Systems (1995) (9)115–148

15. F. Dai and J. Wu: On Constructing K-Connected K-Dominating Set in Wireless Networks.
In Proc. of IEEE IPDPS(2005)

16. Abrams Z, Goel A, Plotkin S.: Set k-cover algorithms for energy efficient monitoring in
wireless sensor networks. In: Ramchandran K, Sztipanovits J, eds. Proc. of the 3rd Int'l
Conf. on Information Processing in Sensor Networks. Berkeley: ACM Press(2004)
424-432

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 425–436, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Improved Way Prediction Policy for Low-Energy
Instruction Caches

Zhou Hongwei, Zhang Chengyi, and Zhang Mingxuan

School of Computer, National University of Defense Technology,
410073, Changsha, Hunan, P.R. China
forrestzhw@hotmail.com,

{chengyizhang, mxzhang}@nudt.edu.cn

Abstract. In this paper, a multi-way way prediction policy (MWWP) with a
two-port Way Predictor (TPWP) is proposed for reducing the dynamic and leak-
age energy in multi-way set associative drowsy I-Cache without dramatic loss of
performance. One port of TPWP is used for predicting the matching way in cur-
rent set, only the predicted way and not all the ways is accessed to reduce the
dynamic energy. The other is used for predicting the matching way in subsequent
set, only the cache line in predicted way is pre-woken up from the drowsy mode
to reduce the leakage energy. Different with the traditional way prediction pol-
icy, the MWWP has the lower performance overhead by selecting multiple ways
speculatively for each access to improve way prediction hit ratio (WPHR). The
simulation and estimation results show that, in a 4-way set-associative drowsy I-
Cache, with 0.98% and 0.4% performance overhead respectively, our proposed
2-way and 3-way way prediction policy with TPWP can reduce 59% and 47% of
energy in I-Cache, and save the 6.1% and 5.4% of the whole processor energy.
The EDP is improved by 4.5% and 4.1% on average.

1 Introduction

Energy dissipation has become the main restriction on microprocessor design because
of the higher density and higher frequency. Especially with the decrease of the tran-
sistor’s dimension, supply voltage and threshold voltage, leakage energy may be
comparable with the dynamic energy in microprocessors. In modern microprocessors,
the large capability caches are integrated in chip to improve the processors’ perform-
ance. They comprise a large portion of chip area and produce large leakage energy.
For instance, 60% of the StrongARM and 30% of Alpha 21264 are devoted to cache
and memory structures [1, 2]. I-Cache affects total energy consumption particularly
due to their high access frequency. For example, ARM920T microprocessor dissi-
pates 25% of its total power in the I-Cache [12].

The main technique to reduce leakage energy in I-Cache is putting those cache
lines which are not accessed recently into low-power mode and recovering them when
necessary [3, 4, 5, 8, 10]. The drowsy cache adopts this technique [5, 10]. The supply
voltage of cache lines in drowsy mode is lower than that in active mode and the con-
tent in cache lines can be kept yet. When a cache line is accessed, the voltage of this

426 H. Zhou, C. Zhang, and M. Zhang

line must be raised from low to high first. A simple policy in drowsy cache is noac-
cess policy [5]. A cache line is put into drowsy mode only if it is not accessed in a
time window (decay interval). PDSR [7] (Periodically Drowsy Speculatively Re-
cover) adopts a set prediction policy in which the cache lines are recovered specula-
tively to hide the waking up latency. During the set indexed by current address is
being accessed, all the ways in the set indexed by next sequential address are pre-
woken up. The dynamic energy in I-Cache is reduced usually by decreasing the un-
necessary accesses in tag or data array for each access. The way prediction [9] is an
effective policy for reducing the dynamic energy by eliminating unnecessary data
array access in multi-way set-associative cache.

In this paper, an improved multi-way way prediction policy with a two-port way
predictor (TPWP) is proposed for more energy saving in I-Cache without dramatic
performance overhead. The cache lines are put into drowsy mode according to the
noaccess policy and recovered (woken up) speculatively by way predictor. Unlike the
traditional policies, way prediction information is used not only for leakage energy
saving but also for dynamic energy saving. The way predictor has two ports which are
accessed at the same time. One is pre-access port for predicting the way that would be
hit in current set to reduce the dynamic energy. Only the predicted way is selected to
be accessed if way prediction is correct. The other port is pre-wakeup port for predict-
ing the matching way that would be accessed in subsequent set. Only one line instead
of the whole set is pre-woken up. The leakage energy is reduced because the cache
lines in other ways are unnecessary to be woken up if way prediction hits. To reduce
the performance overhead, the way prediction hit ratio should be as large as possible.
In our multi-way way prediction policy, multiple ways are selected speculatively to be
accessed in current access and multiple ways are selected to be pre-woken up for
subsequent access.

To evaluate our proposed policy and other policies, we set up an energy and per-
formance estimation model. In this model, not only the normalized energy of I-Cache
but also the normalized energy of whole processor is calculated to evaluate the energy
saving in different policies. For the performance of processor is more sensitive to the
latency of I-Cache, the EDP is also a metric for evaluating the energy efficiency. The
rest of this paper is organized as follows. Section 2 introduces the two-port way pre-
dictor. Section 3 introduces the multi-way way prediction policy with TPWP. Section
4 introduces the energy and performance estimation model and the experiment
framework. The simulation results are analyzed in section 5 and the conclusion and
future work are in section 6.

2 Two-Port Way Predictor

In our proposed policy, a two-port way predictor is used. As current set is being ac-
cessed, the cache line in subsequent set is selected speculatively to be recovered by
pre-wakeup port. Fig.1 shows the difference between the PDSR and our improved
recovery policy for pre-waking up. The current access address is VPCi (Virtual Pro-
gram Counter), and the next access address predicted by Set Predictor is SPVPCi (Set
Predicted Virtual Program Counter). The SETi is the set indexed by VPCi and the
SPred_SETi is the set indexed by SPVPCi. When the SETi is being accessed, all of the

 Improved Way Prediction Policy for Low-Energy Instruction Caches 427

lines in the SPred_SETi are pre-woken up in PDSR policy. In our recovery policy, the
WPred_Way is the way predicted by way predictor. It is generated after the
SPred_SETi is generated by set predictor. Only the cache line in the WPred_Way is
pre-woken up by pre-wakeup port and the other cache lines are still in drowsy mode.
For example, in 1-way way prediction policy with TPWP, only one cache line is pre-
woken up.

Fig. 1. The difference between PDSR and our improved recovery policy for pre-waking up

By the way prediction information from the pre-access port of TPWP, the pre-
dicted way in current set is accessed speculatively. In conventional way prediction
cache [9], the access energy in tag array and in data array are both reduced because
only the predicted tag block and the predicted data block are accessed if way predic-
tion hits. In our improved way prediction policy, to reduce performance overhead
caused by incorrect way prediction, all the tag blocks in the set indexed by current
access address are accessed at the same time and only the data block in predicted way
is accessed speculatively. The reason is that: if way prediction misses, the result of tag
comparison in current access must be acquired as soon as possible to ascertain
whether the desired data block in matching way need to be woken up. In our im-
proved policy, if the desired data block is in active mode, no extra waking up cycle is
incurred. If the desired data block is in drowsy mode, one extra waking up cycle is
needed.

Fig.2 shows the improved 4-way set-associative I-Cache with TPWP. The TPWP
includes a Way Prediction Table (WPT) with two ports and a Way Prediction Deter-
miner (WPD). The WPT contains a two-bit flag for each set. The two-bit flag is used
for speculatively choosing one way from the corresponding set. The WPD determines
the value of each way-prediction flag according to the MRU (most-recently used)
algorithm. The flags in WPT are modified by WPD when cache misses or way predic-
tion misses. The two ports of WPT are used for way prediction. The solid line repre-
sents the way prediction operation by pre-access port. The matching way in current
set indexed by VPC is predicted to be accessed. The broken line represents the way
prediction operation by pre-wakeup port. The matching way in subsequent set in-
dexed by SPVPC is predicted to be woken up. To control the performance overhead,
the tag array is in active mode all the time. The tag arrays and data arrays also need

428 H. Zhou, C. Zhang, and M. Zhang

two ports for two different operations. For high-performance I-Cache, there are two
read ports normally: one is for normal fetch, the other is for pre-fetch. We can use the
pre-fetch port to realize the pre-wakeup operation.

Fig. 2. The 4-way set-associative I-Cache with TPWP

Fig. 3. The access to I-Cache in 1-way way prediction policy with TPWP

Fig.3 shows the access to I-Cache in 1-way way prediction policy with TPWP. As-
suming the fetch width is 4 instructions pre cycle. Fig.3.1 is the case of way predic-
tion hits. In Cycle 0, the access address is PC and set predicted address is PC+4. By
the pre-wakeup port of TPWP, the predicted way for PC+4 is the way 1 and only the
line in this way is pre-woken up. In Cycle1, no branch is taken, so the access address

 Improved Way Prediction Policy for Low-Energy Instruction Caches 429

is just PC+4. The cache line in way1 is accessed speculatively according to the way
prediction information by the pre-access port. The cache line in way1 is matched by
tag comparison, so desired data is acquired in this cycle. The latency of waking up is
hidden. Fig.3.2 and Fig.3.3 show the cases of way prediction misses. InFig.3.2,
though the cache line in way1 has been pre-woken up in Cycle 0 and accessed specu-
latively in Cycle 1, the cache line in way2 is matched. If the matched line is in active
mode, it can be accessed in Cycle 2 to acquire desired data. Only one-cycle extra
latency is incurred. As shown in Fig.3.3, if the matched line is in drowsy mode, then it
should be woken up first in Cycle 2 and accessed in Cycle 3. There is a two-cycle
extra latency.

3 Multi-way Way Prediction Policy with TPWP

In traditional way prediction cache [9], only one predicted way is accessed specula-
tively. The way prediction hit ratio will be decreased with the associativity of cache
increase. The performance overhead is affected by the WPHR. To reduce the loss of
performance in way prediction policy, the way prediction hit ratio should be as large
as possible. So, we improve our proposed 1-way way prediction policy with TPWP.
The multi-way way prediction policy with TPWP is proposed. Multiple ways in one
set are selected speculatively at the same time for each cache access. For example, in
2-way way prediction policy with TPWP, the WPT contains a pair of two-bit flag for
each set, as shown in Fig.4. These paired flags indicate the first and secondary most
recently used way according to MRU policy. For each access, two ways in the set
indexed by VPC are selected speculatively to be accessed by two pre-access control-
lers. At the same time, two cache lines in the set indexed by SPVPC are pre-woken up
by two pre-wakeup controllers. Each controller sends the wakeup signals or the access

Fig. 4. The 4-way set-associative I-Cache with 2-way way prediction policy

430 H. Zhou, C. Zhang, and M. Zhang

signals to tag and data array according to the way prediction information from corre-
sponding Way Prediction Flag in Way Prediction Table. More two-bit flags are
needed if more ways are predicted concurrently. The PDSR policy is a particular case
of MWWP. All cache lines in one set are predicted, just like a full-way way prediction
policy.

4 Methodology

This section describes the energy and performance estimation model and our simula-
tion environment.

4.1 Energy and Performance Estimation Model

The base model is a conventional cache that does not perform energy control. Assum-
ing the average proportion between energy of I-Cache (Eicache) and energy of whole
processor (E) isα . The energy of processor except I-Cache is Eelse. Ed and Es are the
baseline dynamic energy and leakage energy respectively, and E′d and E′s are the
corresponding dynamic and leakage energy with energy controlling policy. The ratio
of dynamic energy to leakage energy in Eicache and Eelse are n1 and n2 respectively. The
ratio of energy in tag array (Eicache_tag) to data array (Eicache_data) is m. Then,

_ _ 1 _ _ 2 _ _
/ , / / /, ,

icache d icache s icache d else s else icache tag icache data
E E E E n E E n E E mα= = = =

IPC' and IPC are the number of instructions committed per-cycle with and without
energy controlling policy. The program execution time is T′ or T when energy con-
trolling policy is used or not. The normalized execution time to base model is s and
can be calculated as following formula:

' '/ /s T T IPC IPC= = (1)

eactive and edrowsy are the leakage energy of one bit memory unit during one cycle in
active mode and in drowsy mode respectively and edrowsy are q times of eactive. The
proportion between the number of cache lines in drowsy mode and the number of all
cache lines is Rturnoff. Ndata and Ntag are the number of bits in all tag array and data
array in I-Cache. In data array of I-Cache without energy controlling policy, the leak-
age energy is active datae N T . When energy control policy is used, the leakage energy

consumed by drowsy data blocks is '
drowsy turnoff datae R N T and the leakage energy con-

sumed by active data blocks is '(1)active turnoff datae R N T− . The energy caused by mode

switching between the drowsy and active mode is negligible. Formula (2) shows the
normalized leakage to base model in data array of I-Cache. Tag array of I-Cache is
active at all the time in our proposed policy. Formula (3) shows the leakage energy
consumed by active tag blocks is increased due to longer execution time. The normal-
ized leakage energy to base model in I-Cache is μ and calculated as shown in for-

mula (4).

 Improved Way Prediction Policy for Low-Energy Instruction Caches 431

''
_ _

_ _

(1)
(1)

turnoff active data turnoff drowsy datas icache data
turnoff turnoff

s icache data active data

R e N R e N TE
R R q s

E e N T

⎡ ⎤− +⎣ ⎦ ⎡ ⎤= = − +⎣ ⎦

(2)

' '
_ _

_ _

s icache tag active tag

s icache tag active tag

E e N T
s

E e N T
= = (3)

' ' '
_ _ _ _ _

_ _ _ _ _

(1)

1
s icache s icache tag s icache data turnoff turnoff

s icache d icache tag s icache data

E E E m R R q
s

E E E m
μ

+ + − +⎡ ⎤
= = = ⎢ ⎥+ +⎣ ⎦

 (4)

Nway_pred is the number of ways predicted in one cache access. The cache associativ-
ity is Nassoc, the cache hit ratio is CHR and the way prediction hit ratio is WPHR. In
our proposed policy, except one access to the data block in the predicted way, one
extra access to the data block in matched way is needed when cache hits but way
prediction misses. All tag blocks in current accessed set are accessed at the same time.
The normalized dynamic energy to base model to I-Cache is v and can be calculated
as formula (5) shows.

' ' '
_ _ _ _ _ _

_ _ _ _ _

(1)

(1)
d icache d icache tag d icache data assoc way pred

d icache d icache tag d icache data assoc

E E E N m N CHR WPHR

E E E N m
ν

+ + + −
= = =

+ +
 (5)

The change in the number of instructions issued can be ignored, dynamic energy in
Eelse is regard changeless, so E′d_else≈Ed_else=n2Es_else. The leakage energy in Eelse is
increased as the increasing execution time, so E′s_else=sEs_else. The normalized energy
of I-Cache is γ and the normalized energy of whole processor is η as formula (6) and
(7) show respectively.

' ''
_ _ 1

_ _ 1(1)
d icache s icacheicache

icache d icache s icache

E EE n

E E E n

ν μγ
+ += = =
+ +

 (6)

()' ' ''
_ _ 2 _ '

/
d else s else icache s else icache

else icache icache

E E E n s E EE

E E E E
η

α
+ + + +

= = =
+

 (7)

For ()_ _ 1 /d else s else icacheE E Eα α+ = − and _ 2 _d else s elseE n E= ,

So: ()_ 21 / (1)s else icacheE n Eα α= − +⎡ ⎤⎣ ⎦

η is calculated finally as formula (8) shows. The EDP is a metric to evaluate the

energy efficiency in different policies. Formula (9) shows the normalized of EDP to
base model in whole processor.

()()
()

2

2

1

1

n s

n

α
η γα

+ −
= +

+
 (8)

' '

'

EDP E IPC
s

EDP E IPC
η= =i (9)

432 H. Zhou, C. Zhang, and M. Zhang

4.2 Simulation Environment

We extended Hotleakage [6] simulator to estimate energy and performance. As
shown in Table 1, the processor parameters model a high-performance microproces-
sor similar to Alpha 21264 [1]. The energy parameters are based on the 70nm/0.9V
technology. Benchmarks are chosen from SPEC CPU2000. Each benchmark is first
fast-forwarded a billion instructions and then simulated the 300 millions instructions.
We selected three traditional policies (noaccess, PDSR and the simple way prediction
(simple WP, only dynamic energy is reduced)) to compare with our proposed multi-
way way prediction policy with TPWP. The 1-way, 2-way, 3-way way prediction
policy with TPWP (1-way WP, 2-way WP, 3-way WP) are simulated.

Table 1. Architecture/Circuit parameters

Processor parameters
Fetch/Decode/Issue/Commit width 4 instructions/cycle
L1 I-Cache 64KB, 4-way, 32B block,

1 cycle latency
The switch latency between different mode 1 cycle latency
Energy parameters
Process Technology 70nm
Temperature 353K
Supply Voltage 0.9V in active mode;

0.3V in drowsy mode
Threshold Voltage NMOS: 0.1902V; PMOS: 0.2130V
Leakage energy of I-Cache in drowsy mode 0.019142 J
Leakage energy of I-Cache in active mode 0.441827 J

5 Simulation Results

Assuming the decay interval is 32K cycles and the average proportion of I-Cache’s
energy to whole processor’s energy is 10% (α =10%). The parameter m and q can

be calculated according to the processor parameters and energy parameters: m =0.14,
q =0.04. According to the prediction from ITRS [11], the leakage energy will be

equal to dynamic energy in microprocessors when the process technology is 70nm, so

we assumes the 1n = 2n =1. Fig.5 shows the WPHR in simple way prediction policy

and with our proposed multi-way way prediction policy. When the number of the
ways predicted in each access increases, the WPHR is improved. The 3-way WP
policy has the highest WPHR. The WPHR in gcc, gzip, twolf and mesa are smaller
than others especially in 1-way WP policy. Fig.6 shows the normalized execution
time in different policies. The performance overhead in gcc, gzip, twolf and mesa are
higher for less WPHR in these benchmarks. The performance overhead in 1-way WP
policy is the worst, about 2.36% on average. The 2-way and 3-way WP policies have
the slight loss of performance about 0.98% and 0.4%.

 Improved Way Prediction Policy for Low-Energy Instruction Caches 433

88

90

92

94

96

98

100

gcc gzip mcf twolf bzip2 art equake ammp mesa averge

W
PH

R
(%

)

Simple WP 1-way WP 2-way WP 3-way WP

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

gcc gzip mcf twolf bzip2 art equake ammp mesa averge

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Noaccess PDSR Simple WP 1-way WP 2-way WP 3-way WP

 Fig. 5. The way prediction hit ratio Fig. 6. Normalized execution time

Fig.7 shows the normalized leakage and dynamic energy of I-Cache with different
policies. The histogram presents the normalized leakage energy and the line chart
presents the normalized dynamic energy. More leakage energy is saved in our pro-
posed policy than in PDSR policy because fewer cache lines are pre-woken up. The
noaccess policy has the most leakage energy saving because no cache line is pre-
woken up. The simple way prediction policy has a negative leakage energy saving
because the execution time of each benchmark is increased. The dynamic energy of I-
Cache with Simple WP, 1-way WP, 2-way WP and 3-way WP policies is only 26.6%,
31.7%, 54.32% and 77.12% of dynamic energy in normal I-Cache respectively. No
dynamic energy is saved in the noaccess and PDSR policy. The simple WP policy has
the lowest dynamic energy of I-Cache because the access energy to tag blocks is also
saved when way prediction hits.

0

0.2

0.4

0.6

0.8

1

1.2

gcc gzip mcf twolf bzip2 art equake ammp mesa averge

N
or

m
al

iz
ed

 le
ak

ag
e

en
er

gy
 o

f I
-C

ac
he

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 d
yn

am
ic

 e
rn

er
gy

 o
f I

-C
ac

he

noaccess PDSR Simple WP 1-way WP
2-way WP 3-way WP Noaccess PDSR
Simple WP 1-way WP 2-way WP 3-way WP

Fig. 7. Normalized leakage and dynamic energy of I-Cache

As shown in Fig.8, the best policy for total energy saving in I-Cache is our proposed
multi-way way prediction policy. The 70% of energy in I-Cache is reduced on average
in 1-way WP. The 59% and 47% of energy in I-Cache are reduced in 2-way WP and 3-
way WP. Fig.9 shows the normalized energy of whole processor with different policies.
Our proposed policy can reduce the energy of whole processor obviously for most

434 H. Zhou, C. Zhang, and M. Zhang

benchmarks except the gcc and mesa. In gcc and mesa, the energy saved in our pro-
posed policy is counteracted partly by the energy increased due to extra execution time.
The energy in whole processor is reduced by 6% on average in 1-way WP. The 5.4%
and 4.5% of energy in whole processor is reduced in 2-way WP and the 3-way WP
respectively. Our proposed policies are better than traditional policies for energy saving.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

gcc gzip mcf twolf bzip2 art equake ammp mesa averge

N
or

m
al

iz
ed

 to
ta

l e
ne

rg
y

of
 I-

C
ac

he

Noaccess PDSR Simple WP 1-way WP 2-way WP 3-way WP

Fig. 8. Normalized total energy of I-Cache

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

gcc gzip mcf twolf bzip2 art equake ammp mesa averge

N
or

m
al

iz
ed

 e
ne

rg
y

of
 w

ho
le

 p
ro

ce
ss

or

Noaccess PDSR Simple WP 1-way WP 2-way WP 3-way WP

Fig. 9. Normalized energy of whole processor

Then we change the decay interval from 32K to 4K cycles. As shown in Fig.10 and
Fig.11, the normalized energy of whole processor and the EDP are both increased
with the increasing execution time. The noaccess policy is more sensitive to the
change of decay interval and the PDSR policy is less sensitive. Our proposed policy is
intervenient and the 32K is the optimum decay interval. With the optimum decay
interval, in 1-way WP policy, 6% of energy of whole processor is reduced and the
EDP is improved by 3.7%. The 5.4% and 4.5% of energy of whole processor is saved
in 2-way WP and 3-way WP policy. The EDP is improved by 4.5% and 4.1% respec-
tively. The energy saving and EDP improvement in our proposed policy with 32K or
16K decay interval are both better than that in traditional policies. When the decay
interval is less than 4K, in our proposed policies especially in 1-way WP, the EDP
improved by energy saving is almost counteracted by the EDP worsened by increas-
ing execution time.

0.93

0.94

0.95

0.96

0.97

0.98

32K 16K 8K 4K

N
or

m
al

iz
ed

 e
ne

rg
y

of
 W

ho
le

 P
ro

ce
ss

or

0.96

0.98

1

1.02

1.04

1.06

1.08

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Noaccess PDSR Simple WP 1-way WP
2-way WP 3-way WP Noaccess PDSR
Simple WP 1-way WP 2-way WP 3-way WP

Fig. 10. Normalized Energy of Processor and
Normalized Execution Time with different
decay interval (α =10%)

0.9

0.95

1

1.05

1.1

32K 16K 8K 4K

N
or

m
al

iz
ed

 E
D

P

noaccess PDSR simple WP
1-way WP 2-way WP 3-way WP

Fig. 11. Normalized EDP(α =10%)

 Improved Way Prediction Policy for Low-Energy Instruction Caches 435

0.88

0.9

0.92

0.94

0.96

0.98

32K 16K 8K 4K

N
or

m
al

iz
ed

 e
ne

rg
y

of
 w

ho
le

 p
ro

ce
ss

or

0.96

0.98

1

1.02

1.04

1.06

1.08

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Noaccess PDSR simple WP 1-way WP
2-way WP 3-way WP Noaccess PDSR
simple WP 1-way WP 2-way WP 3-way WP

Fig. 12. Normalized Energy of Processor and
Normalized Execution Time with different
decay interval (α =15%)

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

32K 16K 8K 4K

N
or

m
al

iz
ed

 E
D

P

Noaccess PDSR simple WP
1-way WP 2-way WP 3-way WP

Fig. 13. Normalized EDP(α =15%)

As Fig.12 and Fig.13 shown, if α is increased from 10% to 15%, the energy sav-
ing of whole processor and the EDP are both improved. The 1-way WP policy has the
most obvious energy saving which is 9.6% and the 2-way WP policy has the optimum
EDP which is improved by 7.5% at most. With the proportion of I-Cache’s energy to
whole processor’s energy increases, our proposed multi-way way prediction policy
will be more effective than others.

6 Conclusions

This work presents a multi-way way prediction policy with a two-port way predictor
to reduce the energy consumption in instruction cache without dramatic loss of per-
formance. An energy and performance estimation model is also set up for evaluating
our proposed policy and other policies. The multi-way way prediction policy with
TPWP can reduce the energy consumption of I-Cache obviously and save the energy
of whole processor effectively. The 1-way way prediction policy with TPWP is very
suitable to be used in the domain that low energy is principal such as embedded proc-
essors design. With 2.36% performance overhead on average, the 70% of energy in
I-Cache is reduced and the 6% of energy of whole processor is saved. The EDP is
improved by 3.7%. If the performance is the most important factor such as for high-
performance processors design, the 3-way way prediction policy with TPWP is a
good choice. With only 0.4% performance overhead on average, the 47% of energy in
I-Cache is reduced and the 5.4% of energy of whole processor is saved. The EDP is
improved by 4.1%. In future work, branch information will be used in TPWP to re-
duce the performance loss caused by taken branch instructions.

References

1. Gowan M K, Biro L L and Jackson D B: Power Considerations in the Design of the Alpha
21264 Microprocessor, DAC’98, Los Alamitos, California, U.S. (1998) 26-31

2. S. Manne, A. Klauser, and D. Grunwald: Pipeline Gating: Speculation Control for Energy
Reduction, Proc. Of Int. Symp. on Computer Architecture (1998) 132-141

436 H. Zhou, C. Zhang, and M. Zhang

3. M. D. Powell et al.: Gated-Vdd: A Circuit Technique to Reduce Leakage in Deep- Submi-
cron Cache Memories, ISLPED2000, (2000) 90-95

4. S. Kaxiras, Z. Hu and M. Martonosi: Cache Decay: Exploiting Generational Behavior to
Reduce Cache Leakage Power. ISCA2001 (2001) 240-251

5. N. S. Kim, K Flautner, D. Blaauw, and T. Mudge: Circuit and Microarchitectural Tech-
niques for Reducing CacheLeakage Power, IEEE Transaction on VLSI Systems, vol.12,
no. 2 (2004) 167-184

6. Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron and M. R. Stan.: Hotleakage: An
Architectural, Temperature-aware Model of Subthreshold and Gate Leakage, Tech. Report
CS-2003-05, Department of Computer Sciences, University of Virginia (2003)

7. Chengyi Zhang, Hongwei Zhou, Minxuan Zhang, and Zuocheng Xing: An architectural
leakage power reduction method for instruction cache in ultra deep submicron microproc-
essors, The 11th Asia-Pacific Conference, ACSAC (2006) 588-594

8. Sung Woo Chung and Kevin Skadron: Using branch prediction information for near-
optimal I-Cache leakage, The 11th Asia-Pacific Conference, ACSAC (2006) 24-37

9. Inoue, K., Ishihara, T., and Murakami, K.: Way-predicting Set-Associative Cache for High
performance and Low Energy Consumption, Proc. Of 1999 International Symposium on
low power Electronics and Design (ISLPED1999) (1999) 273-275

10. K. Flautner, N.S.Kim, S.Martin, D.Blaauw, and T.Mudge: Drowsy Caches: Simple Tech-
niques for Reducing Leakage Power. ISCA2002 (2002) 147-157

11. SIA: International Technology Roadmap for Semiconductors (2004)
12. S. Segars: Low Power Design Techniques for Microprocessors, ISSCC Tutorial, (2001)

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 437–444, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Sleep Nodes Scheduling in Cluster-Based
Heterogeneous Sensor Networks Using AHP

Xiaoling Wu, Jinsung Cho∗, Brian J. d'Auriol, and Sungyoung Lee

Department of Computer Engineering, Kyung Hee University, Korea
{xiaoling,dauriol,sylee}@oslab.khu.ac.kr,

chojs@khu.ac.kr

Abstract. Wireless sensor networks (WSNs) are comprised of energy con-
strained nodes. This limitation has led to the crucial need for energy-aware pro-
tocols to produce an efficient network. The concept of heterogeneity has been
introduced in a WSN by deploying a large number of low power sensor nodes
and a small number of more powerful nodes to serve as cluster heads (CHs).
We propose a sleep scheduling scheme for balancing energy consumption rates
in low power sensor nodes based on Analytical Hierarchy Process (AHP). We
consider three factors contributing to the optimal nodes scheduling decision and
they are the distance to CH, residual energy, and sensing coverage overlapping,
respectively. We evaluate the efficiency of our proposed scheme in terms of
important network parameters and compare with traditional random sleep
scheduling in heterogeneous sensor networks. The proposed scheme is observed
to improve network lifetime and conserve energy without compromising de-
sired coverage.

Keywords: Sensor networks, AHP, sleep scheduling, lifetime, coverage.

1 Introduction

Wireless sensor networks (WSNs) are expected to be widely employed in various
applications such as medical care, military and environmental monitoring. A typical
WSN could contain thousands of small sensors. If these sensors are managed by the
base station directly, communication overhead and management complexity could
make such a network less energy-efficient. Clustering has been proposed by research-
ers to group a number of sensors, usually within a geographic neighborhood, to form
a cluster. In such a cluster based topology, sensors can be managed locally by a clus-
ter head (CH). Thus the concept of heterogeneity has been introduced in a WSN by
deploying a large number of low power sensor nodes and a small number of more
powerful nodes to serve as CHs.

The sleeping technique has been used to conserve energy of battery powered sen-
sors. Rotating active and inactive sensors in the cluster, some of which provide re-
dundant data, is an intelligent way to manage sensors to extend its network lifetime.

∗ Corresponding author.

438 X. Wu et al.

When a sensor node is put into the sleep state, it is completely shut down, leaving
only one extremely low power timer on to wake itself up at a later time. This leads to
the following sleep scheduling problem: How does the CH select which sensor nodes
to be put into sleep, without compromising the sensing coverage of the cluster?

Sleep scheduling which aims to conserve the energy of the sensor nodes has been
studied in the literature. In [1], nodes are allowed to sleep based on routing informa-
tion, and nodes switch between sleep and active state based on the traffic of the net-
work. In [2], a few nodes are selected as coordinators which would then decide the
sleep/awake schedule of the other nodes in the network. In [3] nodes are randomly
selected to go to the sleep mode and in [4] a linear distance based scheduling has been
used to define the sleep schedule of the nodes in a cluster based homogenous network.
In [5], the authors release the single hop communication assumption of [4] and intro-
duce a hop-based sleeping scheduling algorithm in a circular sensor network divided
by a number of levels. The overall result of these sleep schedules is a considerable
reduction in the energy consumption of WSNs.

In this paper, we also investigate this problem and propose a sleeping scheduling
scheme based on Analytical Hierarchy Process (AHP). Three factors contributing to
the optimal nodes scheduling decision are considered and they are 1) distance to CH,
2) residual energy, and 3) sensing coverage overlapping, respectively. We evaluate
the efficiency of our proposed scheme in terms of energy consumption, lifetime and
coverage in heterogeneous sensor networks (HSNs).

The rest of the paper is organized as follows. We define the basic assumptions and
state the problems in Section 2. The third section presents our sleep nodes scheduling
scheme. Section 4 evaluates and analyzes the performance of the proposed method.
Finally, we draw the conclusion in Section 5.

2 Problem Statements

We aim to enhance the efficiency of the given sensor network by enabling a balanced
usage of energy across the nodes and an improved network lifetime without deterio-
rating network coverage. Fig. 1 is the illustration of cluster based HSN topology in
which our proposed node scheduling scheme will be designed. We focus on energy
consumption at the cluster level.

A. Assumptions

We consider the sleep node scheduling problem under several assumptions:

– The target sensor network is heterogeneous with a large number of low power
nodes to serve as member nodes and a small number of more powerful nodes to
serve as CHs;

– A large number of sensor nodes are deployed over a sensing field, such that at
least some sensor nodes can be put into the sleep state without degrading the
sensing coverage of the network;

– The CHs can communicate directly with sink and vice- versa. Furthermore, the
CH can reach all the sensor members in the cluster in one hop and vice-versa;

 Sleep Nodes Scheduling in Cluster-Based HSNs Using AHP 439

Base station

member node

CH

Fig. 1. Cluster based heterogeneous sensor network topology

B. Network Parameters and Energy Model

The user-defined parameters used in defining the network are listed below:

1) Fraction of sleeping nodes in a given round, ‘r’: This is the fraction of the total
number of nodes in the network that are selected to sleep in each round.

2) Threshold limit, ‘ ’: This denotes the fraction of nodes in the network, which,
when dead, determines the lifetime of the network.

We adopt the same radio model as stated in [6] with εfs=10pJ/bit/m2 as amplifier
constant, Eelec=50nJ/bit as the energy being dissipated to run the transmitter or re-
ceiver circuitry. It is assumed that the transmission between the nodes and their CHs
follows a second-order power loss model. The energy cost of transmission for com-
mon sensor nodes at distance d from its CH in transmitting an l-bit data to the CH is
calculated as:

2),(dllEdlE fselecT ε+= (1)

C. Objectives

To enable load balancing while ensure desired coverage, we put some appropriate
nodes to sleep in every cluster. In real WSNs, three factors influence the load balance
and coverage directly, that is:

1) Distance to CH: Distance of a node to its CH. It can be approximated by the signal
strength of radio transmission. The node with longest distance to the CH is pre-
ferred to be put into sleep.

2) Residual energy: Remaining battery of the sensor node. The initial energy is pre-
defined. In addition, the energy consumption for transmission is calculated using
Eq. (1) by CH.

3) Sensing coverage overlapping: Overlapped sensing range of a node by neighbor
nodes. The node with the largest overlapping degree, i.e., the node with higher re-
dundancy, is desired to be selected as sleeping node.

The optimized sleep nodes scheduling process is a multiple factors optimization prob-
lem and can be achieved using AHP which is introduced in the next section.

440 X. Wu et al.

3 Sleep Nodes Scheduling Scheme by AHP

The Analytical Hierarchy Process (AHP) is a multiple criteria decision-making
method which decomposes a complex problem into a hierarchy of simple sub prob-
lems (or factors), synthesizes their importance to the problem, and finds the best solu-
tion. In this paper, AHP is used to determine the nodes which are eligible to sleep in
one cluster. It is carried out in three steps:

1) Collect information and formulate the sleeping nodes selection problem as a deci-
sion hierarchy of independent factors.
2) Calculate the relative local weights of decision factors or alternatives of each level.
3) Synthesize the above results to achieve the overall weight of each alternative nodes
and choose the one with largest weight as the eligible sleeping node.

A. Structuring Hierarchy

The goal of the decision “select a node eligible to sleep” is at the top level of the hier-
archy as shown in Fig. 2. The next level consists of the decision factors which are
called criteria for this goal. At the bottom level there exist the m alternative sensor
nodes to be evaluated.

Select a node eligible to sleep

Distance to CH Residual energy
Sensing coverage

overlapping

Node 1
Node 2

.

.

.
Node n

Node 1
Node 2

.

.

.
Node n

Node 1
Node 2

.

.

.
Node n

Fig. 2. AHP hierarchy for sleeping nodes selection

B. Calculating Local Weights

Local weights consist of two parts: the weight of each decision factor to the goal and
the weight of each nominee to each factor. Both of them are calculated with the same
procedure. Taking the former as an example, we describe the procedure as the follow-
ing three steps.

1) Making Pairwise Comparison

The evaluation matrices are built up through pairwise comparing each decision factor
under the topmost goal. The comparison results are implemented by asking the

 Sleep Nodes Scheduling in Cluster-Based HSNs Using AHP 441

questions: “Which is more important? How much?” and they may be presented in
square matrix A as

()
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

==
×

nnnn

n

n

nnij

aaa

aaa

aaa

aA

21

22221

11211

,
(2)

where aij denotes the ratio of the ith factor weight to the jth factor weight, and n is the
number of factors. The fundamental 1 to 9 scale can be used to rank the judgments as
shown in Table 1.

Table 1. A fundamental scale of 1 to 9

Number Rating Verbal Judgment of Preferences
1 Equally
3 Moderately
5 Strongly
7 Very
9 Extremely

2, 4, 6, 8 indicate the medium value of above pairwise comparison.

2) Calculating Weight Vector

For the given matrix A in Eq. (2), we calculate its eigenvalue equation written as
AW = λmaxW, where W is non-zero vector called eigenvector, and λmax is a scalar
called eigenvalue. After standardizing the eigenvector W, we regard the vector ele-
ment of W as the local weight of each decision factor approximately, denoted as:

{ }n
T
j www ,,, 21=w (3)

3) Checking for Consistency

If every element in Eq. (2) satisfies the equations aij=1/aji and aik⋅akj=aij, the matrix A
is the consistency matrix. The evaluation matrices are often not perfectly consistent
due to people’s random judgments. These judgment errors can be detected by a con-
sistency ratio (CR), which is defined as the ratio of consistency index (CI) to random
index (RI). CI can be achieved by

CI = (λmax −n)/(n−1), (4)

where

∑
=

=
n

i
ii WAWn

1
max /)()/1(λ . (5)

The RI is given in Table 2 [7]. When CR ≤ 0.1 , the judgment errors are tolerable
and the weight coefficients of the global weight matrix Wj are the weights of decision
factor under the topmost goal. Otherwise, the pairwise comparisons should be ad-
justed until matrix A satisfies the consistency check.

442 X. Wu et al.

Table 2. Random index

n 1 2 3 4 5 6 7 8 9 10 11

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51

C. Calculating Global Weights

From above steps, we can obtain not merely the weights of decision factors towards
the topmost goal from Wj but also the weights of alternative nodes towards each fac-
tor. If there are eight candidate nodes in each cluster, all the eight weight matrixes of
alternatives under three factors construct a 8×3 matrix, denoted as

jni
W /

, i=1, 2, … 8,

j=1, 2, 3. The global weight of each senor node can be achieved through multiplying
the local weight by its corresponding parent. So the final weight matrix in the symbol
of

inW is calculated as

jjnn WWW
ii

⋅= / , (6)

where the final weight of each alternative is calculated as

∑
=

⋅=
3

1
/

j
jjnn WWW

ii
. (7)

The larger the final weight of node, the higher the probability of node which is eli-
gible to be put into sleep. Thus, the r fraction of nodes with the largest weight are
selected as the sleeping nodes in the current round.

4 Performance Evaluations

In order to evaluate the sleep scheduling scheme by AHP, we compare it with random
scheduling scheme. We don’t compare with other existing work because of our differ-
ent assumptions. In our simulation, the 50m × 50m square monitored area is assumed.
The sensing and communication range is equal to 8m and 16m respectively. Initial
energy in each node is 2J. We set the total number of nodes N=50 and number of
static clusters to be 2. Thus the number of nodes in each cluster is 25 by assuming a
uniform distribution of nodes.

In AHP modeling, the matrix A is determined as follows according to Section 3:
 α β γ

α

β
A =

γ ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

12/13/1

1/212/1

1/31/21

where the three criteria (distance to CH, residual energy and sensing range overlap-
ping) are denoted by α, β and γ respectively.

The computed eigenvector W = [0.5396 0.2970 0.1634]. It indicates the local
weight of the distance to CH, residual energy, and sensing coverage overlapping re-
spectively so that we can see that the distance to CH is the most important criterion.

 Sleep Nodes Scheduling in Cluster-Based HSNs Using AHP 443

Based on Eq. (5), we get the eigenvalue λmax = 3.0093. Consistency ratio can then be
calculated as CR= 0.0047 < 0. 1, thus matrix A satisfies the consistency check.

Each sensor node determines the weight matrixes of alternatives under three factors
and then gets global weight based on its specific situation. Its eligibility as a sleeping
node can be finally decided by the AHP hierarchy model.

Assume the CH plans to allow 25r nodes in its cluster to sleep in each cycle. In the
random scheduling scheme, the CH randomly selects r fraction sensor nodes to sleep.
Fig. 3 provides the energy consumption verses the fraction of sleeping nodes of the
two sleep scheduling schemes. It shows that the energy consumption in case of the
proposed scheme is less than that of the random scheme. The energy savings can be
enhanced with an increasing value of r. For an r value of “0.7”, the energy consumed
is 49.3% less by the proposed scheme than by random scheme.

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

Fraction of sleeping nodes r

A
ve

ra
ge

 e
ne

rg
y

co
ns

um
pt

io
n

pe
r

ro
un

d
(u

J)

random

AHP

Fig. 3. Energy Consumption in the cluster per round

0 0.2 0.4 0.6 0.8

160

180

200

220

240

260

280

Fraction of sleeping nodes r

Li
fe

tim
e

random, =0.45=0.45

AHP, =0.45=0.45
random, =0.25=0.25

AHP, =0.25=0.25

Fig. 4. Lifetime comparison

0 0.2 0.4 0.6 0.8
0.5

0.6

0.7

0.8

0.9

1

1.1

Fraction of sleeping nodes r

S
en

si
ng

 c
ov

er
ag

e

random

AHP

Fig. 5. Coverage verses the fraction of sleeping nodes

Network lifetime can be defined as the time when a fraction of nodes, , run out of
energy. In Fig. 4, we evaluate the lifetime for various values of r and . The length of
each round is 5s. We can see that the lifetime of both schemes is prolonged with the
increase of r and the proposed scheme greatly outperforms the random scheme. This
is in line with the analysis that the proposed scheme can balance the energy consump-
tion among all the member nodes. It also shows that the lifetime of both schemes
increases with an increase of . This is because the network can be alive up to the
time when fraction of nodes are drained of their energy.

444 X. Wu et al.

Fig. 5 provides the comparison of coverage ratio verses the fraction of sleeping
nodes r. The coverage here is defined as the ratio of the union of all sensor nodes’
sensing areas to the whole monitored environment. For the detailed explanation of
coverage ratio calculation, please refer to [8]. Fig. 5 shows that for both schemes the
coverage ratio decreases with the increase of r. However, in case of the proposed
AHP based sleeping scheme, the coverage ratio still can maintain above the desired
value of 0.98 when up to 30% nodes are put into sleep. It indicates that the tradeoff in
terms of coverage is not very critical by using the AHP based scheme.

5 Conclusion

In this paper, we proposed a sleep scheduling scheme for balancing energy consump-
tion rates in HSNs based on AHP. Three factors contributing to the optimal nodes
scheduling decision are considered and they are the distance to CH, residual energy,
and sensing coverage overlapping, respectively. We evaluated the efficiency of our
proposed scheme in terms of energy consumption, lifetime and coverage ratio, and
compared with traditional random sleep scheduling scheme in heterogeneous WSNs.
The proposed scheme was observed to improve network lifetime and conserve energy
without compromising the sensing coverage of the cluster.

Acknowledgments. This research was supported by the MIC (Ministry of Informa-
tion and Communication), Korea, under the ITRC (Information Technology Research
Center) support program supervised by the IITA (Institute of Information Technology
Advancement) (IITA-2006-C1090-0602-0002).

References

1. Y. Xu, J.Heidemann and D. Estrin: Adaptive Energy-conserving Routing for Multihop ad
hoc Networks. Research report 527, USC/Information Sciences Institute (2000).

2. B. Chen, and et al.: Span: An Energy-Efficient Coordination Algorithm for Topology
Maintenance in Ad Hoc Wireless Networks. ACM Wireless Networks, Vol. 8, No. 5
(2002).

3. W. Ye, J. Heidemann, and D. Estrin: An Energy-Efficient MAC Protocol for Wireless Sen-
sor Networks. Proc of the 21st INFOCOM, New York, NY (2002).

4. J. Deng, Y. S. Han, W. B. Heinzelman, and P. K. Varshney: Scheduling Sleeping Nodes in
High Density Cluster-based Sensor Networks. ACM/Kluwer MONET, Special Issue
(2005).

5. Yun Wang, Demin Wang, and et al.: Hops-based Sleep Scheduling Algorithm for Enhanc-
ing Lifetime of Wireless Sensor Networks. Proc. of MASS, Canada (2006) 709-714

6. Wendi B. Heinzelman, et al: An Application-Specific Protocol Architecture for Wireless
Microsensor Networks. IEEE Tran. on Wireless Communications, Vol. 1 (2002) 660 – 670

7. Q. Y. Song and A. Jamalipour: A Network Selection Mechanism for Next Generation
Networks. IEEE Int. Conf. Communication (ICC), Vol. 2 (2005) 1418- 1422

8. Xiaoling Wu, et al: Swarm Based Sensor Deployment Optimization in Ad hoc Sensor
Networks. . Proc. of ICESS’ 05 (LNCS), Xi’an, China (2005) 533-541

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 445–452, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Energy-Efficient Medium Access Control
for Wireless Sensor Networks

Po-Jen Chuang and Chih-Shin Lin

Department of Electrical Engineering, Tamkang University,
Tamsui, Taipei County, Taiwan 25137, R.O.C.

pjchuang@ee.tku.edu.tw

Abstract. Energy efficiency is a primary issue for the performance of a wireless
sensor network. This paper works on both communication and transmission to
reduce unnecessary energy waste, i.e., to conserve energy consumption, for a
wireless sensor network. To improve idle listening, for example, we allow sen-
sor nodes to activate or sleep periodically; to improve collision and overhear-
ing, we use an algorithm to alternate the wakeup time of neighboring sensor
nodes and thus reduce transmission latency.

1 Introduction

A wireless sensor network consists of hundreds or thousands of sensor nodes and is
usually deployed in an unprotected environment to collect the needed information. As
sensor nodes are battery-powered and are difficult to get recharged after distribution,
energy efficiency thus becomes a basic and critical issue. The limited energy re-
sources of sensor nodes are usually wasted through overhearing, idle listening and
collision.

Overhearing: When a node sends data, all neighboring nodes within the transmission
range, including those which are not the destination of this transmission, will receive
the data, unnecessarily consuming the restricted energy.

Idle listening: Despite the fact that each node in the topology will send or receive
data only occasionally, it needs to “listen” to the channels all the time for any possible
transmission, wasting additional energy.

Collision: If more than two nodes attempt to send data to the same destination at the
same time, the destination node may fail to receive the data. In such a case, each of
the source nodes will try to resend data and thus consumes extra energy.

Energy efficiency is important and so is transmission efficiency which can be at-
tained through improvement on latency, throughput and load fairness.

Latency: Some applications of the wireless sensor network can be very time-critical.
In such time-critical applications, transmission latency should be shortened as much
as possible because when a node detect something, it has to report immediately to the
base station (BS) which will then take instant and appropriate actions.

446 P.-J. Chuang and C.-S. Lin

Throughput: Desirable throughput is especially needed when a wireless sensor net-
work must transmit all of the data collected in a certain period of time.

Fairness: If routing channels are constantly occupied by a certain number of nodes,
the other nodes will lose transmission chances and be forced to wait and hold, thus
degrading network performance. For improvement, all nodes should be given the
same probability to use transmission channels.

Based on the above observation, this paper presents a new medium access control
(MAC) protocol which utilizes the special features of the wireless sensor network to
achieve power efficiency and low latency. The proposed protocol lets the base station
start an initial process in which the height of all sensor nodes are set when the net-
work is first deployed. The height of a node refers to its hop counts to the base station.
The active time of nodes whose height difference = 1 is set to be continuous to reduce
transmission latency, while the active time of nodes with the same height will stagger
to avoid collision, i.e., to reduce the probability of simultaneous transmission.

2 Related Works

S-MAC [1] puts sensor nodes into periodic sleep to reduce power consumption due to
idle listening and to decrease the probability of collision. It also works to solve the
overhearing problem: When receiving a packet, a sensor node will be forced into
sleep -- if it is not the destination node. Putting a sensor node into sleep may solve the
overhearing problem; it may also increase transmission latency (due to transmission
interruption) and reduce throughput (because the interrupted data must wait until the
sensor node wakes up to resume the transmission). D-MAC [2] attempts to improve
the transmission interruption problem in S-MAC by alternating the wakeup period of
sensor nodes. Employing the data gathering tree (e.g. GIT [4]), D-MAC allows nodes
on different tree levels to have different but continuous wakeup periods to solve the
problem of transmission interruption. T-MAC [3] is proposed to reduce energy
consumption due to idle listening. It puts nodes into periodic sleep like S-MAC, with
a different design -- the dynamic duty cycle (S-MAC adopts the fixed duty cycle). In
T-MAC, when a node is in the wakeup mode but sends or receives no data for a cer-
tain period of time, it will switch to the sleep mode to avoid wasting energy.

3 The Proposed New Protocol

To reduce idle listening: As nodes in a sensor network are not always sending or
receiving data, it is unnecessary for them to listen to routing channels at all times. To
reduce idle listening, our new protocol puts sensor nodes into “sleep” periodically (as
most established protocols) but adopts the dynamic duty cycle (instead of the fixed
duty cycle) to reserve the energy of the nodes.

To reduce latency: Putting sensor nodes into the sleep mode periodically may inter-
rupt data forwarding and as a result increase transmission latency. To solve the prob-
lem, our new protocol employs the alternative wakeup schedule in D-MAC, as shown

 Energy-Efficient Medium Access Control for Wireless Sensor Networks 447

in Fig. 1. The alternative wakeup schedule allows sensor nodes on different levels to
wake up sequentially. Such a design helps avoid transmission latency -- because
when data are being transmitted to the BS, packet routing on all levels will not be
interrupted by a sleeping node, as the transmission process in Fig. 2 demonstrates.

Fig. 1. The alternative wakeup schedule (RX/TX indicates the sensor node is ready to re-
ceive/transmit data, SL = the sensor node is put into the sleep mode)

Fig. 2. The transmission process

To avoid collision: The proposed protocol adopts the alternative wakeup schedule in
Fig. 1 to reduce transmission latency and also the probability of collision. Collision
happens when neighbor nodes attempt to transmit data at the same time. Thus to re-
duce the probability of collision means to keep neighbor nodes from waking up at the
same time. Interchanging the wakeup schedule of neighbor nodes can reduce not only
the probability of transmission collision but also energy consumption caused by over-
hearing. To alternate the wakeup schedule of neighbor nodes, our algorithm (to ap-
pear in later sections) will assign a number -- 0 or 1 -- to each node of the same height
and the assignment should vary as much as possible to achieve the best effect of colli-
sion avoidance. Fig. 3 shows our modified alternative wakeup schedule of nodes with
the same height but different numbers (0 or 1). Based on such a schedule, transmis-
sion collision can be avoided because the wakeup time of nodes at the same height is
staggered (under different numbers).

Fig. 3. Our modified alternative wakeup schedule (the schedule difference between nodes of
the same height with different numbers -- 0 or 1)

BS

Height=1

Height=2

Height=3
Height=4

448 P.-J. Chuang and C.-S. Lin

4 The Algorithm for Calculating the Schedule

In our protocol, each sensor node is assigned with h and n. h refers to the node’s
height (the tree level); n is the number decided by coordination between neighbor
nodes to interchange their wakeup time. Each node also needs to record an update
time t to indicate its most recent update time. After distribution, sensor nodes first go
through the initial process to initialize h and n, and to calculate the wakeup schedule.

To initialize the number: Before node distribution, h and n for each node is set as
infinite and t is set to 0. After node distribution, the BS will broadcast an update
packet whose number (nupdate) = 0 and whose update time (tupdate) = the time to send
the packet. After receiving such an update packet, a sensor node faces two situations:

t < tupdate: indicating the sensor node is not yet updated and hence needs to update
its number n to (nupdate + 1) mod 2 and set its update time t to tupdate. The node then
broadcasts the newly updated number and the most recent update time.

t = tupdate: indicating the node is already updated. However, to avoid neighbor nodes
getting the same number, a sensor node needs to check if n and nupdate are the same. If
they are, the node will request all of its neighbor nodes to broadcast their numbers and
then based on the number distribution choose a most appropriate number.

To initialize the height: When number initialization for all nodes is finished, the BS
once again broadcasts an update packet with height (hupdate) = 0. A node receiving the
update packet also faces two situations:

h - hupdate ≦ 1: Indicating the node receives the update packet from a node with
bigger height and may ignore this update packet without doing anything.

h - hupdate > 1: Indicating the node receives the update packet from a node with
lower height and has to update its own height h to hupdate + 1 and meanwhile broad-
casts the updated data.

To calculate the schedule: After the numbers and heights of all nodes are initialized,
nodes move on to calculate the wakeup time according to their heights and numbers.
Sensor nodes first divide the cycle time into m parts; each part is taken as a time slot.
The schedule for a sensor node in Fig. 4 shows that a sensor node wakes up only at
two time slots and is put into the sleep mode at the other time slots.

Fig. 4. The schedule of sensor nodes

m will be calculated by the duty cycle as follows:

Duty Cycle = %100
Cycle Time

eActive Tim
%100

2
%100

2

mm
(1)

 Energy-Efficient Medium Access Control for Wireless Sensor Networks 449

μ ：the slot time

Cycle Time = μm (5>m)

Active Time = μ2 (RX and TX)

Sleep Time = μ)2(−m

We can now move to calculate the time for each node to start working. Assume
each node has different delay timeτ . When calculating the delay time, we must take
the height (h) and the number (n) of each node into consideration to reduce transmis-
sion latency and to decrease the probability of transmission collision. Based on the
above discussion, we can set the formula for calculating the delay time as follows.

nmhmnhm 3mod),,(

(2)

If the duty cycle is assumed to be 10%, we can obtain m by the above formula.

Duty cycle = %100
cycle time

eactive tim
%10%100

2
%100

2

mm

10
200

m
20m

After m is attained, a node can calculate the delay time by its h and n, and start its
wakeup schedule. Fig. 5 shows the operation steps of the sensor nodes. The gray zone
indicates the delay time during which the nodes are kept under the sleep mode. After
the delay time, each node wakes up periodically according to the wakeup schedule.
As observed, nodes with n = 1 can construct a route from a higher level to a lower
level, and so can nodes with n = 0. Transmission latency is thus reduced. Meanwhile,
as nodes with the same height but different numbers will not translate into the
wakeup mode at the same time, the probability of collision can be definitely
decreased.

Fig. 5. The operation steps from the 14th to the 41st time slot

To reschedule: After a sensor network performs for a period of time, network topol-
ogy may change due to such factors as the death of nodes (running out of battery
power), the earthquake attack in the observed zone or the distribution of newly added
nodes. Sensor nodes affected by these factors must be rescheduled to maintain good

450 P.-J. Chuang and C.-S. Lin

function of the network. The BS is in charge of such periodical rescheduling and the
rescheduling cycles varies with different applications. The rescheduling runs as fol-
lows. The BS first broadcasts a rescheduling packet to each node which then resets its
h and n to the initial state and again broadcasts the rescheduling packet out. After all
nodes in the network receive the packet and reset their h and n to the initial state, the
whole network is re-initialized. To complete rescheduling, simply repeat the above
steps (initializing the number and the height of nodes) and calculate the schedule.

5 Performance Evaluation

Experimental evaluation is conducted to compare the performance of different MAC
protocols, including S-MAC, D-MAC and our new protocol. S-MAC and D-MAC are
included because the former uses the same approach as our protocol to save energy
consumed by idle listening and the latter, like our approach, attempts to reduce trans-
mission latency by allowing sensor nodes different delay times. In this simulation, the
time slot of each protocol is 10ms; the duty cycle is 10%. Both the sending and re-
ceiving slots for D-MAC and our protocol are 10ms, the active time for S-MAC is
20ms, and the sleep time for all three protocols is 180ms. The performance of the
three protocols will be measured and compared in terms of their ability to reduce
latency and to avoid collision. The collected result of latency refers to the average
delay of each transmission and collision indicates the total number of collisions after
certain packet transmissions.

The average transmission latency under the straight-line transmission: A simple
straight-line transmission with 11 nodes is simulated to evaluate the low latency of
our MAC protocol. The distance between two nodes is 50 meters. The first node will
send out a packet per 0.5 sec to the last node. Fig. 6 shows the average transmission
latency of each packet. The latency pattern of S-MAC is apparently different from
that of the other two protocols. The “jumping” latency status of the S-MAC is caused
by its interrupted data transmission (mentioned in Section 2). D-MAC and our proto-
col are free of this problem because of the alternative wakeup schedule which helps
transmit data packets from the source node to the destination without interruption.

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9 10

Chain Length (Number of hops)

D
e
la
y
 (
m
s
)

SMAC

SMAC with adaptive listen

DMAC

NewMAC

Fig. 6. The average packet transmission latency

 Energy-Efficient Medium Access Control for Wireless Sensor Networks 451

The average transmission latency under the random distribution topology: The
simulation randomly distributes 100 sensor nodes over a 100m × 500m area. Fig. 7
displays such a random distribution topology. Assume the center node (the triangle in
the figure) is the base station. Randomly choose 5 sensor nodes at the outskirt of the
topology (the dark dots) as the source nodes to transmit packets. The 5 source nodes
will send data packets to the BS with fixed rates. Fig. 8 shows the average transmis-
sion latency of each packet for the three protocols. As the result shows, S-MAC
depicts bigger latency under the random distribution topology than under the straight-
line transmission. This is because more than one source node is transmitting data at
the same time under the random distribution topology, resulting in “channel competi-
tion”. The performance of D-MAC and our protocol, on the other hand, remains rela-
tively stable because both protocols can transmit data to the BS without interruption
even when sensor nodes contend for routing channels.

Fig. 7. The random distribution topology

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 3 4 5 6 7 8

Chain Length (Number of hops)

D
e
la
y
 (
m
s
)

SMAC

SMAC with adaptive listen

DMAC

NewMAC

Fig. 8. The average transmission latency of each packet under the random distribution topology

The number of collision under the random distribution topology: The simulation is
conducted under the random distribution topology with different numbers of source
nodes. It is clear that when the number of source nodes increase, packets under trans-
mission will also increase and so will the probability of collision. As the result in Fig. 9
demonstrates, S-MAC generates the largest number of collision among the three proto-
cols. This is understandable because S-MAC has the longest transmission latency in
our simulation and thus will result in the largest number of on-going packet transmis-
sions in the network when increasing source nodes send out more packets at the same
time. Our protocol outperforms even the D-MAC. It displays the least collisions due to
its mechanism to alternate the wakeup schedule of neighbor nodes by assigning differ-
ent numbers (0 or 1) to the nodes.

452 P.-J. Chuang and C.-S. Lin

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 8 9 10

Number of Sources

C
o
ll
is
io
n

SMAC

SMAC with adaptive listen

DMAC

NewMAC

Fig. 9. The number of collisions

6 Conclusion

As the nodes in a wireless sensor network are battery-powered and are difficult to get
recharged after distribution, energy efficiency becomes a basic and critical issue.
Based on the special features of a wireless sensor network, this paper presents a new
and efficient MAC protocol to achieve power efficiency and to reduce transmission
latency and collision. When a sensor network is deployed, the proposed protocol
starts an initial process to assign a height (hop counts to the BS) and a number (0 or 1)
to each node. With such a specific design and function, our protocol is able to arrange
favorable job schedules of all sensor nodes and thus facilitate data transmission by
reduced transmission latency and collision probability.

References

1. Y. Wei, J. Heidemann, and D. Estrin, “Medium access control with coordinated adaptive
sleeping for wireless sensor networks,” IEEE/ACM Trans. on Networking, Vol. 12, No.
3, pp. 493-506, June 2004.

2. G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An adaptive energy-efficient and low-
latency MAC for data gathering in wireless sensor networks,” Proc. 18th Parallel and Dis-
tributed Processing Symp., Apr. 2004, pp. 224-231.

3. T. van Dam and K. Langendoen, “An adaptive energy-efficient MAC protocol for wireless
sensor networks,” Proc. 1st Int’l Conf. on Embedded Networked Sensor Systems, Nov.
2003, pp. 171-180.

4. T. Aonishi, T. Matsuda, S. Mikami, H. Kawaguchi, C. Ohta, and M. Yoshimoto, “Impact of
aggregation efficiency on GIT routing for wireless sensor networks,” Proc. 2006 Int’l Conf.
on Parallel Processing Workshops, Aug. 2006, pp. 151-158.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 453–463, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Automatic Power Model Generation for Sensor
Network Simulator

Jaebok Park1, Hyunwoo Joe2, and Hyungshin Kim2,*

1 Division of Electronics and Information Engineering,
Chonbuk National University, Joenju, Korea

2 Department of Computer Science and Engineering,
Chungnam National University, Daejeon, Korea

Tel.:+82-42-821-5446
{parkjaebok,jhwzero,hyungshin}@cnu.ac.kr

 http://eslab.cnu.ac.kr

Abstract. Energy consumption estimation in sensor network is a critical proc-
ess for network lifetime estimation before actual deployment. Energy consump-
tion can be estimated by simulating the sensor network with a power model.
Power model is the key component for the accurate estimation. However, the
power model is not publicly accessible and it is not easy to generate accurate
fine-grain power model. In this paper we proposed a simplified but yet accurate
power model for AVR-based sensor nodes. Also, we developed an automated
power model generation tool. The tool generates an instruction-level power
model that can be connected to sensor network simulators. We model the cur-
rent consumption of ATmega128 instruction set which is the most widely used
processor in sensor node. Loading, execution, and control of the measurement
framework are managed by the tool. Using the tool, we can generate power
models of various sensor nodes using ATmega128 as their processor. Experi-
mental result shows that our tool successfully generated accurate power models
of various sensor nodes including Mica2.

Keywords: sensor network, power model, energy consumption estimation, em-
bedded system, ubiquitous computing.

1 Introduction

Sensor network consists of large number of small sensor nodes called mote. A mote is
a tiny computer with wireless communication interface. Most of the case, they are
operated with batteries and once they are deployed it becomes infeasible to replace
batteries. Hence, estimating operation lifetime of each mote of the planned network
topology is a critical process before actual deployment. Identification of hot spots and
balancing duties among the motes can be performed from this estimation result.

Energy consumption of general embedded system can be measured in an indoor
measurement setup. This measurement-based energy estimation provides very accurate

* Corresponding author.

454 J. Park, H. Joe, and H. Kim

result since it is acquired from the actual hardware. Sensor network is a deeply net-
worked embedded system and the measurement-based estimation is infeasible as it
consists of hundreds of motes. Hence, energy estimation by simulation is more suitable
in sensor network design procedure[1].

Such simulators estimate energy consumption using a power model. The accuracy
of the estimation largely depends on that of the power model they use. The power
model should be simple because complex power model slows down the energy profil-
ing and estimation process of the simulator. However, for accurate energy estimation,
it requires a detailed-enough power model so that it can accurately estimate energy
consumption with little overhead to the simulator.

Though there have been a few researches in energy estimation in sensor network
field recently, works on power model generation are scarcely reported in the litera-
ture. They are using either numerical values from the data book or power model from
the chipset manufacturer as their power model. Numerical values of data books are
simplified figures and they do not represent dynamic behavior of the component.
Power models using these values result to inaccurate energy estimation because of
that. Power models from manufacturers are very accurate but it is not open for public
access in most of the case. Even though we have accurate power model of a chipset, it
is difficult to estimate energy consumption of a complete board until we have power
models of all the components on the board. Hence, it will be useful to have a tool that
can generate accurate power model of a complete board.

In this paper, we propose a simple yet accurate power model for ATmega128-
based[2] motes. Also, we developed an automatic power model generation tool. The
proposed power model is instruction-based and the current consumption of the mote
is modeled into the instruction set of the mote’s processor. ATmega128 is the most
widely used processor on sensor nodes including U.C. Berkeley’s Mica series[3]. Our
power model is simple and that simplifies the model generation process. However,
necessary dynamic behaviors of the tested boards are modeled and hence we achieve
very accurate model of the mote.

For evaluation, we have generated four power models of four different sensor
motes using our automatic power model generation tool. Once the power model is
generated, we connect the model to our sensor network energy estimator called
MIPS(Machine Instruction level Power estimator for Sensor network)[4]. Using
MIPS, we have verified the generated power models are very accurate with accuracy
of above 95%. This proves that our automation tool is applicable to many different
ATmega128-based motes with great accuracy. This accuracy is attributed to our
power modeling method. Our work is unique in that there has been no research on
automatic power model generation for sensor node and yet with very accurate power
model.

The organization of this paper is as follows. In section 2, related works on power
modeling in sensor network are reviewed. Our power modeling method is explained
in section 3 and automatic power model generation tool is described in section 4. In
section 5, experimental results to verify usability and accuracy of our method is ex-
plained and we conclude in section 6.

 Automatic Power Model Generation for Sensor Network Simulator 455

2 Related Work

Simulator-based methods estimate energy consumption using power model for esti-
mation. In general embedded system, instruction-level simulation methods are pro-
posed in [5] and [6]. They model current consumption of processor’s instruction set
and compute energy consumption of a program from the model. This model is fine-
grained since it can be used for analyzing instruction-level operation of a processor.
Macro modeling method[7] was proposed. This method models power consumption
of system into software modules and estimates parameters relating the modules to the
power model. This approach has faster estimation time and larger estimation error
than instruction-based method.

SimplePower[8] and Wattch[9] are RTL-level architecture-based power estimation
methods. SimplePower simulates SimpleScalar[10] instruction set and offers capaci-
tor switching statistics of each module to relate each cycle energy. Wattch is imple-
mented in SimpleScalar simulator using power model of microprocessor's functional
unit. However, they must have accurate processor's architectural power model which
is difficult to acquire.

In sensor network, PowerTossim[1] is the representative tool for energy estimation.
This tool is an extension to TOSSIM, a sensor network simulator. PowerTossim's
estimation accuracy is relatively poor as it uses current consumption values from data
book or limited measured values. In addition to that, PowerTossim can be used only
for Mica mote series with TinyOS as its operating system. Other sensor nodes using
different operating system cannot use PowerTossim.

In embedded system and sensor network literature, we could not find researches on
power model generation. Probably the work in [6] is the closest work to ours. In [6]
authors proposed instruction-based energy estimation method. Our method also uses
instruction-based method but we focus more on the power model than the estimation
procedure. We simplified the power model but yet maintaining good accuracy. We are
not generating the power model of a processor. Instead, we generate the power model
of the tested board using the processor's instruction set. In overall, our work is unique
in that we proposed a power modeling method for sensor node and an automatic
model generation tool.

3 Sensor Node Power Modeling Method

In this section, we explain our power modeling method. We used the similar approach
as [6] in that we measure current consumption of single instruction while running a
program on a sensor node. In this method, each instruction in the instruction set is
assigned a fixed energy cost called instruction energy cost. The instruction energy
costs of the instruction set become the power model of the given sensor node. The
energy cost of an instruction is modeled with base energy cost and overhead cost. The
base energy cost is obtained from the measurement framework as shown in Figure 1.
We design a number of assembly program that has an infinite loop consisted of single
testing instruction. We download the binary image onto the sensor node and measure
consumed current during the execution of the program. The measured current value is
the base energy cost of the instruction.

456 J. Park, H. Joe, and H. Kim

However, this simple modeling framework does not generate accurate power
model of the tested instruction as explained in [6]. It is due to the dynamic switching
behavior of the circuits on the tested hardware. The instruction energy cost should
represent not only the energy consumption of the processor but also other dynamic
factors induced by peripherals, bus activities, and the manufactured PCB. Instead of
trying to model all the factors separately, we simplified the model considering only
the two dominant factors. The first factor is known as inter-instruction overhead. It is
the current fluctuation induced by the instruction switch between the two neighboring
instructions. The other factor is the current fluctuation induced by the operand
variation.

The inter-instruction overhead is determined by using a test program that contains
an infinite loop with two different instructions in series. For the accurate modeling of
the inter-instruction overhead, all combinations of the instruction pairs are needed to
be tested. However, we only used one nominal value for all the combinations of in-
structions. This decision was made to speed up the energy profiling process during
simulation while trading-off accuracy. The nominal value is determined by averaging
the current variation measured from the limited number of instruction pairs.

Fig. 1. Energy cost measurement framework

The current variation by different operands can be modeled by measuring all the

current consumptions from test programs with varying operands. This approach takes
long time to get the correct power model. Instead, we only measure for two extreme
cases. The maximum current fluctuation due to the operand variation within the board
can be emulated by alternating operands of the test program with 0x00 and 0xff. The
minimum case can be achieved with a test program of operand 0x00 only. Then, we
average the values from the two measurements. This procedure greatly reduces mod-
eling time with little reduction in accuracy. This method is shown in Figure 2. For
branch instructions, we measure power consumption of branch taken for maximum
case and branch not taken for minimum case. We developed the power model of 133
instructions of ATmega128 in this method. Other peripherals such as communication
chip, LED, and sensors are also modeled in similar way.

Notice that our power model includes energy costs of other components on the
sensor nodes. When we measure current consumption of the sensor node, the proces-
sor’s power line is not separated from other components on the board. Capacitors,
resistors, and power level converters affect the power model of given board. Though
some motes use the same AVR processor, board layout is different board by board.

 Automatic Power Model Generation for Sensor Network Simulator 457

�

Fig. 2. Operand variation modeling

Hence, the power model of one instruction of a sensor node is different from that of
the other nodes. In that sense, our power model includes other unknown current varia-
tions due to the board layout and hence, our model can be used to model subtle differ-
ences between similar sensor nodes.

4 Automatic Power Model Generation

Power model is created with a host PC, power supply and target sensor node as shown
in Fig.3(a). The power supply provides power to the tested board and measures cur-
rent consumption on the power line. The host PC is connected to the power supply
using a RS-232 serial port to control current sampling and power supply.

�

Fig. 3. (a) Power model development environment (b) Automatic power model generation tool

The host PC and the tested board are connected using the ISP(In System Program-
ming) interface on the board. Binary program images are downloaded to the tested
board through this ISP interface.

The automatic power model generation tool is executed on the PC and it controls
whole model generation process. Fig.3 (b) shows the implemented tool running on the
PC.The power model generation procedure is explained as follows. Before model
generation, assembly test programs designed as described in section 3 should be as-
sembled and stored on the host PC. When the power generation tool is executed on

458 J. Park, H. Joe, and H. Kim

the host PC, it first configures the power supply through RS-232 serial port. The volt-
age level and sampling frequency is set. Then, it provides power to the tested board
and the board is now ready to download binary code through ISP port. We used rou-
tines from Avrdude[11] for ISP download/unload, verify and reset control. The test
program is downloaded to the board’s on-chip FLASH memory. The host PC sends
commands to power supply to turn OFF and ON. Then, the board starts executing the
first test program and at the same time, the power supply starts sampling current con-
sumption and transmits the sampled data to the host PC. After sampling for a few
seconds, the host PC stops measuring and repeat this measurement cycle with next
test program. This modeling procedure continues until all the test programs are exe-
cuted and measured. Fig.4 shows the modeling procedure.

START, i = 0

Configure Power supply

Power ON the Board

Download test image i

Power OFF the board

Power ON the board
i <- next test

Measure current consumption

Is this the last test ?
N

Y

Generate Power model

Fig. 4. Automatic power model generation procedure

Proposed procedure develops instruction-based power model of AVR ATmega128-
based sensor node using 196 test programs. They are designed to measure base energy
cost and inter-instruction overhead of each instruction. Automatic power model

 Automatic Power Model Generation for Sensor Network Simulator 459

generation tool loads test programs into target sensor node according to the measure-
ment list and records average current while the program is running.

The final power model is constructed as instruction name, number of execution cy-
cles and current consumption of each instruction after the overhead compensation. In
this way, we can accurately model AVR-based sensor node’s power consumption and
eventually, the sensor network simulator using our power model can accurately esti-
mate energy consumption during simulation with little run-time overhead. Fig.5
shows the partial result of the generated power model.

�

Fig. 5. Generated power model

5 Experiments and Evaluation

Four different AVR-based sensor nodes are selected to verify the applicability of our
modeling tool and accuracy of the generated power model. Table 1 shows the specifi-
cation of the selected nodes. Nano-24[12] and Zigbex[14] are commercial sensor
node using ATmega128L microcontroller with CC2420 Zigbee communication mod-
ule. CESL mote[13] is the sensor node developed in our laboratory. Mica2[3] is the
well-known sensor node developed by U.C. Berkeley. It is different from the other
sensor boards in that it is using CC1000 as its wireless interface. The number of sen-
sors on-board and the power line design affects the total energy consumption of the
board and hence its power model.

We have generated four power models using our modeling framework. It took 3.5
hours to generate the power model of one sensor board. Figure 6 shows the generated
power models respect to each instruction. Current consumptions of sensor nodes show

460 J. Park, H. Joe, and H. Kim

Table 1. Selected AVR-based Sensor nodes

Fig. 6 Generated power models of four sensor nodes. CESL, Nano-24, Zigbex, and Mica2 from
the front row to back row respectively.

wide variation though they use the same ATmega128L. The CESL mote consumes the
least current among the tested nodes. Nano-24 consumes 1mA more than CESL,
which is almost 15% more than CESL. It is because the CESL mote further reduces
power consumption by using resistors on the power line. The Zigbex mote consumes
25% more current than the CESL mote and it is because the Zigbex mote has a LED
that is ON all the time. Without this LED, the Zigbex shows the smallest current

 Automatic Power Model Generation for Sensor Network Simulator 461

consumption due to its slowest operating frequency. The use of regulator on the Zig-
bex mote is another reason of this extra current consumption. Regulators cannot con-
vert the input power with 100% efficiency and hence, this is the source of extra cur-
rent consumption.

The Mica2 consumes 90% more current than the CESL mote. Mica2 uses CC1000
instead of CC2420 and CC1000 requires additional circuits on board. Hence, these
additional circuits consume additional power that does not exist on other boards.

Table 2. Nano-24 Power model verification result

Table 3. CESL Mote Power model verification result

Table 4. Zigbex Power model verification result

462 J. Park, H. Joe, and H. Kim

Also, the Mica2 does not use resistors on the power line and this direct connection of
the board to the battery pack draws more power than the other boards where they use
resistors.

We evaluated accuracy of the generated power models using a sensor network
simulator called MIPS. Our power model is read by the MIPS during the simulation.
The simulator computes consumed energy during execution of a test program on
AVR-based sensor nodes.

Table 5. Mica2 Power model verification result

For the test program, we have selected a number of benchmark programs provided

by the manufacturers. Nano-24 has QPlus[15] as its operating system and all the other
sensor nodes are using TinyOS. For comparison, we execute the same benchmark
programs on the test board and measured current consumption using our measurement
framework. Then, we compared the measured energy consumption with the simula-
tor’s energy consumption estimation result. All four sensor boards are used for this
experiment.

Table 2 shows the experiment result for Nano-24 power model. Seven benchmark
programs are used. Five of them are simple sensor read out programs and two of them
are communication programs. For the measurement, we have installed two nodes and
actual RF communication was performed. All the benchmark programs show good
accuracy above 95%.

Table 3, 4 and 5 show the power model verification results of the other three sensor
nodes. All the TinyOS applications have shown more than 96% accuracy in all three
occasions. From these experimental results, we can conclude that our power model is
highly accurate.

6 Conclusion

Recently, there have been a few works reported on energy consumption estimation for
sensor network. The accuracy of the estimation relies on the accuracy of the power
model they use. However, research on generating accurate power model is rarely
reported. In this paper we reported an automated power model generation tool for
AVR ATmega128-based sensor nodes. Our tool generates instruction-level power
model and it can be used by the sensor network energy estimator. We have performed
experiments to verify applicability of our tool and accuracy of the generated power
model. From the experiment, we have shown that our tool can generate power model

 Automatic Power Model Generation for Sensor Network Simulator 463

of a sensor board in about 3.5 hours without user’s intervention. Also, the generated
power model was verified through the comparison between the measured value and
simulator out value. The verification results show that the accuracy of the power
model is above 95% in all the four test sensor boards.

Using our automatic power model generation tool, users can quickly generate accu-
rate power model for any AVR-based sensor node. Hence, we can estimate energy
consumption of AVR-based sensor network using our power model.

Acknowledgement

This study was financially supported by research fund of Chungnam National Univer-
sity in 2005.

References

1. V. Shnayder et al, "Simulating the power consumption of large-scale sensor network ap-
plications", SenSys04, pp.188-200, 2004

2. ATmega128, http://www.atmel.com
3. Crossbow Technology, Inc. Mica2 http://www.xbow.com
4. ETRI, Research on low power measurement for sensor network, Project report, 2005
5. A. Sinha et al, "JouleTrack – A Web based tool for software energy profiling", DAC 2001
6. V.Tiwari, S.Malik, and A. Wolfe. "Power analysis of embedded software:A first step to-

wards software power minimization", IEEE Transactions on VLSI system, 2(4):437-445,
December 1994

7. A. Muttreja et al, "Automated energy/performance macromodeling of embedded soft-
ware", DAC2004, pp.99-102, 2004

8. W. Ye et al, "The design and use of SimplePower", in Proc. ACM/IEEE Design Automa-
tion Conf., pp.340-345, 2000

9. D. Brooks, et al, "Wattch: A framework for architectural-level power analysis and optimi-
zation", ISCA, pp.83-94, 2000

10. D.burger and T. Austin. The simplescalar tool set, version 2.0 Technical report, Computer
Sciences Department, University of Wisconsin, June, 1997

11. Avrdude Manual, http://www.cs.ou.edu/~fagg/classes/general/atmel/avrude.pdf
12. Octacomm Corp. Nano-24 Http://www.octacomm.net
13. CESL Laboratory, CESL Mote http://eslab.cnu.ac.kr
14. Hanback Corp. Zigbex Http://www.hanback.co.kr
15. Electronics telecommunication Research Institute.

 Nano-qplus http://qplus.or.kr/english/jsp/transfer/transfer_03_1.jsp

Situation-Aware Based Self-adaptive

Architecture for Mission Critical Systems

Sangsoo Kim, Jiyong Park, Heeseo Chae, and Hoh Peter In�

College of Information & Communications, Korea University,
5-ga, Anam-dong, Seogbuk-gu, Seoul 136-701, Korea

{sookim,jayyp,royalhs,hoh in}@korea.ac.kr

Abstract. Conventional mission-critical systems cannot prevent mission
failure in dynamic battlefield environments in which the execution situa-
tions or missions change abruptly. To solve this problem, self-adaptive sys-
tems have been proposed in the literature. However, the previous studies
do not offer specifics on how to identify changes in a system situation or to
transform situation information into the actions the systems must take in
dynamic environments. This paper proposes a situation-awareness based
self-adaptive system architecture (SASA) to support more efficient adap-
tation and, hence, achieve more accurate and successful missions, even
in dynamic execution environments. A case study for air defense systems
(ADS) using tests in a HLA/TRI-based real-time distributed simulation
environment was implemented.

Keywords: Situation-Awareness, Self-Adaptation, Mission Critical
System, HLA/RTI, Real-Time Distributed Simulation.

1 Introduction

Mission critical systems are somewhat limited in certain fields, as the name im-
plies [1]. Therefore, their applications are also usually limited and fixed to the
early assumptions of their operating circumstances and goals. To solve this prob-
lem, self-adaptive middleware concepts in designing system architecture have
been proposed in the literature [2][3]. However, previous studies have not ad-
dressed specific ways to recognize changes in system environments and situations
or to transform the situation information into the response actions the systems
must execute.

In the real world, mission-critical real-time systems are often exposed to
complex, dynamic situations, especially in ubiquitous battlefield environments.
Therefore, it is inevitable that much information is generated about the systems
and this information affects how efficiently the systems run. Thus, an adaptive
architecture is required to reflect the dynamically generated, specific informa-
tion in the systems. In particular, systems in the military domain can be affected
by such dynamic environments more than systems in other domains. Battlefield

� Corresponding author.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 464–475, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Situation-Aware Based Self-adaptive Architecture 465

environments have changed dynamically in the past and will continue to change
dynamically in the future.

In the future, even the near term, new designs in aircraft and missiles that
can render air defense systems (ADS) useless will be developed for use on the
battlefield. Therefore, to guarantee and maintain the defense capability of ADS
from this threat, ADS should be able to understand the actions and situation
of an enemy aircraft or missile and destroy it by adjusting a weapon system’s
search and track algorithm to each situation. Determining a strategy suitable to
each situation and changing the guidance algorithm for missile control should
be achieved in a very short time to allow immediate response actions. It is
difficult for ADS to respond quickly if control commands must go through a
ground control center (GCC). Common air defense systems use the conditional
expression method, one of the self-adaptive categories, for defense. Neverthe-
less, this method is still relatively inadequate for bringing threats under control.
Therefore, a system that automatically recognizes any changes in environment,
evaluates its functional situation awareness, establishes a suitable strategy, ver-
ifies the strategy’s effectiveness, and executes the mission in real time would be
indispensable.

In this paper, self-adaptive system architecture (SASA) for supporting ADS
which is now being testing for enhanced future ADS systems is proposed. For bet-
ter adaptation, situation-aware middleware is applied to our proposed software
architecture. The proposed SASA consists of three parts: situation-aware mid-
dleware, self-adaptive software, and real-time systems. To verify the effectiveness
of the proposed architecture, we tested it in the HLA/RTI based real-time dis-
tributed simulation environment now widely used for various domains, including
the testing and evaluation of Department of Defense (DoD) weapons systems [4].

The related works which are the basis of our proposed architecture are intro-
duced briefly in chapter 2, and the self-adaptive system architecture (SASA) for
mission critical real-time systems, especially ADS, are presented in chapter 3. In
chapter 4, the results of implementing the HLA/RTI-based real-time distributed
simulation for ADS-adapted SASA are presented, and chapter 5 describes the
testing by simulation federation implemented to verify the effectiveness of the
self-adaptive requirements. Finally, we present our conclusions and discuss future
work.

2 Related Work

The research in air defense systems (ADS) in the military domain is conducted
on an ongoing basis. ADS are composed of distributed real-time systems be-
cause they collect information and manage numerous communication systems.
The problems of scheduling, load balancing, and coordination among the nodes
of distributed real-time systems are studied in [5]. ADS can reduce inconsis-
tent, unintegrated, and inexact information and actively deal with a mission if
a knowledge-based database is composed because a knowledge system can more
efficiently cope with emergencies. The system in [6] offers a decision-making

466 S. Kim et al.

system that uses a war control center. In addition, the research in [7] develops
a situation analysis system and estimates a danger state using fuzzy logic tech-
nologies. However, it is difficult to adapt for mission change that occurred during
the mission time, though those methods are aptitude to ascendant initial target.

Various types of research have been done about self-adaptive systems, such
as an architecture-based approach [3], rainbow [2], self-optimization [8], a self-
adaptation genetic algorithm [9], and self-adaptive for robotics [10]. Most of
this research focused not on real-time systems but on everyday systems and
non-mission critical systems. Self-adaptive systems for real-time methods were
studied by [11]. However, most researchers focused on the adaptive methodology
and algorithm.

In a ubiquitous environment, situation-awaremiddleware and language for spec-
ifying situation awareness is researched. In [12], reconfigurable context-sensitive
middleware is extended in ubiquitous computing environments to simplify the de-
velopment of Situation-Awareness (SA) application software and achieve reusabil-
ity and runtime reconfigurability.

In this paper, we apply situation-aware middleware, which is briefly intro-
duced in the next section, to our proposed situation-aware based self-adaptive
system architecture (SASA) for accurate information analysis about mission en-
vironments. Situation awareness can significantly improve the performance of
ADS. Typical real-time systems and knowledge-based systems have insufficient
flexibility and treating capacity because of lack of data. In an unpredictable situa-
tion, the systems will have difficultly managing emergencies and will demonstrate
inferior agility because they must communicate through a centralized system
and process large amounts of general data. System-based situation awareness
can overcome these defects.

3 Situation-Aware Self-Adaptive System

3.1 SASA for ADS

A self-adaptive system architecture (SASA) for ADS has the form of a missile sys-
tem complemented by self-adaptive systems properties. SASA has been adapted
to guided missiles among ADS subsystems. As Fig. 1 shows, the missile-adapted
SASA consists of three parts.

Situation-Awareness Expresser (SAE): Analyzes situations and derives actions
from radar, seeker, GPS, and other external information. It collects situation
data in a database and receives the required context acquisition. The situation
analysis feature determines the present state based on the data collected, then
assigns and schedules action tuples.

Adaptive Engagement Manager (AEM): If a new strategy is required after the
extracted actions are compared with an existing engagement strategy, the new
strategy is produced by the adaptation engine.

Guidance and Control Unit (GCU): The new strategy is passed through a self-
adaptation executer to the weapons system’s guidance and control unit (GCU).

Situation-Aware Based Self-adaptive Architecture 467

Situation Awareness Expresser

Adaptive
Engagement

Manager

Guidance
& Control Unit

Engagement
Evaluators

Adaptation
Management

Self-Adaptation
Executor

Situation-Aware based
Self-Adaptation System

Mission Critical
Real-Time Systems

Mission Planner

Guidance
Unit

Weapon
Dynamics

Control Unit

SensorSensor

Detector

Data

Action
Tuple

Situation
Analyzer

Required
Actions

triggers

SA Data
Manager

Context
Manager

Manager

Action
Scheduler

Fig. 1. SASA for Air Defense Systems (for a Guided Missile)

A typical GCU consists of a guidance unit, control unit, and air frame. For
guided missiles, GCUs play the most important role during engagement with
a target. The guidance unit communicates with the AEM and the control unit
sends and receives situational information about the mission environment and
the target by communicating with the SAE. The SAE and AEM are loaded in
the GCU, implemented with middleware.

3.2 Situation-Aware Expresser

The SAE plays a role in recognizing dynamic changes in operating environments
and extracting proper responses to meet those changes [13]. The SAE is com-
posed of the following:

• SA Data Manager : Manages the situation awareness data and mission data
from mission critical real-time systems. The context tuple is <t, c1, c2, . . .,
cn>. t is the time stamp and c1, c2, . . ., cn is a set of context attributes.

• Context Manager : Receives context acquisition from the SA Data Manager
and sends the collected context data to it. The context data is composed of
target information, priority and correspondence methods for the situation,
mission results, and so on.

• Situation Analyzer : Recognizes situations based on situation-awareness cri-
teria, and communicates reciprocally with the SA Data Manager.

• Action Scheduler : Identifies the actions to be triggered by the recognized
situations, approves permitted actions, and schedules these actions.

468 S. Kim et al.

• Action Scheduler : Identifies the actions to be triggered by the recognized
situations, approves permitted actions, and schedules these actions.

• Action Tuple: <t, a1, a2, . . ., an>, where t is the time the action is performed
and a1, a2, . . ., an is a set of attributes of the action. Attributes can be name,
parameter types, parameter values, and the like. When an action is taken,
information about the action is recorded using an action tuple value.

• Situation Expression: Has the format: [∀, ∃] t in <time range> [context,
derivative, action, situation]<compare><value>.

We can form new situations by performing ”not,” ”and,” or ”or” operations
in defined situations. To specify an event-handling plan, i.e., what actions should
be taken to respond to different situations, we define related rules to associate
actions to situations as follows: [activate at situation x] action y. . .. A list of
such ”situation x” and ”action y” forms a plan. The event handler monitors the
situation-match events, and activates the actions associated to them according
to the plan.

3.3 Situation-Aware IDL

In a mission situation, SASA decides new missions that change the original tar-
gets based on the priority of the target type and distance between the target
and missile. In order to suggest the development method which can describe the
situation and make the situation-aware service, SA-IDL is used. The SA-IDL
model such a tuple format is essential to justify the collaborative relation and
conflict. Thus SA-IDL model has the component which are Context Tuple, Ac-
tion Tuple and Derived Context as follows:

Action := (Time, Target, State, StateValue)
Context := (Timestamp, Target, State, StateValue)
A := {x | x is an Action}
C := {x | x is a Context}
DerivedContext := P(C) −→ {true, false}
Situation := (DerivedContext, P(C), A)

In action tuple, an action is used in two manners: one is to change attribute
values of target, and the other is to give orders to target. The context has infor-
mation of target each time, and the situation constitutes the ”Derived Context”
that accumulated the information of the context. Especially, the state of action
tuple and context tuple have attributes of attitude, speed, coordinates, priority
of target, and the ”StateValue” is the real value of the states.

The system operates situation awareness in a target with the knapsack algo-
rithm [14], which is the one of dynamic programming and mathematical models
that defined the successful condition of ADS. The system can reduce total mis-
sion time by situation awareness.

Fig. 2 shows a portion of the SA-IDL specification for the application software
based on the identified situation-awareness requirements. For example, the action

Situation-Aware Based Self-adaptive Architecture 469

Fig. 2. Partial SA-IDL Specification

’missionState’ is triggered when ’the system collects the start of mission caused
by enemy’ (collectionSituation) and ’the center system is allowed to start the
mission’ (allowToMission). The action ’emergency’ is triggered by ’the mission
starts with unpredictable situation’ (emergencyState).

Definition of success and selection of new definition of SA-IDL through mod-
eling is presented as shown in Fig. 3.

Success:= (C, Action, Action)
{ (c, x, y): Sucess; a, b: Situation |
c a.P(C) ∩ b.P(C)
and c ≠ Ø
and a.DerivedContext (c) = true
and b.DerivedContext (c) = true
and x a.A and y b.A
and x.Time = y.Time
and x.Target = y.Target
and x.State = y.State
and x.NewState ≠ y.NewState }

Select:= (C, Action, Action)
{ (c, x, y): Select; a, b: Situation |
c a.P(C) ∩ b.P(C)
and c ≠ Ø
and a.DerivedContext (c) = true
and b.DerivedContext (c) = true
and x a.A and y b.A
and x.State = y.State
and x.Priority > y. Priority
and x.Target ≠ y.Target
and x.NewState ≠ y.NewState
then Success(C, Action, Action)}

Fig. 3. Definition of Success and Select

There exists a conflict (c, x, y) for any two situations, a and b. The above con-
straint defines the context set c that triggers successful action. The intersection
of P(a.C) and P(b.C) denotes a set of context sets that is shared between two
situations, a and b. The context set c should be an element of this intersected
set. Also, it is an input element of the Derived Context functions, and it satisfies
both requirements of the two situations. Additionally, the c should not be an
empty set. The above constraint defines two actions, x and y, that are same as

470 S. Kim et al.

each other. X is an element of a’s action set, and y is of b’s. The two actions
change the same state of the same target at the same time with different values.

However, the mechanism of target selection with the success of ADS has dif-
ferent forms in the priority. The priority of a new target is different from that
of the original target; and then the missile selects a new target to define of a
successful situation.

4 Implementing the SASA

4.1 ADS Simulation

We implemented ADS to verify the effectiveness of our SASA. To implement and
test it in conditions most similar to real systems, we implemented the HLA/RTI-
based real-time distributed simulation. HLA/RTI is now applied by the DoD
Defense Modeling and Simulation Office (DMSO) for simulation-based weapons
systems testing and evaluation. Thus, it is an infrastructure suitable for virtual
experiments under the circumstances of real-time systems.

ADS have been developed to assess the performance of runtime infrastruc-
ture (RTI) for high-level architecture (HLA) and to test or evaluate surface-
to-air missiles now under construction [4][15]. Through this paper, we present
our remodeled ADS, which has SASA applied, and verify its effectiveness. ADS
simulation has seven components: Simulation control center (SMCC), air tar-
get simulator (ATS), multifunction radar (MFR), engagement control simulator
(ECS), launcher (LAU), missile (MSL), and runtime infrastructure (RTI).

The SMCC monitors and controls the real-time distributed simulation for air
defense systems. The ATS creates the air targets and transmits their informa-
tion. The MFR searches out the position of airborne targets and missiles. The
ECS evaluates the threat degree of any airborne targets and assigns threat pri-
ority to the missiles. The LAU transfers information from the ECS to the MSL
and simulates the launcher function. MSL represents the missile and traces the
airborne targets by threat evaluation. These six components interact with each
other, guided by the RTI.

4.2 Algorithm for Engagements

To achieve a mission in a various and changeable situation, SASA needs an
algorithm that can perceive a situation and threat it actively. The algorithm for
engagements in mission-critical situations is given below:

• Step 1. The ADS scans the situation in the radar capable region and updates
the situation data. It checks for changes in the general situation or allocation
mission and sends the data to the SA Data Manager.

• Step 2. The mission must be check-and-change adaptable in the present
situation in the mission state if new mission data about the number of targets
and acquisition of new targets is not to coincide with the general situation.

Situation-Aware Based Self-adaptive Architecture 471

(a) The situation that finds unpredictable target.
(b) The situation that makes a change in a target.

• Step 3. The ADS terminates the mission situation and updates the situation
data in the database.

In Step 2(a), the system needs a priority algorithm for each situation. Military
aircraft allocation algorithms are applied to the field of large-scale allocation
problems in which a collection of resources (assets) must be mapped in an op-
timal or near-optimal manner to a number of objectives (targets), as measured
by an objective function [16].

Πj = 1 −
m∏

i=1

(1 − xi,jpi,j) (1)

U(X) =
n∑

j=1

PjΠj (2)

U(X) =
m∑

i1=1

m∑

i2=1

n∑

j=1

εi1,i2,jxi1,jxi2,j (3)

Y (X) =
∑

i

vi

∑

j

γi,jxi,j (4)

If the efficiency pi,j is interpreted as the probability of the event ”elementary
asset i will achieve elementary objective j if so allocated,” and if these events are
statistically independent, then the probability of elementary objective j being
achieved by allocation strategy X is (2). The degree to which the events fail to
be independent is captured by V (X), which quantifies the additional benefit of
allocating multiple assets to the same objective. Y (X) measures the cost of the
strategy X. This cost includes deterministic costs, such as fuel and ordnance, as
well as statistical costs, such as risk of asset damage or loss. Combining these
terms (2), (3), (4), gives us the final algorithm in (5):

J(X) = AU(X) + BV (X) − rY (X) (5)

where, the efficiency pi,j of asset Bi in achieving objective Tj , the value vi of
asset Bi, the risk i,j associated with allocating Bi to Tj , and the joint efficiency
εi1,i2,j added by simultaneously assigning assets Bi1 and Bi2 to objective Tj .

The SASA system controls an objective with a high-priority target using the
algorithm in each situation. After the mission, it updates the situation data in
the database and refers to it in next mission.

5 Evaluation

5.1 Test Environments

The test results, which include performance measurements, gave us informa-
tion about the mission elapsed time and the hit rate for missiles. We validated

472 S. Kim et al.

the usefulness of the systems having self-adaptation capability as a result, then
compared systems having this capability with systems without it.

The mission elapsed time is the period of time from missile launch to target
shoot-down to accomplish a mission. It is calculated as follow:

Tmission = Thit − Tlaunch (6)

Where Tmission is the mission time, Thit is a time when the missile hits the
target or explodes by itself, Tlaunch is when the missile is launched to engage the
target.

The hit rate of missiles measures the success rate in shooting down targets.
The probability of single shot kill (Pssk) is used as the hit rate. Assume, if given
one shot,

Pssk =
∫ ∞

−∞
f(x) · l(x) · d(x) (7)

Where f(x) is hit probability, l(x) is lethality function. The Gaussian lethality
function is:

l(r) = P0 · e
−x2

2a2 (8)

Where P0 is kill probability at x=0 (x is the distance from the target) and
lethality constant a is predefined as weapon characteristics. It is assumed that
our missile’s lethality constant is 7 meters.

In the execution environments, we changed the number of targets and mis-
siles to represent dynamic mission situations. The test outputs allowed us to
distinguish between the results for systems having self-adaptation capability and
systems without it.

5.2 Test Results

As Table 1 shows, we obtained average values by comparing the systems hav-
ing situation-aware based self-adaptation capability with the systems without
it, judged according to the number of targets. Systems 1 and system 2 are,
respectively, the first and second targets in the mission simulation.

According to the test results, the mission time of the systems having situation-
aware based self-adaptation capability shows moderate reduction over the elapsed
time of systems without this capability. Within a 10ms error rate, the results reveal

Table 1. Mission Time of non-SASA and SASA

Number of Non SASA SASA
Target System 1 System 2 System 1 System 2

4 36804.91 38920.95 36736.03 38846.31
6 46504.26 49170.48 46469.68 49035.68
8 48927.71 51800.27 48422.40 51621.94
10 57340.85 60808.92 56773.07 60120.36

Situation-Aware Based Self-adaptive Architecture 473

a gap in elapsed time between the situation-aware self-adaptive systems and the
other systems as the number of targets increases. The results also show a maximum
term of 680ms. The reason for this is that a missile target has changed without
commands from the GCC.

Table 2. Accuracy Rate of SASA and Non-SASA

Number of Target Non SASA SASA

4 87 90
6 86 88
8 84 88
10 84 88
Average 85.25 88.5

Table 2 shows the accuracy rate of the SASA applied system and the non-
SASA applied system in conditions in which the targets are changed. Because
ADS have demonstrated an 85% mission success rate in real-world situations,
we can assume that the non-SASA systems in this paper also have an 85.25%
success rate. The approximately 15% mission failure rate is caused by defects in
a missile, incorrect radar commands, missile control errors, and tracking faults
caused by changes in targets. In the SASA applied systems, the systems estimate
an 88.5% mission success rate in the simulation because SASA can reduce the
mission elapsed time to shoot down and destroy targets while continuing to
track the most threatful and dynamic targets in the absence of commands from
the MFR.

6 Conclusions

This paper presents a self-adaptive system architecture (SASA) for surface-to-air
missile guidance. To achieve a more sophisticated adaptation capability, we ap-
plied situation-aware middleware to our work. The SASA presented in this paper
includes compositions of concepts such as situation awareness, self-adaptation,
verification, and real-time systems. To verify the proposed architecture, we im-
plemented a HLA/RTI-based real-time distributed simulation, tested it, and
compared the systems having self-adaptation capability with systems lacking
that capability. According to the test results, the time consumed in processing
self-adaptation during a mission did not influence mission success.

On the contrary, the total mission execution time was shortened by saving
the communication time between the missile and the GCC, a conventional situ-
ation. The self-adaptive system determined the mission properly by referring to
changes in the surrounding situation and finally processed the mission in valid
time. Although the communication delay time between subsystems eventually
increased, we could confirm that the mission success rate was considerably in-
creased. Consequently, the SASA adapted system not only saved on total mission
execution time but also increased the hit rate of missiles. It is expected that our

474 S. Kim et al.

proposed architecture will output equivalent performance in real systems be-
cause the simulation and test environments are based on HLA/RTI, which is
basically used for weapons systems testing and evaluation by the DoD.

As future work, we plan a study to verify the self-adaptive systems of real
surface-to-air missile systems and check the effectiveness of an engagement strat-
egy automatically determined by these self-adaptive systems through a model
checking approach. In addition, situation awareness expression language is nec-
essary for hard, real-time systems in a mission critical case.

Acknowledgments. This work was supported by the 2nd Brain Korea 21
Project in 2006.

References

1. Krishna, C. M., Shin, K. G.: Real-Time Systems, McGraw Hill, New York (1999)
2. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow:

Architecture-Based Self-Adaptation with Reusable Infrastructure,IEEE Computer.
October (2004) 46–54

3. Oreizy P., Gorlick, M. M., Taylor, R. N., Heimbigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D. S., and Wolf, A. L.: An Architecture-Based Approach
to Self-Adaptive Software, IEEE Intelligent Systems. May/June (1999) 54–62

4. Lee, T. D., Jeon, B. J., and Choi, S. Y.: RISA: Object-oriented Modeling and
Simulation of Real-time dIstributed Systems for Air defense, Lecture Notes in
Computer Science, OOIS’03. September (2003) 346–355

5. Choi, S. Y., Wijesekera, D.:The DADSim: Air Defense Simulation Environment,
High Assurance Systems Engineering, Fifth IEEE International Symposim on.
HASE (2000) 75–82

6. Lin, C. E., Chen, K. L.: Automated Air Defense System Using Knowledge-Based
System, IEEE transactions on aerospace and electronic systems. v.27 no.1 (1991)
118–124

7. Hua, X. Q., Jie, L. Y., Xian, L. F.: Study on Knowledge Processing Techniques
in Air Defense Operation Intelligent Aid Decision, Computational Intelligence and
Multimedia Applications, ICCIMA 2003. Proceedings. Fifth International Confer-
ence (2003) 114–119

8. Ganak, A. G., Corbi, T. A.: The Drawing Automatic Computing era. IBM System
Journal v.42 no.1 (2003) 5–18

9. Wang , Z., Cui, D., Huang, D., and Zhou, H.: A Self-Adaptation Genetic Algorithm
Based on Knowledge and Its Application, Proceedings of the 5’WorId Congress on
Intelligent Control, and Automation. June 15-19, Hangzhou, P.R. China (2004)
2082-2085

10. Kim, J., Park, S.: Self Adaptive Software Technology for Robotics, Proceedings of
the 11th Asia-Pacific Software Engineering Conference (APSEC’04) (2004)

11. Shetty, S., Neema, S., Bapty, T.: Model Based Self Adaptive Behavior Language for
Large Scale Real Time Embedded Systems, IEEE Conference on the Engineering
of Computer Based Systems (ECBS), Brno. Czech Republic. May (2004)

12. Yau, S., Huang, D., Gong, H., Seth, S.: Development and Runtime Support for
Situation-Aware Application Software in Ubiquitous Computing Environments,
COMPSAC -NEW YORK-, v.28 (2004) 452–457

Situation-Aware Based Self-adaptive Architecture 475

13. Yau, S., Wang, Y., and Huang, D., In, H.: Situation-Aware Contract Specification
Language for Middleware for Ubiquitous Computing, The Ninth IEEE Workshop
on Future Trends of Distributed Computing Systems (FTDCS’03) (2003) 93–99

14. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations, John Wiley & Sons, New York (1990)

15. Jeong, C. S., and Choi, S. Y.: An Object-oriented Simulation Systems for Air
Defense, Lecture Notes in Computer Science. May (2003) 674–683

16. Abrahams, P., Balart, R., Byrnes, J. S., Cochran, D., Larkin, M. J., Moran, W.,
Ostheimer, G.: MAAP: the Military Aircraft Allocation Planner”, Evolutionary
Computation Proceedings, IEEE World Congress on Computational Intelligence,
The 1998 IEEE International Conference (1998) 336-341

Micromobility Management Enhancement for

Fast Handover in HMIPv6-Based Real-Time
Applications�

Sungkuen Lee, Eallae Kim, Taehyung Lim, Seokjong Jeong, and Jinwoo Park

Korea University, Anam-dong Seongbuk-ku, Seoul 136-713, S. Korea
{food2131,eallae,stonebell,jwpark}@korea.ac.kr

Abstract. In this paper, we propose a fast handoff algorithm for micro-
mobility management enhancement in HMIPv6 networks, which elimi-
nates the DAD procedure involved in the regular HMIPv6 in order to
decrease handoff latency and increase the resource utilization efficiency.
In the proposed scheme, the MAP is designed to guarantee the unique-
ness of MN’s interface identifier within a MAP domain as long as the
MN moves in a MAP domain, so that the MN configures the new address
without the DAD procedure resulting in the decreased handoff latency
significantly. When the MN resides in a subnet, MIPv6 is used adap-
tively as a mobility management protocol, which is to reduce bandwidth
waste from the IP packet header overhead of IP-in-IP tunneling from the
regular HMIPv6. Thru various computer simulation results, we verified
the superior performance of the proposed scheme by comparing with the
results of other schemes, MIPv6 and HMIPv6.

1 Introduction

Next-generation broadband wireless/mobile networks, such as WLAN, WiBro
and WiMAX, are envisioned to have IPv6-based infrastructure. One of the re-
search challenges for next-generation all IPv6-based networks is the design of
intelligent IP mobility management protocol which has a seamless mobility and
minimal signaling overhead. Considering a rapidly increasing demands of real-
time services recently, it is more essential to develop the fast handoff protocol
in order to support real-time services like VoIP in wireless/mobile networks [1]
and [2].

Internet Engineering Task Force (IETF) has proposed the Mobile IPv6 (MIP
v6) as the basicmobilitymanagementprotocol for IPv6-basedwireless/mobile net-
works [3]. MIPv6, however, suffers from several shortcomings, such as high hand-
off latency, large signaling overhead because it is considered to be a macromobility
management protocol. Therefore, it is insufficient to support real-time IP services.
In other words,when the mobile node (MN) detects that it has moved to a new sub-
net, the MN first needs to perform duplication address detection (DAD) to verify
� This work was supported by University IT Research Center Project at Korea

University.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 476–487, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Micromobility Management Enhancement 477

the uniqueness of its link-local address on the new link, as specified in IPv6 [4]. In
addition, after forming the new care-of-address (CoA) with stateless address auto-
configuration [5], the MN must update the binding cache its home agent (HA) and
correspondent node (CN) by sending a binding update (BU). Consequently, two
procedures of the address resolution and (home) network registration in MIPv6
are primarily elements in long handoff latency, which can heavily deteriorate the
delay-sensitive IP real-time services.

To enhance the performance of the basic MIPv6, researchers have been actively
working on a fast handoff protocol such as hierarchical mobile IPv6 (HMIPv6) [7],
fast handover for mobile IPv6 (FMIPv6) [8] and so on. Particularly, there have
been numerous extension proposals, based on HMIPv6 [9]-[12]. HMIPv6 are de-
signed to minimize handoff latency and the amount of signaling to HA and CN by
allowing the MN to locally register in a mobile anchor point (MAP) domain. How-
ever, HMIPv6 is also insufficient to support real-time IP services, which is the same
as MIPv6, because of long address resolution time of the DAD procedure to verify
the uniqueness of the new CoA. In addition, for the local mobility management
in HMIPv6, it uses the IP-in-IP packet tunneling approach using IPv6 encapsu-
lation to deliver data packets to an MN. However, bandwidth waste from the IP
packet header overhead of IP-in-IP tunneling is occurred especially for the MN
with low mobility. And this is more severe to small packets, such as voice packets.
Moreover, considering bandwidth-limited wireless link, this inefficiency of resource
utilization is also more severe.

In this paper, we propose a fast handoff algorithm for micromobility manage-
ment enhancement in HMIPv6 networks, which eliminates the DAD procedure
for the fast micromobility handoff and utilizes MIPv6 scheme adaptively based
on the HMIPv6 for the efficient resource utilization. In the proposed scheme,
the MAP guarantees the uniqueness of MN’s interface identifier within a MAP
domain as long as the MN moves in a MAP domain. Therefore, the MN con-
figures the new address without any DAD procedures, so that handoff latency
and signaling is decreased significantly. And also the proposed scheme utilizes
HMIPv6 as a mobility management protocol only when the MN moves from one
subnet to another, while it utilizes MIPv6 as a mobility management protocol
when the MN resides in a subnet. Therefore, it reduces bandwidth waste from
the IP packet header overhead of IP-in-IP tunneling, which results in an efficient
resource utilization.

The rest of paper is organized as the following: We describe the proposed
mobility management scheme in section 2. Section 3 presents some simulation
results comparing the proposed scheme to MIPv6 and HMIPv6. After that we
provide some concluding remarks in section 4.

2 The Proposed Handoff Algorithm

2.1 Principle

We propose a fast handoff algorithm for micromobility management enhance-
ment in HMIPv6 networks, which eliminates the DAD procedure for the fast

478 S. Lee et al.

micromobility handoff and utilizes MIPv6 scheme adaptively based on HMIPv6
for the efficient resource utilization.

The DAD time for a new address takes quite a long time with respect to the
handoff latency. If the DAD time is reduced or eliminated, handoff latency will
be quite low, so that the protocol can meet the requirement for traffic that is
delay sensitive such as VoIP. In the proposed scheme, the MAP guarantees the
uniqueness of MN’s interface identifier within a MAP domain as long as the
MN moves in a MAP domain. Therefore, the MN configures the new address
without any DAD procedures, so that handoff latency and signaling is decreased
significantly.

For the local mobility management in HMIPv6, it uses the IP-in-IP packet
tunneling approach using IPv6 encapsulation to deliver data packets to an MN.
However, if the MN does not move between subnets frequently and resides in
a subnet for a long time, bandwidth waste from the IP packet header over-
head of IP-in-IP tunneling can be occurred. Considering 40 bytes of IP packet
header, this is more severe to small packets, such as voice. And considering
bandwidth-limited wireless link, this inefficiency of resource utilization is also
more severe. Therefore, the proposed scheme utilizes MIPv6 scheme adaptively
based on HMIPv6 for the efficient resource utilization. In other words, when the
MN resides in a subnet, MIPv6 scheme is utilized for mobility management to
decrease the bandwidth waste from IP-in-IP tunneling. On the contrary, when
the MN moves from one subnet to another, the mobility management protocol
is changed to HMIPv6 scheme to support fast handoff.

2.2 Initialization (Power Up)

When an MN is powered up in a MAP domain, the procedure of the initialization
in the proposed mobility management scheme is similar to that of MIPv6, except
that the proposed scheme has an additional procedure for the registration of
MN’s interface identifier to MAP. The initialization procedure for the proposed
scheme is described as follow (Fig. 1).

– Step 1: The MN forms link-local address with link-local prefix and MN’s in-
terface identifier and, then, it verifies the uniqueness of its link-local address
on the new link through the DAD procedure [4].

– Step 2: The MN sends a router solicitation (RS) message to new access router
(nAR) and waits for a router advertisement (RA) message from nAR.

– Step 3: When a RA message from nAR is received, the MN forms its new CoA
(nCoA) with the network information contained in a RA message through
stateless address autoconfiguration [5].

– Step 4: Once the nCoA construction is done, the MN sends a interface identi-
fier registration (IIR) message to MAP through the nAR in order to register
and guarantee the uniqueness of MN’s interface identifier in a MAP domain.

– Step 5: The MAP verifies the uniqueness of MN’s interface identifier in a
domain. And if the check is successful, the MAP registers MN’s interface
identifier and guarantees the uniqueness of MN’s interface identifier as long

Micromobility Management Enhancement 479

as the MN moves in a MAP domain. Then, the MAP sends an interface
identifier registration acknowledgment (IIRA) message to MN in response
to a IIR message.

– Step 6: After registering MN’s interface identifier with the MAP, the MN
registers MN’s current nCoA with HA by sending a binding update (BU)
message, which specifies the binding (nCoA, home address).

Fig. 1. The procedure of the initialization

2.3 Micromobility Handoff (Intra-domain Handoff)

When the MN moves from one subnet to another in a MAP domain, the proce-
dure of micromobility handoff in the proposed mobility management scheme is
described as follow (Fig. 2)

– Step 1: Before layer2 handoff (L2HO), the MN sends a RS message to old
access router (oAR) to request the network information on the new access
router (nAR) and waits for a RA message from oAR.

– Step 2: With the network information in a RA message from oAR, the MN
forms its new CoA (nCoA), based on MN’s interface identifier, without the
DAD procedure.

– Step 3: The MN sends a local binding update (LBU) message to MAP that
specifies the binding (oCoA, nCoA). And then, the MAP returns a local
binding acknowledgement (LBA) message to the MN and starts tunneling
data packets to the nCoA using IPv6 encapsulation. The nAR buffers MN’s
data packets until it receives a fast neighbor advertisement (FNA) message

480 S. Lee et al.

from the MN. Therefore, after local binding update, mobility management
protocol is changed from MIPv6 scheme to HMIPv6.

– Step 4: On receiving a LBA message from the MAP via the oAR, the MN
performs L2 handoff from the oAR to the nAR. After L2 handoff complete,
the MN sends a fast neighbor advertisement (FNA) message to the nAR.

– Step 5: When the nAR receives a FNA message, it returns a neighbor ad-
vertisement acknowledgement (NAACK) message to the MN and also starts
forwarding the buffered data packets.

– Step 6: After receiving a NAACK message, the MN updates MN’s current
nCoA with HA and CN by sending a BU message which specifies the bind-
ing (nCoA, home address). Therefore, after micromobility handoff, mobility
management protocol is changed from HMIPv6 scheme to MIPv6.

Fig. 2. The procedure of micromobility handoff

There is a binding cache in the MAP for recording the association between the
MN’s oCoA and nCoA. When the MAP receives MN’s data packets, it checks
its binding cache firstly. If not in its binding cache, it forwards data packets by
normal route rule. Otherwise, it intercepts these packets, and tunnels them to
the nCoA of the MN using IPv6 encapsulation.

2.4 Analysis and Discussions

We further explain the proposed mobility management scheme with handoff
timing, as shown in Fig. 3. We assume that the time for step (1) and (2) of the

Micromobility Management Enhancement 481

Fig. 3. Handoff timing in MIPv6, HMIPv6 and the proposed scheme

proposed scheme is TR, which is the time of a RS from the MN to the oAR and
a RA from the oAR to the MN. The time for step (2) is assumed to be zero,
because the proposed scheme does not perform the DAD. The time for step (3)
is TLBU , which is the time of LBU from the MN to the MAP and LBA from
the MAP to the MN. TL2HO is the time for layer2 handoff (L2HO) in step (4)
and TFNA is the time of FNA from the MN to the nAR and FAACK from the
nAR to the MN in step (5). For the proposed scheme, total time of signaling for
micromobility handoff is expressed as:

TProposed−scheme = TR + TLBU + TL2HO + TFNA (1)

However, because the proposed scheme anticipates MN’s movement based on L2
triggers, the MN can receive the network information for the nAR via oAR and
form the new address before layer2 handoff. Therefore, we can ignore the time
of TR and TLBU and total real time of handoff signaling is as follow:

TProposed−scheme = TL2HO + TFNA (2)

Equation (3) expresses total time of signaling for micromobility handoff in MIPv6,
and HMIPv6 [3], [7]. In this equation TDAD is the time taken for the DAD proce-
dure and TBU is the time taken for binding update to HA and CN.

TMIPv6 = TL2HO + TR + TDAD + TBU

THMIPv6 = TL2HO + TR + TDAD + TLBU
(3)

If we compare the total time of signaling to MIPv6 and HMIPv6 by subtracting
(3) by (2), we have the following:

TMIPv6 − TProposed−scheme = TR + TDAD + TBU − TFNA = TDAD + TBU

THMIPv6 − TProposed−scheme = TR + TDAD + TLBU − TFNA = TDAD + TLBU

(4)

482 S. Lee et al.

Equation (4) shows that the total time of signaling in the proposed scheme is
considerably lower than any other schemes, such as MIPv6 and HMIPv6. This
is because the MN can configure the new address without any DAD procedures
under the government of the MAP in a domain. Therefore, the proposed scheme
can support fast handoff mobility management with very few packet loss.

Table 1. Simulation parameters

Parameters Values

L2 handoff delay 150 ms
DAD time for LCoA 500 – 1300 ms
Wired link bandwidth 100 Mbps
Wireless link bandwidth 20 Mbps
Packet rate 20 – 100 pps
Wired link delay between MAP and AR 10 ms
Wired link delay between AR and BS 10 ms
Wired link delay through the Internet 50 ms
Wireless link delay between BS and MN 10 – 50 ms
UDP packet length 200 bytes

Fig. 4. Simulation architecture topology

Micromobility Management Enhancement 483

3 Simulation Results and Analysis

In this section, we attempt to investigate into the micromobility handoff perfor-
mances of the proposed scheme and compare to those of two conventional mobility
management schemes, MIPv6 and MIPv6, through the computer simulation.

3.1 Simulation Environment

Simulation model is developed using OPNETTM and performance metrics are
micromobility handoff delay and packet losses. Fig. 4 shows the simulation

Fig. 5. Comparison of micromobility handoff delay versus wireless link delay: (a) In
case of 500 ms DAD time (up), (b) In case of 1 s DAD time (down)

484 S. Lee et al.

Fig. 6. Comparison of micromobility packet losses versus data generation rates: (a) In
case of 500 ms DAD time (up), (b) In case of 1 s DAD time (down)

architecture topology. IP network A, B and C are connected to each other
through the Internet. The MN in IP network C is assumed to move following
the path of the arrow, as shown in Fig. 4. In order to simulate the real traffic,
the CN generates constant bit rate (CBR) traffic over a user datagram protocol
(UDP). Network parameters of simulation are summarized in Table 1.

3.2 Simulation Results

Fig. 5 presents comparison of micromobility handoff delay for the proposed
scheme versus MIPv6 and HMIPv6 as a function of wireless link delay. The

Micromobility Management Enhancement 485

Fig. 7. Comparison of micromobility handoff delay versus DAD time

typical wireless link delay between the MN and base station (BS) is between
10 and 50 ms, depending on the channel condition and their distance. In this
simulation, we consider two cases for DAD time, which are (a) 500 ms and (b)
1 s. As shown in Fig. 5, we can see that MIPv6 and HMIPv6 have high handoff
delay due to the influence of the DAD time. It also shows that handoff delay
of these two schemes increases as the DAD time increases. Although HMIPv6
improves the handoff performance, it is not sufficient to support IP real-time
services. However, of particular significance from these simulations are that the
proposed scheme shows considerably low and stable handoff latency regardless
of the DAD time. This is because the proposed scheme can eliminate the DAD
procedures by guaranteeing the uniqueness of MN’s interface identifier in a MAP
domain.

Fig. 6 presents comparison of micromobility packet loss for the proposed
scheme versus MIPv6 and HMIPv6 as a function of data generation rates of
the CN. In this simulation, wireless link delay is assumed to be 20 ms and we
also consider two cases for DAD time, which are (a) 500 ms and (b) 1 s. Sim-
ulation results show that the proposed scheme has no packet loss by using no
DAD procedures and buffering mechanism for MN’s packet in the new access
router. However, we can see that MIPv6 and HMIPv6 have lots of packet losses
and these are more severe as data generation rates increase in CN.

Fig. 7 shows the micromobility handoff delay between the proposed scheme
and others, MIPv6 and HMIPv6, for various DAD times. Wireless link delay
is also assumed to be 20 ms. Simulation results show that the proposed scheme
demonstrates a considerable performance improvement in terms of handoff delay
over other schemes, which has high handoff delay due to the influence of the DAD

486 S. Lee et al.

time. Therefore, the proposed scheme is more suitable for larger network, which
has lots of IPv6 addresses and might take a longer time to perform the DAD.

4 Conclusion

We propose a fast handoff algorithm for micromobility management enhance-
ment in HMIPv6 networks, which eliminates the DAD procedure for the fast
micromobility handoff and utilizes MIPv6 scheme adaptively based on HMIPv6
for the efficient resource utilization.

For analyzing the performance evaluation, we attempt to investigate into the
micromobility handoff performances of the proposed scheme and compare to
those of two conventional mobility management schemes, MIPv6 and MIPv6,
through the computer simulation. Simulation results show that the proposed
scheme shows considerably low and stable handoff latency and has no packet
losses in a micromobility handoff. Therefore, we believe that the proposed scheme
can lay the foundation for the prototype of a fast and efficient mobility manage-
ment scheme to support real-time services, such as VoIP, in a larger network.

References

1. P. Marques, H. Castro and M. Ricardo, ”Monitoring Emerging IPv6 Wireless Ac-
cess Networks,” IEEE Wireless Commun., pp.47-53, Feb. 2005

2. N. Montavont and T. Noel, ”Handover management for mobile nodes in IPv6
networks,” IEEE Commu. Mag., vol. 40, issue 8, pp.38-43, Aug. 2002

3. D. Jonhnson and C. Perskins, ”Mobility Support in IPv6,” IETF RFC 3775, 2004

4. T. Narten, E. Nordmark and W. Simpson, ”Neighbor Discovery for IPv6,” IETF
RFC 2461, 1998

5. S. Thomson and T. Narten, ”IPv6 Stateless Address Autoconfiguration,” IETF
RFC 2462, 1998

6. J. Bound, B. Volz, T. Lemon, C. Perkins and M. Carney, ”Dynamic Host Config-
uration Protocol for IPv6 (DHCPv6),” IETF RFC 3315, July 2003

7. H. Soliman, C. Castelluccia, K. El Malki and L. Bellier, ”Hierarchical Mobile IPv6
Mobility Management (HMIPv6),” IETF RFC 4140, Aug. 2005

8. R. Koodli, ”Fast Handovers for Mobile IPv6,” IETF RFC 4068, July 2005

9. K. Omae, M. Inoue, I. Okajima and N. Umeda, ”Handoff Performance of Mobile
Host and Mobile Router Employing HMIP extension,” in proc. IEEE Wireless
Commun., Netw., vol. 2, pp.1218-1223, Mar. 2003

10. R. Hsieh, W. G. Zhou and A. Seneviratne, ”S-MIP: A Seamless Handoff Archi-
tecture for Mobile IP,” in proc. IEEE 22nd Annu. Joint Conf. IEEE Comput.
Commun. Soc., vol.3, pp.1774-1784, May 2003

11. T. E. Klein and S. J. Han, ”Assignment Strategies for Mobile Data Users in Hi-
erarchical Overlay Networks: Performance of Optimal and Adaptive Strategies,”
IEEE J. Sel. Areas Commun., vol. 22, no. 5, pp.849-861, June 2004

12. W. Ma and Y. Fang, ”Dynamic Hierarchical Mobility Management Strategy for
Mobile IP Networks,” IEEE J. Sel. Areas Commun., vol. 22, issue 4, pp.664-676,
May 2004

Micromobility Management Enhancement 487

13. S. Deering and R. Hinden, ”Internet Protocol version 6 (IPv6) Specification,” IETF
RFC 2461, 1998

14. G. Daley, B. Pentland, and R. Nelson, ”Effects of Fast Router Advertisement on
Mobile IPv6 Handovers,” in proc. 8th IEEE Int. Symp. Comput. Commun., pp.
557-562, 2003

15. W. K. Lai and J. C. Chiu, ”Improving handoff performance in wireless overlay
networks by switching between two-layer IPv6 and one-layer IPv6 addressing,”
IEEE J. Sel. Areas Commun., vol. 23, issue 11, pp.2129-2137, Nov. 2005

DVSMT: Dynamic Voltage Scaling for

Scheduling Mixed Real-Time Tasks

Min-Sik Gong1, Myoung-Jo Jung1, Yong-Hee Kim1, Moon-Haeng Cho1,
Joo-Man Kim2, and Cheol-Hoon Lee1

1 System Software Lab., Dept. of Computer Engineering,
Chungnam National University, Daejeon 305-764, Korea
{msgong,mjjung,yonghee,root4567,clee}@cnu.ac.kr

2 Dept. of Bioinformation & Electronics,
Pusan National University, Pusan 609-735, Korea

joomkim@pusan.ac.kr

Abstract. In this paper, we address a power-aware scheduling algo-
rithm for mixed real-time tasks. A mixed-task system consists of peri-
odic and sporadic tasks, each of which is characterized by its worst-case
execution requirements and a deadline. We propose a dynamic voltage
scaling algorithm called DVSMT, which dynamically scales down the
supplying voltage (and thus the operating frequency) using on-line slack
distribution when jobs complete earlier while still meeting their dead-
lines. Simulation results show that DVSMT saves up to 60% more than
the existing algorithms both in the periodic and mixed task systems.

1 Introduction

In recent years, computation and communication have been steadily moving to-
ward battery-operated mobile and portable platforms/devices, such as cellular
phones, unmanned robots, and ubiquitous sensor network nodes. In these appli-
cations, the energy savings is very important to extend the lifetime of devices.

In the last decade, significant research and development efforts have been
made on Dynamic Voltage Scaling (DVS) for real-time systems to make energy
savings by scaling the voltage and frequency while maintaining real-time deadline
guarantees [1-7]. This is possible because the energy dissipated per cycle with
CMOS circuitry scales quadratically to the supply voltage (E ∝ V 2) [8]. Al-
though real-time tasks are specified with worst-case computation requirements,
they generally use much less than the worst-case values for most invocations
[9]. Most DVS algorithms make use of these unused slack times when scaling
down the supply voltage (and hence, frequency) while still meeting all dead-
line requirements. Phillai and Shin[2] proposed a novel DVS algorithm called
cycle-conserving EDF (called ccEDF) along with some improvements for the
periodic-task systems. It calculates the scaling factor upon release or completion
of a job of each task by distributing the slack to all the tasks in the system.

Aydin et al. suggested a dynamic reclaiming algorithm, called DRA, which
attempts to allocate the maximum amount of unused CPU time to the first task
at the appropriate priority level[6].

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 488–497, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

DVSMT: Dynamic Voltage Scaling for Scheduling Mixed Real-Time Tasks 489

For sporadic-task systems, Qadi, et al. [4] suggested the DVSST algorithm
which scales the processor frequency up and down depending solely when jobs
are released without making use of the slack time.

Recently Lee and Shin[5] proposed an on-line dynamic voltage scaling algo-
rithm, called OLDVS, for a general task model. OLDVS does not assume task
periodicity, and thus, nor requires any a priori information on the task set to
schedule.

In this paper, we propose a DVS algorithm called DVSMT for a mixed-task
system which consists of both periodic and sporadic tasks. When calculating the
scaling factor, the DVSMT algorithm distributes the slack time to all ready tasks.
With this scheme, we could reduce the variation of voltage levels, resulting in a
more energy savings. The proposed algorithm requires only O(1) computation
on release and completion of a job of each task, so it is fairly easy to incorporate
it into a real-time operating system. Simulation results show that DVSMT saves
up to 60% more than the existing algorithms both in the periodic-task and
mixed-task systems.

The paper is organized as follows. In the next chapter, we present the system
model and basic concepts of the proposed algorithm considered in this paper.
Chapter 3 presents details of the proposed algorithm and illustrates how it works.
The simulation results are presented in Chapter 4 and Chapter 5 concludes the
paper with a summary.

2 The DVS Algorithm for the Mixed Tasks

2.1 System Model

We consider a preemptive hard real-time system in which real-time tasks are
scheduled under the EDF scheduling policy. The application considered in this
paper is a mixed-task system T = {T1, T2, ..., Tn} of which each task Ti,j =
(pi, ei) is a periodic task or a sporadic task with the period of pi and the worst-
case execution time(WCET) of ei . Also, each task has the relative deadline of
Di and we assume that Di = pi. All tasks are independent and preemptive. Each
task Ti invokes an infinite series of jobs Ji,j = (ri,j , di,j), for j ≥ 1 , with the
release time of ri,j and the deadline di,j . If Ti is a periodic task, ri,j+1 = ri,j +pi.
Otherwise, if Ti is a sporadic task, ri,j+1 ≥ ri,j +pi. In other words, the minimum
inter-arrival time of jobs of a sporadic task is its period. In both types of task,
we assume that di,j = ri,j + pi = ri,j + Di. The utilization ui of task Ti is the
ratio of the execution requirement to its period(i.e., ui,j = ei/pi). The total
utilization utot is the sum of utilizations of all tasks (i.e., utot =

∑n
i=1 ui).

The target variable voltage processor is assumed to be able to scale its supply
voltage and clock speed within its operational ranges [fmin, fmax] and [vmin,
vmax]. Each operating frequency is associated with one minimum supply voltage,
i.e., (fi, vi). Real-time systems that use DVS-based scheduling scale the WCET
assuming that the worst-case execution cycle(WCEC) remains constant even
with a change in the frequency.

490 M.-S. Gong et al.

To reduce energy consumption of CPU, we may well decrease the operating
frequency and voltage level. The scaling factor to adjust the operating frequency
of the processor may be determined by the current total utilization utot of all
the released tasks under EDF. Let α = fi/fmax denote the scaling factor that
represents the fraction of the current processor frequency fi over the maximum
processor frequency fmax. As we consider a power-aware algorithm for a mixed
task set under EDF scheduling, a schedule is feasible for the task set if and only
if

∑n
i=1

ei

pi
≤ α.

2.2 Basic Concepts

We propose a dynamic voltage scaling algorithm called DVSMT, which dynami-
cally scales down the supplying voltage (and thus the operating frequency) using
the on-line slack distribution scheme explained so far in the case that jobs com-
plete earlier while still meeting their deadlines. The slack of a finished task is
expressed by its borrowed cycles.

We will illustrate the concept of the proposed algorithm as follows. Consider
a set T real-time tasks whose worst case total utilization is equal to or less than
1 (for example, ui + uj + uk ≤ 1 in Fig. 1). That consists of three tasks Ti, Tj ,
and Tk where each task is denoted by three-tuple Ti(pi, di, ei). When a task Ti

is released, the worst-case execution requirements ei of Ti can be distributed to
its deadline, i.e., from the arrival time to the deadline of each its jobs, as shown
in Fig. 1(b).

Suppose that, for any time interval, the CPU cycles are allocated to each task
proportionally to their utilizations(see Fig. 1(b)). In this case, each job completes
exactly at its deadline with the scaling factor α = ui + uj + uk(≤ 1). For any
time interval [t1, t2), let ci,[t1,t2) denote the CPU cycles allocated to Ti with its
utilization ui in the interval. Then, ci,[t1,t2) = ui · (t2 − t1). With the condition
that ri ≤ t1 < t2 ≤ di, ci,[t1,t2) is equal to or less than the worst-case execution
requirements ei, i.e., ci,[t1,t2) ≤ ei.

Definition 1. For a time interval [t1, t2) during which job Ji,j executes, the
total amount ctot,[t1,t2) of CPU cycles allocated in this interval is as follows:

ctot,[t1,t2) =
n∑

k=1

ck,[t1,t2). (1)

To guarantee the feasible execution of Ti under the worst-case scenario with the
condition that ri ≤ t1 < t2 ≤ di, ctot,[t1,t2) must be greater than or equal to the
worst-case execution requirements ei, i.e., ctot,[t1,t2) ≥ ei.

Definition 2. For any time interval [t1, t2) during which job Ji,j executes, the
borrowed cycles Bi,j of Ji,j is as follows:

Bi,j =
∑

k �=i

ck,[t1,t2). (2)

DVSMT: Dynamic Voltage Scaling for Scheduling Mixed Real-Time Tasks 491

Ji,2 Ji,3 Jj,2Jk,1Jj,1 Jk,1Ji,1

ui

Tk

Tj

Ti

di

α

t1 dj dkt2
t

ui+uj+uk

ui+uj

t3

(a)

ui

Tk

Tj

Ti

reserved
for next job

di

α

t1 dj dkt2
t

ui+uj+uk

ui+uj

1 2,[,)k t tc

1 2,[,)j t t
c

1 2
,[,)i t tc

2,[,)
i

i t dc
reserved

for next job

(b)

ui

ui+uj+uk

reserved
for next job

reserved
for next job

di

α

t1 dj dkt2
t

t3

ui+uj

Tk

Tj

Ti

2 3,[,)k t tc

2 3
,[,)j t tc

2 3
,[,)i t tc

3
,[,)jj t d

c
1 2

,[,)j t tc

(c)

Fig. 1. Figures to illustrate the concept of the DVSMT

Corollary 1. For given a set of real-time tasks whose worst case total utilization
is equal to or less than 1, the borrowed cycles Bi,j of job Ji,j which started at time
t1 and completed without preemption at time t2 is equal to ui · {Di − (t2 − t1)}
under the worst-case execution scenario. That is,

Bi,j = ui · {Di − (t2 − t1)}. (3)

If the equation (3) does not hold, deadline misses may occur under the worst
case scenario because the execution requirements are not conserved for ready
tasks preempted by job Ji,j . Therefore the borrowed cycles must be given back
to the ready tasks from which task Ti borrowed CPU cycles.

For example, in Fig. 1(b), Ji,1 starts execution immediately upon release at
time t1 and it is the highest priority task during [t1, di). Thus, job Ji,1 consumes
a portion of the execution requirements of Tj and Tk, as the amount of cj,[t1,t2)
and ck,[t1,t2), respectively, during its execution. Under the worst-case execution
scenario, it is obvious that ci,[t1,t2) + ci,[t2,di) = ci,[t1,t2) + cj,[t1,t2) + ck,[t1,t2) to

492 M.-S. Gong et al.

conserve the execution requirements of Ji,1. Then, ci,[t2,di) = cj,[t1,t2) + ck,[t1,t2).
By definition, the borrowed cycles Bi,1 are equal to cj,[t1,t2) + ck,[t1,t2), hence
Bi,1 = ci,[t2,di). Because ci,[t2,di) is equal to ui · (di − t2), Bi,1 are consequently
equal to ui · {Di − (t2 − t1)} as shown in the Corollary 1.

For simplicity, let Ei,j,[t1,t2) denote the elapsed time t2 − t1 of Ji,j . In other
words, Ji,j executes without preemption by other task in the interval [t1, t2).
Hence, ci,[t2,di) = ui · Ei,j,[t1,t2).

On the contrary, as for task Tj , its job Jj,1 releases at time rj(= t1) and starts
execution at time t2(> t1) as shown in Fig. 1(c). In other words, task Tj was
preempted by the higher priority task Ti in the interval [t1, t2). Then, task Tj

completes at time t3. Therefore, cj,[t1,t2)+cj,[t2,t3)+cj,[t3,dj) = ci,[t2,t3)+cj,[t2,t3)+
ck,[t2,t3) under the worst-case execution scenario. Thus, cj,[t1,t2) + cj,[t3,dj) =
ci,[t2,t3) + ck,[t2,t3). By the way, cj,[t1,t2) + cj,[t3,dj) = uj · {(dj − t1) − (t3 − t2)} =
uj ·(Dj −Ej,1,[t2,t3)), where Dj is dj −t1. From this, we can see that the Corollary
1 is also valid under the condition that task Tj is preempted by higher-priority
tasks.

From the equation (3), on the completion time of any job Ji,j , the borrowed
cycles Bi,j can be distributed in the interval of Di −Ei,j . We denote the current
utilization ui,j of the completed job Ji,j as the following equation:

ui,j =
Bi,j

Di − Ei,j
. (4)

From equations (3) and (4), ui,j always equals to the worst-case utilization
ui = ei/pi under the worst-case execution scenario. As a task completes earlier
than its worst-case execution time, both its Bi,j and Ei,j become smaller. Hence,
ui,j of a task is smaller than or equal to its worst-case utilization ui(i.e., ui,j ≤
ui). Consequently, we can scale down the CPU speed by re-calculating the cur-
rent utilization using the borrowed cycles consumed by the just finished task.
Also, as for sporadic tasks, if the finished task is not released again at its dead-
line, from that time the current utilization can be set to zero until its next
release. These concepts can be applied to the DVS-based real time system with
the periodic and sporadic tasks.

3 The Algorithm DVSMT

To guarantee the feasible execution of all the upcoming tasks under the worst-
case scenario, we must make a conservative algorithm. For this, DVSMT gives
back the borrowed cycles of the just finished task to all ready tasks until its
deadline.

When the job Ji,j is released, we cannot know its actual execution require-
ments, so we must make a conservative assumption that it will need its specified
worst-case execution requirements. DVSMT starts with a minimum possible fre-
quency level using the worst-case utilization ui of the released jobs rather than
using the static voltage algorithm of [2] to set the initial frequency level which
is theoretically zero.

DVSMT: Dynamic Voltage Scaling for Scheduling Mixed Real-Time Tasks 493

We introduce a deadline queue, denoted by dQ, which consists of jobs which
are released but their deadlines are not elapsed. The deadline queue dQ = {Ji,j}
is sorted by the deadlines of jobs where the k-th job has the k-th nearest deadline.
It is updated on the arrival, deadline, and completion times of each job. When a
job Ji,j is released, if its previous job Ji,j−1 does not exist in dQ, Ji,j is inserted
into the queue. Otherwise, Ji,j replaces Ji,j−1 in dQ. If a sporadic task Ti does
not release a next job Ji,j+1 at its deadline di,j , the algorithm removes Ji,j from
dQ.

The DVSMT is simple and works as shown in Fig. 2. It should be fairly easy to
incorporate into a real-time operating system, and does not require a significant
processing cost. The dynamic schemes require O(1) computation, and should not
require significant processing over the scheduler. The most significant overheads
may come from the hardware voltage switching times. However, no more than
three switches can occur per task, so there overheads can easily be accounted
for, and added to, the worst-case task execution times.

on initial or IDLE state:
α = 0.0; // scaling factor
Empty dQ;

on arrival time of Ji,j :
// update Bk,j and Ek,j

// for the current task Tk

Bk,j = Bk,j + (t − l) · (α − uk,j);
Ek,j = Ek,j + (t − l);

l = t; // set the context switch time l
// to the current time t

Ei,j = 0; // reset the elapsed time
Bi,j = 0; // reset the borrowed cycles

if Ji,j−1 exists in dQ then
replace Ji,j−1 with Ji,j ;

else
insert Ji,j into dQ;

endif;
sort dQ by the deadline under EDF;
set ui,j to ei/pi;
scale voltage and frequency();

on completion time of Ji,j :
Bi,j = Bi,j + (t − l) · (α − ui,j);
Ei,j = Ei,j + (t − l);

update ui,j = Bi,j/(Di − Ei,j);
scale voltage and frequency();

on deadline di,j of Ji,j :
extract Ji,j from dQ;
scale voltage and frequency();

scale voltage and frequency():
select the next higher frequency
fi ∈ { fmin, ..., fmax|fmin < ... < fmax}

such that
∑m

i=1 ui ≤ fi/fmax,
for {Ji,j} in dQ

select the supply voltage
associated with fi;

Fig. 2. Pseudo-code for the algorithm DVSMT

As mentioned above, the DVSMT algorithm adjusts the supply voltage and
operating frequency of the processor on the release, deadline, and completion
times of each job. Each set T of real-time tasks with the total utilization less
than or equal to 1 is feasibly schedulable by DVSMT. This is proved in the
following lemma and theorem.

494 M.-S. Gong et al.

Lemma 1. Given a set of real-time tasks whose worst case total utilization is
equal to or less than 1, the total sum of the executed cycles of a task Ti, which
is preempted n times during its execution under the DVSMT algorithm satisfy
the following equation, where [ts,j , te,j) is the j-th preemption interval and the
scaling factor αj is equal to or less than 1.

n∑

j=1

αjE[ts,j ,te,j) ≤ ei (5)

Proof. The higher priority task consumes the borrowed cycles for its lower prior-
ity tasks and then those are given back on its completion until its deadline (see
Corollary 1). Therefore, all the cycles allocated during execution of the higher
tasks are given back to each preempted task Ti. Consequently,

∑n
j=1 αjE[ts,j ,te,j)

is equal to ei under the worst-case execution scenario and less than ei in other
cases. ��

If
∑n

j=1 αjE[ts,j ,te,j) is greater than ei, then task Ti misses its deadline. However,
every job is given back its CPU cycles borrowed by higher-priority tasks until its
deadline. This means that each job completes at or before its deadline. Therefore,
for a real-time task set T, if its total utilization is less than or equal to 1, the
DVSMT algorithm always finds a feasible schedule. This is formally stated in
the following theorem.

Theorem 1. Each set T of real-time tasks with the total utilization less than
or equal to 1 is feasibly schedulable by DVSMT.

Proof. It is obvious from Lemma 1. ��

4 Experimental Results

To evaluate the potential energy savings from voltage scaling in a real-time
scheduled system, we performed some simulations by using RTSIM [10] which is a
real-time system simulator. We show some simulation results and provide insight
into the most significant system parameters affecting energy consumption.

The simulation assumes that a constant amount of energy is required for each
cycle of operation at a given voltage. Only the energy consumed by the proces-
sor is computed, and variations as different types of instructions executed are
not taken into account. The simulation also assumes a perfect machine in that
a perfect software-controlled halt feature is provided by the processor, so idle
time consumes no energy. In particular, we do not consider preemption overhead,
task switch overheads, and the required time to switch operating frequency or
voltages. The real-time task sets are specified with a pair of numbers for each
task indicating its period and worst case computation time. The task set is

DVSMT: Dynamic Voltage Scaling for Scheduling Mixed Real-Time Tasks 495

composed of 20 tasks and it is generated randomly as follows. Each task has
an equal probability of having a short (1-10ms), medium (10-100ms), or long
(100-1000ms) period. Within each range, task periods are uniformly distributed.
This simulates the varied mix of short and long period tasks commonly found
in real-time systems. Finally, the task computation requirements of the sporadic
tasks are chosen such that the total processor utilization of all mixed tasks
becomes 1. Due to the variability of execution times of the real-time applications,
we performed experiments where the actual execution time follows a normal
probability distribution function.

We compared our DVSMT to ccEDF, DVSST, and non-DVS. To evaluate the
effectiveness of the variability of the target variable voltage processors, we simu-
late for both ideal processor and the practical processors. Ideal processor is able
to scale its supply voltage and clock speed continuously within its operational
ranges [fmin, fmax] and [vmin, vmax]. The practical processors considered are
Intel PXA250[11] and Transmeta TM5800[12] which have discrete voltage and
frequency levels. The following summarizes the hardware voltage and frequency
settings, where each tuple consists of the frequency and the corresponding pro-
cessor voltage :

Ideal CPU : [fmin, fmax]=[0, 1] and [vmin, vmax]=[0, 1]
PXA250 : {(100, 0.85), (200, 1.0), (300, 1.1), (400, 1.3)}
TM5800 : {(300, 0.8), (433, 0.875) (533, 0.95) (667, 1.05), (800, 1.15),

(900, 1.25), (1000, 1.3)}.

First of all, to evaluate the effectiveness of the load ratio for periodic task
sets with 20 tasks and the worst-case total utilization utot = 1, we performed
simulations and compared with others for energy consumption as shown in Fig. 3.
The load ratio is the ratio of the actual execution time êi to the worst case
execution time. The mean and standard deviations are set to êi/WCET and
(0.1 · WCET)/3, respectively. These choices ensure that, on the average, 99.7%
of the execution times fall in the interval [load-0.1 · WCET , load+0.1 · WCET].
The simulation results show that the proposed algorithm, DVSMT, outperforms
ccEDF up to 25% and DVSST up to 55% for ideal processor. Also, both for PXA
250 and TM5800, DVSMT outperforms them up to 15%. The energy savings
increase as the load ratio decreases and the difference of the energy consumption
between DVSMT and the others decreases as the load ratio increases.

We also performed simulations for mixed tasks that consist of five sporadic
tasks and fifteen periodic tasks. The sum of the utilizations of all sporadic task
are set to be around 0.3 of the total utilization. Fig. 4 shows the effect of the
inter-arrival times of sporadic tasks on energy savings under the load ratio of 0.5.
The inter-arrival time of the sporadic tasks is characterized by an exponential
distribution with mean set to integer multiples of their relative deadlines. The
result shows that the energy savings is not affected by the inter-arrival times
of sporadic tasks. For ideal processors, DVSMT outperforms DVSST up to 60%

496 M.-S. Gong et al.

(a) Ideal CPU (b) TM5800 (c) PXA250

Fig. 3. Normalized energy consumption to evaluate the effect of the variation of the
load ratio for periodic task set

(a) Ideal CPU (b) TM5800 (c) PXA250

Fig. 4. Normalized energy consumption to evaluate the effect of the inter-arrival of the
sporadic with load ratio=0.5 for mixed task set

and ccEDF up to 45%. For PXA250 and TM5800, DVSMT outperforms DVSST
and ccEDF up to 20% and 25%, respectively.

5 Conclusions

In this paper, we present a power-aware scheduling algorithm called DVSMT for
mixed hard real-time tasks, which consist of periodic and sporadic tasks, using
dynamic voltage scaling. This algorithm is based on on-line slack distribution to
improve energy savings while still meeting all deadlines.

The DVSMT algorithm adjusts the supply voltage and operating frequency
of the processor on the release, deadline, and completion times of each job, so it
is fairly easy to incorporate into a real-time operating system.

We have shown that the proposed DVS algorithm can effectively be applied
for the mixed task set. Our simulation results show that DVSMT saves energy
up to 60% more than DVSST in the mixed task sets.

In the future, we will also introduce the temporal locality for the mobile
devices under ubiquitous environments.

Acknowledgments. This work was supported by the R&D Support Project of
MIC, Korea. Cheol-Hoon Lee is the corresponding author.

DVSMT: Dynamic Voltage Scaling for Scheduling Mixed Real-Time Tasks 497

References

1. F. Gruian: Hard real-time scheduling for low energy using stochastic data and DVS
processors. Proc. Int’l Symposium on Low-Power Electronics and Design. (2001)
46-51.

2. P. Pillai and K. G. Shin: Real-time dynamic voltage scaling forlow-power embedded
operating systems. Proc. 18th ACM Symposium on Operating System Principles.
(2001) 89-102.

3. A. Dudani, F. Mueller, and Y. Zhu: Energy-Conserving Feedback EDF Scheduling
for Embedded Systems with Real-Time Constraints. Proc. of the joint conf. on
Languages, compilers and tools for embedded systems: software and compilers for
embedded systems. (2002) 213-222.

4. A. Qadi, S. Goddard, and S. Farritor: A dynamic voltage scaling algorithm for
sporadic tasks. Proc. of the 24th IEEE Int’l Real-Time Systems Symposium. (2003)
52-62.

5. C.-H. Lee and K. G. Shin: On-line dynamic voltage scaling for hard real-time
systems using the EDF algorithm. Proc. of the 25th IEEE Int’l Real-Time System
Symposium. (2004) 319-327.

6. H. Aydin, R. Melhem, D. Mosse and P. Mejia-Alvarez: Power-aware scheduling for
periodic real-time tasks. IEEE Trans. on Computers. Vol. 53. (2004) 584-600.

7. Xiliang Zhong and Cheng-Zhong Xu: Energy-Aware Modeling and Scheduling of
Real-Time Tasks for Dynamic Voltage Scaling. Proc. of the 26th IEEE Int’l Real-
Time Systems Symposium. (2005) 366-375.

8. T. D. Burd and R. W. Brodersen: Energy efficient CMOS microprocessor design.
Proc. 28th Hawaii Int’l Conf. on System Sciences. (1995) 288-297.

9. R. Ernst and W. Ye: Embedded Program Timing Analysis Based on Path Clus-
tering and Architecture Classification. Proc. Int’l Conf. Computer-Aided Design.
(1997) 598-604.

10. RTSIM:Real-time system simulator. http://rtsim.sssup.it.
11. INTEL Corporation. http://developer.intel.com/design/intelxscale.
12. TRANSMETA Corporation. http://www.transmeta.com.

Real-Time Communications on an Integrated

Fieldbus Network Based on a Switched Ethernet
in Industrial Environment

Dao Manh Cuong and Myung Kyun Kim

School of Computer Engineering and Information Communication,
University of Ulsan, Nam-Gu, 680749 Ulsan, Republic of Korea

mkkim@ulsan.ac.kr

Abstract. In recent years, fieldbuses have been more widely used in
real-time distributed control systems. There are many international field-
bus protocol standards, but they are not interoperable among them-
selves. This paper proposes an integrated fieldbus network architecture
based on a switched Ethernet which provides real-time communication
features to the nodes in different fieldbuses. This paper also analyzes the
schedulability conditions for real-time periodic messages on the switched
Ethernet and an EDF (Earliest Deadline First)-based scheduling algo-
rithm to support the real-time communication requirements of the peri-
odic messages without any change in the principles of the switch.

1 Introduction

Real-time distributed control systems are becoming more widely used in indus-
trial environment. They are used to support a broad range of applications such as
process control, factory automation, automotive, and so on. Fieldbuses are used
in real-time communications among field devices such as sensors and actuators
in the distributed control systems. There are many international fieldbus pro-
tocol standards such as CAN [1], Profibus, WorldFIP, Foundation Fieldbus [2],
etc., but they are not interoperable among themselves. Nowadays, the need to
communicate seamlessly among nodes in heterogeneous fieldbuses has increased,
and several standards bodies and research groups have proposed frameworks for
interoprability among heterogeneous fieldbus systems [3], [4]. However, those in-
teroperability frameworks do not provide end-to-end real-time communication
features among nodes in different fieldbus systems. To satisfy the real-time com-
munication features end to end, we propose an integrated fieldbus network based
on a switched Ethernet, which integrates heterogeneous fieldbuses at the data
link level.

The switched Ethernet can provide real-time message delivery to the com-
municating nodes by eliminating message collisions on the network. Thus, the
use of switches to offer real-time guarantees in industrial communications has
been suggested and analyzed by a number of authors [7], [8]. Hoai Hoang et
al. [9] proposed the real-time switched Ethernet where the switch and and the

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 498–509, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Real-Time Communications on an Integrated Fieldbus Network 499

end nodes control the real-time traffic with EDF scheduling. However, their ap-
proach requires the changes (adding the real-time protocol) to the switch. M. K.
Kim et al. [10] proposed a distributed scheduling algorithm of periodic messages
for hard real-time communications on a switched Ethernet without modifying
the operation of the standard switch. However, they did not show the feasibility
condition of periodic messages on the switched Ethernet.

In this paper, we propose an integrated fieldbus network based on a switched
Ethernet which provides the real-time communication features to the nodes in
different fieldbuses. This paper also analyzes the schedulability conditions for
real-time periodic messages on the switched Ethernet and an EDF-based schedul-
ing algorithm to support the real-time communication requirements of the pe-
riodic traffic over the switched Ethernet without any change in the switch. The
integrated fieldbus network operates in a master-slave mode and the periodic
traffic is handled by a master node to enhance the real-time performance of the
switched Ethernet

The rest of this paper is organized as follows. In section 2, the integrated
fieldbus network based on the switched Ethernet and a logical fieldbus protocol
for seamless communications among nodes in different fieldbuses are discussed. In
section 3, we describe the schedulability conditions for periodic messages and the
EDF-based message scheduling algorithm to satisfy the real-time communication
requirements of the periodic messages on the switched Ethernet. Finally, we
conclude and discuss about the future work in the last section.

2 Integrated Fieldbus Network

The integrated fieldbus network consists of an Ethernet switch and logical field-
bus bridges, each of which connects a fieldbus to the switched Ethernet, as
shown in Fig. 1. Each logical fieldbus bridge performs a frame conversion be-
tween a fieldbus and an Ethernet, and checks the schedulability conditions for
each real-time message and makes a transmission schedule for a set of schedulable
messages on the switched Ethernet.

2.1 Logical Fieldbus Protocol

For seamless communication among nodes on different fieldbuses, we define a log-
ical fieldbus protocol as shown in Fig. 2. The convergence layer provides a logical
fieldbus addressing scheme and a frame conversion function between a fieldbus and
an Ethernet. Each node that needs a remote communication (a communication
between two nodes that are on different fieldbuses) is assigned a logical fieldbus
address (LF address), which consists of (FieldbusID, DeviceID). FieldbusID
uniquely identifies a specific fieldbus and DeviceID identifies a node on the field-
bus. A node sends its data to the remote node in a LF frame which is defined in
Fig. 3. The admission control layer is used to check the schedulability of a real-time
message on the integrated fieldbus network.

The header of a logical fieldbus frame consists of 4 fields (FRType, FRLen,
SrcLFAddr, DstLFAddr). FRType specifies the type of frame that is transmitted

500 D.M. Cuong and M.K. Kim

LF BridgeLF Bridge

LF Bridge
LF Bridge

Master

Switching Hub

Network 1
Network 2

Network 3Network 4

Fig. 1. Integrated Fieldbus Network Architecture

Fig. 2. Logical Fieldbus Protocol Architecture

FRType FRLen DstLFAddr SrcLFAddr Data

4 12 16 16 0-2042x8 (bits)

Fig. 3. Logical Fieldbus Frame Format

in the LF frame and FRLen denotes the length of the LF frame. SrcLFAddr
and DstLFAddr denotes the LF addresses of the source and the destination
nodes, respectively.

2.2 Data Transmission on the Integrated Fieldbus Network

The LF frame is transmitted by being encapsulated in a physical fieldbus frame.
The source fieldbus frame is converted to an Ethernet frame by the source LF
bridge and transmitted to the destination LF bridge. The destination LF bridge
converts the Ethernet frame to the destination fieldbus frame and sends it to
the destination node. Data transmission on the switched Ethernet is based on a
master-slave protocol. One of the LF bridges acts as a master node. Each link
between each LF bridge and the switched Ethernet consists of a transmission
link (TL), which is a link from the LF bridge to the switch, and a reception link
(RL), which is a link from the switch to the LF bridge. Both TL and RL links

Real-Time Communications on an Integrated Fieldbus Network 501

consist of successive elementary cycles (ECs), which is similar to FTT-CAN [6].
The source or destination LF bridges perform frame format conversion between
a fieldbus frame and an Ethernet frame.

3 Real-Time Message Scheduling Algorithm

In this section, we propose the real-time message scheduling algorithm based on
EDF scheduling algorithm that was first introduced by Liu and Layland [5]. The
switched Ethernet operates in master-slave mode and uses synchronized model.
The master node handles the transmission of periodic message to guarantee the
timeliness of all the periodic messages.

3.1 Network Architecture

One of the nodes in the switched Ethernet acts as a master to handle the real-
time communication of periodic messages. The real-time layer is added to all
end nodes to enhance the real-time performance of switched Ethernet(Fig. 4).
Moreover, we assume that the switch operates in cut-through mode to minimize
the switch latency of the messages when they are transmitted over switched
Ethernet (for further details see subsection 3.2).

Node 1 Node 2 Node n

APP

Real-time Layer

MAC

PHY

RL1

TL1 RL2TL2

TLn

RLn

Switch

Master

node

Fig. 4. Network Architecture

The operation of real-time communication network can be described as follows.
Firstly, all the slave nodes send the real-time requirements to the master node. Af-
ter receiving all the request frames from slaves, the master node checks the feasi-
bility of the synchronous messages (admission control) and broadcasts the result
to all the slaves to indicate which messages can be transmitted over the switched
Ethernet and meet their deadline. The real-time periodic messages, when arriv-
ing at slave nodes, are sorted in the increasing order of their deadline at the real-
time layer. Then a master node periodically broadcasts a trigger message(TM) to
all slave nodes to synchronize the communication system and to indicate a set of
messages to be transmitted.

502 D.M. Cuong and M.K. Kim

3.2 Message Transmission Model

In this paper, we assume that all nodes operate in the synchronized model, which
is similar to that of FTT-CAN [6]. All the transmission and reception links are
slotted into a sequence of fundamental time units, called Elementary Cycles
(ECs). An EC consists of a TM, a SMP (Synchronous Message Period) and a
AMP (Asynchronous Message Period) as shown in Fig. 5-(a). The TM (Trigger
Message) is used to synchronize all nodes and contains a schedule for the periodic
messages that can be transmitted on the respective EC. The SMP and the AMP
are the time durations for transmitting real-time periodic messages and aperiodic
messages on the EC, respectively. In this paper, we only consider the scheduling
of periodic messages, so for the simplicity of the analysis, we assume there is
no AMP in each EC as shown in Fig. 5-(b). In Fig. 5, LTM is the length of
TM, TL is a transmission delay of a frame from a source node to a destination
node without queuing delay and E′= E − 2 ∗ TL − LTM is the available time for
transmitting messages on an EC. The transmission delay without queuing delay
TL can be computed as follows:

TL = 2 ∗ tp + tsw

where tp is a propagation delay between a node and a switch and tsw is the
switching latency (destination port look-up and switch fabric set-up time)that
depend on the switch vendor. With a 100Mbps switch using cut-through mode,
tsw is about 11μs.

1j

TM L

0

L

L

1a 1b

ij ic id

1j

L

ij

Fig. 5. Message Transmission Model

The real-time requirements of periodic messages are characterized by SMij

(Dij , Pij , Oij , Cij) where SMij is the synchronous(periodic) message from node
i to node j and Dij , Pij , Oij , Cij are the deadline, period, initial offset and
amount of data of SMij, respectively. Moreover, we assume that all the Dij , Pij

and Oij are the multiple integers of E and Pij = Dij .

Real-Time Communications on an Integrated Fieldbus Network 503

3.3 Scheduability Analysis

Now we analyze the schedulability condition for the periodic messages to sup-
port hard real-time communication over switched Ethernet under EDF-based
scheduling algorithm. Besides using the above message transmission model, we
assume that TL = 0 for simple analysis and define some following notations:

(1) UTi and URj are the utilization of TLi and RLj:

UTi =
∑

j∈STi

Cij

Pij
(1)

URj =
∑

i∈SRj

Cij

Pij
(2)

where STi is a set of nodes to which node i sends the messages and SRj is a set
of nodes from which node j receives the messages.

(2) UTmax,j is the maximum utilization of a set of transmission links that
transmit messages to node j, such that:

UTmax,j = max
i∈SRj

(UTi) (3)

(3) Ti,n is the total time for transmitting messages on TLi in nth EC.

Theorem 1. A given set of messages SMij from node i to node j are scheduable
if, for all i and j,

UTi + URj ≤ E′ − 2 ∗ max(Cij) + min(Cij)
E

(4)

Proof. According to basic theory of EDF scheduling algorithm [5], the schedu-
lability condition for a set of preemption tasks is:

U =
∑

i

Ci

Pi
≤ 1 (5)

where U is the utilization factor of real-time traffic, Ci and Pi are the execu-
tion time and the period of task i, respectively. Because the transmission of a
set of periodic messages is non-preemptive, Pedreira et al. [6] showed that the
schedulability condition is:

U =
∑

i

Ci

Pi
≤ E′ − max(Ci)

E
(6)

where E′ is the available time to transmit periodic messages on a shared medium.
The main idea of our scheduling algorithm is that the periodic messages which

are transmitted at each EC of transmission link must be able to be delivered
completely at the respective EC on reception links, which means meeting their

504 D.M. Cuong and M.K. Kim

deadline. From the schedulability condition (6), we can make a schedule for the
periodic messages that satisfies the following condition:

Ti,n ≤ UTi ∗ E + max(Cij) ≤ E′ (7)

We call Tmax,i = UTi ∗ E + max(Cij) the maximum total time to transmit
messages on TLi at every EC.

For hard real-time communication, all the periodic messages have to meet
their deadline in the worst-case scenario. In our message transmission model, if
we restrict Ti,n to be less than or equal to Tmax,i for every TLi, all the periodic
messages can be transmitted on TLs within the respective ECs. So, the worst-
case situation occurs on RLj and when:(i) all the periodic messages arrive at
a reception link at the same time, and (ii) the arrival time of the first message
on an EC on RLj is latest, which means there is a shortest amount of time for
transmitting messages on the current EC.

TMTL1

E

SM1a SM1b SM1j

T1,n

TMTLi SMic SMij SMid

Ti,n

TMRLj SMij SM1j

TMTL1

E

SM1a SM1b SM1j

Tmax,1

TMTLi SMic SMid SMij

TMRLj

Tmax,i

ATmax,j min(Cij)

Rmax,j

(a) Normal case situation on RLj (b) Worst-case situation on RLj

Fig. 6. Normal case and worst-case situations on RLj

Fig. 6 shows the normal and worst-case situations on RLj when the messages
are transmitted over switched Ethernet. The figure also shows that by limiting
the total time of TLi to Tmax,i, the temporal constraints of periodic messages
can be satisfied if we bound the total time to transmit messages on reception link
RLj not to exceed the remaining amount of time in the EC (which is denoted
by Rmax,j in Fig. 6) and they are not affected by the FIFO queue.

Now we can express the worst-case situation occurring on RLj when: (i) the
utilizations of all transmission links that are transmitting messages to RLj are
equal, and (ii) all the messages arrive at RLj on the nth EC at the latest time.
From the condition (i), we can see that, for all i such that i ∈ SRj :

UTi = UTmax,j (8)

which leads to
Tmax,i = UTmax,j ∗ E + max(Cij) (9)

Real-Time Communications on an Integrated Fieldbus Network 505

As shown in Fig. 6, the latest finishing time of periodic messages on TLi is Tmax,i

where ∀i ∈ SRj . So the latest arrival time of messages on RLj, ATmax,j, is

ATmax,j = Tmax,i − min(Cij) = UTmax,j ∗ E + max(Cij) − min(Cij) (10)

when the size of messages SMij , ∀i ∈ SRj, is the smallest. If this worst-case
situation happens, the available time to transmit messages on RLj , Rmax,j , is

Rmax,j = E′ − ATmax,j = E′ − UTmax,j ∗ E − max(Cij) + min(Cij). (11)

We can use again the schedulability condition (6) to analyze the schedulability
of periodic messages on the reception links. Thus, a set of periodic messages on
RLj is scheduable if

URj ≤ Rmax,j − max(Cij)
E

(12)

Replacing Rmax,j by (11), we have

URj ≤ E′ − UTmax,j ∗ E − max(Cij) + min(Cij) − max(Cij)
E

(13)

which leads to

URj + UTmax,j ≤ E′ − 2 ∗ max(Cij) + min(Cij)
E

(14)

Combining (3) and (14), finally we have the schedulability condition (4) for
supporting hard real-time communication of periodic messages over switched
Ethernet under EDF-based scheduling algorithm. This is the end of the proof of
Theorem 1.

3.4 EDF-Based Scheduling Algorithm

After checking the schedulability condition for a given set of periodic messages,
the master node nakes a schedule for transmitting periodic messages in each EC
according to the EDF-based scheduling algorithm. The following algorithm is an
EDF-based scheduling algorithm which makes a schedule for a set of periodic
messages which satisfies the feasibility condition of Theorem 1. For describing
our scheduling algorithm, we use the following additional notations that some
of them were already shown in Fig. 6.

Ti,n: the time to transmit messages on TLi at nth EC
Rj,n: the time to transmit messages on RLj at nth EC
NTi,n: the number of messages that node i can transmit at nth EC
Tmax,i = UTi ∗ E + max(Cij)
Rmax,j = E′ − UTmax,j ∗ E − max(Cij) + min(Cij)
rk,n: 1 if kth message is ready to transmit at nth EC

506 D.M. Cuong and M.K. Kim

// EDF-based message scheduling algorithm
1. for (k = 1; k ≤ N ; k + +) {rk,1 = 0;} // N : the number of messages
2. for(n = 0; n ≤ LCM(Pij); n++) { // LCM : Least Common Multiple
3. Ti,n = 0, NTi,n = 0 for all i; Rj,n = 0 for all j;
4. {sort messages in increasing order of deadline};
5. for (k = 1; k ≤ N ; k + +) {
6. rk,n+1 = rk,n;
7. if (rk,n = 1) {
8. read SMij ;
9. if((Ti,n + Cij ≤ Tmax,i) and (Rj,n + Cij) ≤ Rmax,j)) {
10. Ti,n = Ti,n + Cij ;
11. Rj,n = Rj,n + Cij ;
12. NTi,n + +;
13. rk,n+1 = 0;
14. }
15. }
16. if ((n-1) mod Pij/E = Oij) rk,n+1 = 1;
17. }
18. }

The master node goes through all ECs in line 2, and sorting at line 4 is
carried out when new messages enter the system. The master checks whether a
ready message can be transmitted or not by checking the total time to transmit
message in the transmission and reception links (line 9) on the current EC. If
the conditions are not satisfied, the message is delayed to the next EC. Finally,
the master node considers the initial offset Oij of message SMij at line 16.

By the following theorem, we can prove that each message in a feasible message
set satisfying the condition of Theorem 1 can be delivered within its deadline
if we schedule those messages according to the proposed EDF-based scheduling
algorithm.

Theorem 2. The proposed EDF-based scheduling algorithm guarantees the timely
delivery of messages for a message set satisfying the feasibility condition of The-
orem 1.

Proof. Assume that there is a new message SMij satisfies the condition (4) and
is scheduled by EDF-based scheduling algorithm. Then the latest finishing time
of SMij on TLi (line 9) is:

Tmax,i = UTi ∗ E + max(Cij) (15)

so the latest arrival time of SMij on RLj is

Lmax,j = UTi ∗ E + max(Cij) − min(Cij) (16)

Real-Time Communications on an Integrated Fieldbus Network 507

When arriving at RLj, in the worst-case situation, SMij has to wait for other
messages in the switch buffer. But this delay, according to scheduling algorithm,
is bounded by:

Rmax,j = E′ − UTmax,j ∗ E − max(Cij) + min(Cij) (17)

so the finishing time Fij,n of SMij on nth(current) EC will be :

Fij,n ≤ Lmax,j + Rmax,j (18)

which leads to

Fij,n ≤ E′ − (UTmax,j − UTi) (19)

Because UTi ≤ UTmax,j:

Fij,n ≤ E′ (20)

so SMij is transmitted on the same EC on both TLi and RLj, that means it
meets its deadline. This is the end of the proof of Theorem 2.

4 Message Scheduling Example

In this section, we describe our message scheduling algorithm by a simple ex-
ample as shown in Table. 1. The network consist of 5 slave nodes and a master
node. At the beginning, these slaves send the request message that contain their
real-time requirements of periodic message to master node.

Table 1. Requirement Table

���������Source
Destination

N1 N2 N3 N4 N5

N1 - 0.15/3 0.2/2 - 0.1/1
N2 0.2/2 - 0.1/1 0.15/3 -
N3 0.1/1 0.15/3 - - 0.2/2
N4 - 0.15/1 0.2/2 - 0.15/3
N5 0.1/2 0.2/3 0.2/2 0.2/1 -

cf. Each entry specifies Cij/Pij of SMij

We assume that E = 1 and E′ = 0.9. When the master node checks the
schedulability condition of messages, the messages are sorted according to their
deadline as follows: SM15, SM23, SM31, SM42, SM54, SM13, SM21, SM35,
SM43, SM51, SM53, SM12, SM24, SM32, SM45, SM52.

By using the schedulability condition (4), the master node rejects the requests
of two periodic messages SM53 and SM52. After establishing a set of schedulable

508 D.M. Cuong and M.K. Kim

15 13 12 15 15 13

23 21 24 23 23 21

31 35 31 31 35

42 43 45

54

32

42 42 43

51 54 54 51

TL1

TL2

TL3

TL4

TL5

31 21 51

42 12 42 42

23 13

54 24

RL1

RL2

RL3

RL4

RL5

31 31 21 51

32

43 23 13 43

54 54

15 35 45 15 15 35

TM

Fig. 7. Message Scheduling Example

messages, the schedule for transmission of periodic messages is made as shown
in Fig. 7. This figure shows the message scheduling on the first 3 ECs when all
the periodic messages are ready at time t=0 (that is, Oij=0 for all i and j).

The values of UTmax,j, Tmax,i and Rmax,j for this example are shown on
Table. 2. In our scheduling algorithm, the total time for transmitting messages
on TLi and RLj is bounded by Tmax,i and Rmax,j, so the message SM32 is
delayed to the second EC (see Fig. 7).

Table 2. Variable Values

���������Variable
Node

1 2 3 4 5

UTmax,j 0.25 0.3 0.3 0.25 0.3
Tmax,i 0.45 0.45 0.45 0.5 0.45
Rmax,j 0.55 0.5 0.5 0.55 0.5

5 Conclusions and Future Works

In this paper, we have proposed an integrated fieldbus network based on the
switched Ethernet for seamless and transparent real-time communications
among heterogeneous fieldbuses. To guarantee the real-time transmission re-
quirement of periodic messages, we also have proposed an EDF-based schedul-
ing algorithm for periodic messages over the switched Ethernet in the integrated
fieldbus network and analyzed the schedulability condition for real-time peri-
odic messages. The proposed periodic message scheduling algorithm is dynamic,

Real-Time Communications on an Integrated Fieldbus Network 509

which means that a new periodic message can be added if the message satisfies
the schedulability condition.

We have assumed that the changes in synchronous requirements is carried
on the aperiodic message cycle. We will analyze the schedulability of aperiodic
message as well as the level of flexibility of the scheduling algorithm in the future.

Acknowledgment

The authors would like to thank Ministry of Commerce, Industry and Energy
and Ulsan Metropolitan City which partly supported this research through the
Network-based Automation Research Center (NARC) at University of Ulsan.

References

1. CAN Specification 2.0, Parts A and B, Robert Bosch, September (1991).
2. General Purpose Fieldbus: Vol. 1: P-Net; Vol. 2: PROFIBUS; Vol. 3: WorldFIP,

Amend. 1: Foundation Fieldbus’H1, European Standard EN 50170 (2000).
3. IEC 65/240/CD (61499): Function blocks for industrial process management and

control systems Part 1: Architecture.
4. IEC Commitee No. 65C, ”IEC61804 general requirements specification”, IEC Draft

(2000).
5. C. L. Liu and J. W. Layland, Scheduling algorithms for multiprogramming in a

hard real-time environment, J. ACM, vol. 20, no. 1, pp. 4661, 1973.
6. L. Almeida, P. Pedreiras, and J. A. Fonseca, The FTT-CAN protocol: Why and

how, IEEE Trans. Ind. Electron., vol. 49, no. 6, pp. 11891201, Dec. 2002.
7. Lee K. and Lee S.: Performance evaluation of switched Ethernet for real-time in-

dustrial communications. In Comput. Stand. Interfaces, Vol. 24, No. 5 (2002).
8. Jasperneit J., and Neumann P.: Switched ethernet for factory communication. In

Proc. of ETFA - 8th IEEE Int’l Conf. on Emerging Technologies and Factory
Automation, Antibes, France (2001).

9. Hoang H., Jonsson M., Hagstrom U., and Kallerdahl A.: Switched real-time ether-
net with earliest deadline first scheduling- protocols and traffic handling. In Proc.
of Int’l Workshop on Parallel and Distributed Real-Time Systems, Fort Lauderdale,
FL, USA (2002).

10. M. K. Kim and H. C. Lee ”Periodic message scheduling on a switched Ethernet
for hard real-time communication” HPCC’2006, Munich, Germany, Sep. 2006.

On Scheduling Exception Handlers in Dynamic,

Embedded Real-Time Systems

Binoy Ravindran1, Edward Curley1, and E. Douglas Jensen2

1 ECE Dept., Virginia Tech, Blacksburg, VA 24061, USA
binoy@vt.edu, alias@vt.edu

2 The MITRE Corporation, Bedford, MA 01730, USA
jensen@mitre.org

Abstract. We consider the problem of scheduling exception handlers
in real-time systems that operate under run-time uncertainties includ-
ing those on execution times, activity arrivals, and failure occurrences.
The application/scheduling model includes activities and their exception
handlers that are subject to time/utility function (TUF) time constraints
and an utility accrual (UA) optimality criterion. A key underpinning of
the TUF/UA scheduling paradigm is the notion of “best-effort” where
high importance activities are always favored over low importance ones,
irrespective of activity urgency. (This is in contrast to classical admis-
sion control models which favor feasible completion of admitted activities
over admitting new ones, irrespective of activity importance.) We con-
sider a transactional style activity execution paradigm, where handlers
that are released when their activities fail (e.g., due to time constraint
violations) abort the failed activities after performing recovery actions.
We present a scheduling algorithm called Handler-assured Utility ac-
crual Algorithm (or HUA) for scheduling activities and their handlers.
We show that HUA’s properties include bounded-time completion for
handlers and bounded loss of the best-effort property. Our implementa-
tion on a Real-Time Java Virtual Machine demonstrates the algorithm’s
effectiveness.

1 Introduction

Embedded real-time systems that are emerging in many domains such as robotic
systems in the space domain (e.g., NASA/JPL’s Mars Rover [1]) and control
systems in the defense domain (e.g., airborne trackers [2]) are fundamentally
distinguished by the fact that they operate in environments with dynamically
uncertain properties. These uncertainties include transient and sustained re-
source overloads due to context-dependent activity execution times, and non-
deterministically distributed activity arrivals and failure occurrences (which may
also cause overloads). Nevertheless, such systems require the strongest possible
assurances on activity timeliness behavior. Another important distinguishing
feature of most of these systems that are of interest to us is their relatively
long activity execution time magnitudes, compared to conventional real-time
subsystems—e.g., from milliseconds to minutes.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 510–529, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Scheduling Exception Handlers 511

When resource overloads occur, meeting time constraints of all activities is
impossible as the demand exceeds the supply. The urgency of an activity is
sometimes orthogonal to the relative importance of the activity—-e.g., the most
urgent activity may be the least important, and vice versa; the most urgent may
be the most important, and vice versa. Hence when overloads occur, completing
the most important activities irrespective of activity urgency is often desirable.
Thus, a clear distinction has to be made between urgency and importance during
overloads. (During underloads, such a distinction generally need not be made,
especially if all time constraints are deadlines, as algorithms that can meet all
deadlines exist for those situations—e.g., EDF [3].)

�
Time

�Utility

0
(a)

�
Time

�Utility

0

���

(b)

�
Time

�Utility

�
�

��
0

���

(c)

Fig. 1. Example TUF Time Constraints: (a) Step
TUFs; (b) TUF of an AWACS [2]; and (c) TUFs
of a Coastal Air defense System [4].

Deadlines by themselves can-
not express both urgency and
importance. Thus, we consider
the abstraction of time/utility
functions (or TUFs) [5] that
express the utility of complet-
ing an activity as a function
of that activity’s completion
time. We specify a deadline
as a binary-valued, downward
“step” shaped TUF; Figure 1(a)
shows examples. Note that a
TUF decouples importance and
urgency—i.e., urgency is measured on the X-axis, and importance is denoted
(by utility) on the Y-axis. TUFs usually have a termination time — the latest
time after which the function is not defined. For downward step TUFs, this time
generally is the function’s discontinuity point.

Some real-time systems also have activities with non-deadline time constraints,
such as those where the utility attained for activity completion varies (e.g., de-
creases, increases) with completion time. Figures 1(b)–1(c) show examples from
two defense applications [2, 4].

When activity time constraints are expressed with TUFs, the scheduling
optimality criteria are based on maximizing accrued activity utility—e.g., max-
imizing the total activity accrued utility. Such criteria are called utility accrual
(or UA) criteria, and sequencing (scheduling, dispatching) algorithms that op-
timize UA criteria are called UA sequencing algorithms (see [6] for example
algorithms). UA criteria may also include other factors—e.g., dependencies that
may arise between activities due to synchronization.

UA algorithms that maximize total utility under downward step TUFs
(e.g., [7, 8]) default to EDF during underloads, since EDF satisfies all deadlines
during underloads. Consequently, they obtain the optimum total utility during
underloads. During overloads, they inherently favor more important activities
over less important ones (since more utility can be attained from the former),
irrespective of activity urgency, and thus exhibit adaptive behavior and graceful
timeliness degradation. This behavior of UA algorithms is called “best-effort” [7]

512 B. Ravindran, E. Curley, and E.D. Jensen

in the sense that the algorithms strive their best to feasibly complete as many
high importance activities — as specified by the application through TUFs —
as possible.1 Consequently, high importance activities that arrive at any time
always have a very high likelihood for successful completion (irrespective of their
urgency). Note also that EDF’s optimal timeliness behavior is a special-case of
UA scheduling.

1.1 Contributions: Scheduling Exception Handlers with Timing
Assurances

When a failure (e.g., a time constraint violation) occurs to an activity in such
dynamic, best-effort real-time systems [9], control of the activity is immediately
transferred to the (application-defined) exception handler block associated with
the type of that failure. Such handler blocks (or handlers) may have time con-
straints and will compete for the processor along with other activities. Under
a termination model, when a handler executes (not necessarily when control is
transferred to it), it will abort the failed activity after performing recovery ac-
tions that are necessary to avoid inconsistencies. After a handler completes its
execution, the application may desire to resume the execution of the failed ac-
tivity’s logic—e.g., the parent activity (or another activity that was waiting for
the completion) of the failed activity creates a new child activity to resuscitate
the failed activity’s logic.

Scheduling of the handlers (along with their activities) must contribute to
system-wide timeliness optimality. Untimely handler execution can degrade time-
liness optimality—e.g.: high urgency handlers are delayed by low urgency non-
failed activities, thereby delaying the resumption of high urgency failed activities;
high urgency, non-failed activities are delayed by low urgency handlers.

A straightforward approach for scheduling handlers is to conceptually model
them as normal activities, insert them into the ready queue when activities ar-
rive, and schedule them along with the normal activities, according to a discipline
that provides acceptably optimal system-wide timeliness. However, constructing
a schedule that includes an activity and its handler implies that the activity
and the handler will be dispatched for execution according to their order in the
schedule. This is not true, as the handler needs to be dispatched only if and
when the activity fails. Furthermore, an activity is released for execution, which
is a scheduling event, it is immediately ready for execution. However, its handler
is ready for execution only if and when the activity fails. Thus, constructing a
schedule at an activity’s release time such that it also includes the activity’s
handler will require a prediction of when the handler will be ready for execution
in the future — a potentially impossible problem as there is no way to know if
an activity will fail (in dynamic systems).

These problems can possibly be alleviated by considering an activity’s failure
time as a scheduling event and constructing a schedule that includes the activity’s

1 Note that the term “best effort” as used in the context of networks actually is
intended to mean ”least effort.”

On Scheduling Exception Handlers 513

handler at that time. Doing so means that there is no way to know whether or
not the handler can feasibly complete, satisfying its time constraint, until the
activity fails. In fact, it is quite possible that when the activity fails, the scheduler
may discover that the handler is infeasible due to an overload — e.g., there are
more activities than can be feasibly scheduled, and there exists a schedule of
activities excluding the handler from which more utility can be attained than
from one including the handler.

Another strategy that avoids this predicament and has been very often con-
sidered in the past (e.g., [10,11]) is classical admission control : When an activity
arrives, check whether a feasible schedule can be constructed that includes all the
previously admitted activities and their handlers, besides the newly arrived one
and its handler. If so, admit the activity and its handler; otherwise, reject. But
this will cause the very fundamental problem that is solved by UA schedulers
through its best-effort decision making—i.e., a newly arriving activity is rejected
because it is infeasible, despite that activity being the most important. In con-
trast, UA schedulers will feasibly complete the high importance newly arriving
activity (with high likelihood), at the expense of not completing some previously
arrived ones, since they are now less important than the newly arrived.

Note that this problem does not occur in hard real-time systems (i.e., those
that are assured to meet all deadlines) because the arrival and execution be-
haviors of activities are statically known. Thus, activities and their handlers are
statically scheduled to ensure that all deadlines are met; if no feasible schedule
exists, the application is redesigned until one exists [12].

Thus, scheduling handlers to ensure their system-wide timely execution in
dynamic, best-effort real-time systems involves an apparently paradoxical situ-
ation: an activity may arrive at any (unknown) time; in the event of its failure,
which is unknown until the failure occurs, a handler is immediately activated,
and as strong assurances as possible must be provided for the handler’s feasible
completion.

We precisely address this problem in this paper. We consider real-time ac-
tivities that are subject to TUF time constraints. Activities may have arbitrary
arrival behaviors and failure occurrences. Activities may synchronize their ex-
ecution for serially sharing non-processor resources, causing dependencies. For
such a model, we consider the scheduling objective of maximizing the total util-
ity accrued by all activities on one processor. This problem is NP-hard. We
present a polynomial-time heuristic algorithm called the Handler-assured Utility
accrual Algorithm (or HUA).

We show that HUA ensures that handlers of activities that encounter failures
during their execution will complete within a bounded time. Yet, the algorithm
retains the fundamental best-effort property of UA algorithms with bounded
loss—i.e., a high importance activity that may arrive at any time has a very high
likelihood for successful completion. HUA also exhibits other properties including
optimal total utility for a special case, deadlock-freedom, and correctness. Our
implementation experience of HUA on a RTSJ (Real-Time Specification for Java)
Virtual Machine demonstrates the algorithm’s effectiveness.

514 B. Ravindran, E. Curley, and E.D. Jensen

Thus, the contribution of the paper is the HUA algorithm. To the best of our
knowledge, we are not aware of any other efforts that solve the problem solved
by HUA.

The rest of the paper is organized as follows: Section 2 outlines our activity
model and state the scheduling objectives. We present HUA in Section 3 and
establish the algorithm’s properties in Section 4. Section 5 reports our imple-
mentation experience. We conclude the paper in Section 6.

2 Models and Objectives

Threads and Scheduling Segments. Our basic scheduling entity is the thread
abstraction. Thus, the application consists of a set of threads, denoted Ti, i ∈
{1, 2, ..., n}. Threads can arrive arbitrarily and be preempted arbitrarily.

A thread can be subject to time constraints. A time constraint usually has
a “scope”—a segment of the thread control flow that is associated with a time
constraint [13]. We call such a scope, a “scheduling segment.” A thread presents
an execution time estimate of its scheduling segment to the scheduler when it
enters that segment. This time estimate is not the worst-case; it can be violated
at run-time (e.g., due to context dependence) and can cause processor overloads.

Resource Model. Threads can access non-processor resources including physical
(e.g., disks) and logical (e.g., locks) resources. Resources can be shared, and can
be subject to mutual exclusion constraints.

We consider a single-unit resource model. Thus, only a single instance is
present for each resource and a thread must explicitly specify the resource that
it needs.

A thread may request multiple shared resources during its lifetime. The re-
quested time intervals for holding resources may be nested or disjoint.

Timeliness Model. A thread’s time constraints are specified using TUFs. A TUF
is always associated with a thread scheduling segment and is presented by the
thread to the scheduler when the thread enters that segment. We focus on non-
increasing unimodal TUFs, as they encompass the majority of the time con-
straints of interest to us. Figures 1(a), 1(b), and two TUFs in Figure 1(c) show
examples.

Each TUF has an initial time and a termination time, which are the earliest
and the latest times for which the TUF is defined, respectively. We assume
that the initial time is the thread release time; thus a thread’s absolute and
relative termination times are the same. In this paper, we also assume that the
termination time of a downward step TUF is its discontinuity point.

Exceptions and Abort Model. An exception handler block — simply referred to
as a handler — is assumed to be associated with each scheduling segment of a
thread. We consider a termination model for failures that are encountered during
thread executions including time-constraint violations and logical errors. When

On Scheduling Exception Handlers 515

a thread segment encounters such a failure during its execution, an exception
is raised, and the segment’s execution control is immediately transferred to the
handler.

When the handler executes (not necessarily when control is transferred to it),
it will abort the thread after performing compensations and recovery actions
that are necessary to avoid inconsistencies—e.g., rolling back, rolling forward, or
making other compensations to logical and physical resources that are held by
the failed thread to safe states. The handler will also perform actions that are
required to ensure the safety and stability of the external state.

A handler also has a time constraint, which is specified using a TUF. The
handler’s TUF’s initial time is the time of failure of the handler’s thread. The
handler’s TUF’s termination time is relative to its initial time. Thus, a handler’s
absolute and relative termination times are not the same.

A handler also specifies an execution time estimate. This estimate along with
the handler’s TUF are described by the handler’s thread when the thread enters
the corresponding scheduling segment.

To summarize, when a thread enters a scheduling segment, it presents the
following scheduling parameters to the scheduler: (1) execution time estimate
of the scheduling segment; (2) time constraint of the segment (described using
a TUF); (3) execution time estimate of the segment’s exception handler; and
(4) time constraint of the handler (described using a TUF).

A thread is assumed to present these scheduling parameters to the scheduler
through a scheduling API that it invokes when entering a scheduling segment.
Example such scheduling APIs include Real-Time CORBA 1.2’s [13] begin
scheduling segment API and [14]’s REQ CPU API that are invoked by dis-
tributable threads and normal threads to enter a scheduling segment,
respectively.

Handlers are not allowed to mutually exclusively access non-processor re-
sources. Violation of a handler’s absolute termination time will cause the im-
mediate execution of system recovery code, which will recover thread’s held
resources and return the system to a consistent and safe state.

Scheduling Objectives. Our goal is to design a scheduling algorithm that maxi-
mizes the sum of the utility accrued by all the threads as much as possible. For
downward step TUFs, maximizing the total utility subsumes meeting all TUF
termination times as a special case. For non-step TUFs, this is not the case, as
different utilities can be accrued depending upon the thread completion time,
even when the TUF termination time is met. When all termination times are
met for downward step TUFs (possible during underloads), the total accrued
utility is the optimum possible. During overloads, for step and non-step TUFs,
the goal is to maximize the total utility as much as possible.

Further, the completion time of handlers must be bounded. Moreover, the
algorithm must exhibit the best-effort property of UA algorithms (described in
Section 1) to the extent possible.

516 B. Ravindran, E. Curley, and E.D. Jensen

This problem is NP-hard because it subsumes the problem of scheduling
dependent threads with step-shaped TUFs, which has been shown to be NP-
hard in [8].

3 HUA Scheduling Algorithm

3.1 Basic Rationale

Since the task model is dynamic—i.e., when threads will arrive, how long they
will execute, which set of resources will be needed by which threads, the length of
time for which those resources will be needed, the order of accessing the resources
are all statically unknown, future scheduling events such as new thread arrivals
and new resource requests cannot be considered at a scheduling event. Thus, a
schedule must be constructed solely exploiting the current system knowledge.

Since the primary scheduling objective is to maximize the total utility, a
reasonable heuristic is a “greedy” strategy: Favor “high return” threads over low
return ones, and complete as many of them as possible before thread termination
times, as early as possible (since TUFs are non-increasing).

The potential utility that can be accrued by executing a thread defines a
measure of its “return on investment.” We measure this using a metric called
the Potential Utility Density (or PUD). A thread’s PUD measures the utility
that can be accrued per unit time by immediately executing the thread and those
thread(s) that it (directly or transitively) depends upon for locked resources.

Since the best-case failure scenario is the absence of failure for the thread and
all of its dependents, the corresponding PUD can be obtained as the total utility
accrued by executing the thread and its dependents divided by the aggregate
execution time spent for executing the thread and its dependents. The PUD for
the worst-case failure scenario (one where the thread and all of its dependents
fail) can be obtained as the total utility accrued by executing the handler of the
thread and that of its dependents divided by the aggregate execution time spent
for executing the thread, its handler, the thread’s dependents, and the handlers
of the dependents.2 The thread PUD can now be measured as the minimum of
these two PUDs, as that represents the worst-case.

Thus, HUA examines threads for potential inclusion in a feasible schedule in
the order of decreasing PUDs. For each thread, the algorithm examines whether
the thread and its handler, along with the thread’s dependents and their han-
dlers, can be feasibly completed. If infeasible, the thread, its handler, the depen-
dents, and their handlers are rejected. The process is repeated until all threads
are examined, and the schedule’s first thread is dispatched. Rejected threads are
reconsidered for scheduling at subsequent scheduling events, until their termina-
tion times expire.

This process ensures that the threads included in the schedule at any given
time have feasible handlers, thereby ensuring that when those threads encounter
2 In the worst-case failure scenario, utility is accrued only for executing the thread

handlers; no utility is gained for executing the threads themselves, though execution
time is spent for executing the threads and the handlers.

On Scheduling Exception Handlers 517

failures during execution, their handlers are assured to complete. Note that no
such assurances are afforded to thread failures that are encountered otherwise—
e.g., when termination times of threads that are rejected at a scheduling event
eventually expire. Handlers for those failures are executed in a best-effort manner
—i.e., in accordance with their potential contribution to the total utility (at
termination time expirations).

Handler Feasibility. Feasibility of a thread can be tested by verifying whether
the thread can complete before its termination time. For a handler, feasibility
means whether it can complete before its absolute termination time, which is
the time of thread failure plus the handler’s termination time. Since the thread
failure time is impossible to predict, possible choices for the handler’s absolute
termination time include: (A) predicted thread completion time (in the current
schedule) plus the handler’s termination time; and (B) thread’s termination time
plus the handler’s termination time.

The difference between A and B is in the delay suffered by the handler before
its execution begins (A incurs less delay than B). Delaying the handler’s start
time (until its latest start time) potentially allows threads that may arrive later
but with an earlier termination time than that of the handler to be feasibly
scheduled. Thus, B is more appropriate from the standpoint of maximizing total
utility.

There is always the possibility that a new thread Ti may arrive after the
failure of another thread Tj but before the completion of Tj’s handler. As per
the best-effort philosophy, Ti must immediately be afforded the opportunity for
feasible execution, in accordance with its potential contribution to the total
utility. However it is possible that a schedule that includes Ti may not include
Tj’s handler. Since Tj’s handler cannot be rejected, as that will violate the
commitment made to Tj , the only option left is to not consider Ti for execution
until Tj’s handler completes, consequently degrading the best-effort property.
In Section 4, we quantify this loss, and thereby establish the tradeoff between
bounding handler completion times and the loss of the best-effort property.

We now overview the algorithm, and subsequently describe each of its com-
ponents in detail.

3.2 Overview

HUA’s scheduling events include the arrival of a thread, completion of a thread
or a handler, a resource request, a resource release, and the expiration of a
TUF termination time. To describe HUA, we define the following variables and
auxiliary functions:

• Tr is the current set of unscheduled threads. Ti ∈ Tr is a thread. T h
i denotes

Ti’s handler.
• σ is the ordered schedule. σ(i) denotes the thread occupying the ith position

in schedule σ.
• Ui(t) denotes Ti’s TUF; Uh

i (t) denotes T h
i ’s TUF.

518 B. Ravindran, E. Curley, and E.D. Jensen

• Ti.X is Ti’s termination time. Ti.ExecT ime is Ti’s estimated remaining exe-
cution time. Ti.Dep is Ti’s dependency list.

• H is the set of handlers that are released for execution, ordered by non-
decreasing handler termination times. A handler is said to be released for
execution (i.e., activated for execution by transferring control to it) when the
handler’s thread fails. H = ∅ if all released handlers have completed.

• Function updateReleaseHandlerSet() inserts a handler T h
i into H if the

scheduler is invoked due to a thread Ti’s failure; deletes a handler T h
i from H

if the scheduler is invoked due to T h
i ’s completion. Insertion of T h

i into H is
at the position corresponding to T h

i ’s termination time.
• Owner(R) denotes the threads that are currently holding resource R; reqRes
(T) returns the resource requested by T .

• headOf(σ) returns the first thread in σ.
• sortByPUD(σ) returns a schedule ordered by non-increasing thread PUDs. If

two or more threads have the same PUD, then the thread(s) with the largest
ExecT ime will appear before any others with the same PUD.

• Insert(T,σ,I) inserts T in the ordered list σ at the position indicated by
index I; if entries in σ exists with the index I, T is inserted before them. After
insertion, T ’s index in σ is I.

• Remove(T,σ,I) removes T from ordered list σ at the position indicated by
index I; if T is not present at the position in σ, the function takes no action.

• lookup(T,σ) returns the index value of the first occurrence of T in the ordered
list σ.

• feasible(σ) returns a boolean value indicating schedule σ’s feasibility. σ is
feasible, if the predicted completion time of each thread T in σ, denoted T.C,
does not exceed T ’s termination time. T.C is the time at which the scheduler
is invoked plus the sum of the ExecT ime’s of all threads that occur before T
in σ and T.ExecT ime.
Algorithm 1 describes HUA at a high level of abstraction. When invoked at

time tcur, HUA first updates the set H (line 3) and checks the feasibility of the
threads. If a thread’s earliest predicted completion time exceeds its termination
time, it is rejected (line 6). Otherwise, HUA calculates the thread’s Local Utility
Density (or LUD) (line 7), and builds its dependency list (line 8).

Each thread’s PUD is computed by calculatePUD(), and the threads are
then sorted by their PUDs (lines 10–11). In each step of the for -loop from line 12
to 15, the thread with the largest PUD, its handler, the thread’s dependents, and
their handlers are inserted into σ, if it can produce a positive PUD. The output
schedule σ is then sorted by the threads’ termination times by the procedure
insertByETF().

If one or more handlers have been released but have not completed their
execution (i.e., H �= ∅; line 17), the algorithm checks whether any of those
handlers are missing in the schedule σ (lines 18– 21). If any handler is missing,
the handler at the head of H is selected for execution (line 23). If all handlers
in H have been included in σ, the thread at the head of σ is selected (line 24).

On Scheduling Exception Handlers 519

input: Tr, H ; output: selected thread Texe;1:

Initialization: t := tcur; σ := ∅;2:

updateReleaseHandlerSet ();3:

for each thread Ti ∈ Tr do4:

if feasible(Ti)=false then5:

reject(Ti);6:

else

Ti.LUD = min
(

Ui(t+Ti.ExecTime)
Ti.ExecTime

,
Uh

i (t+Ti.ExecTime+Th
i .ExecTime)

Ti.ExecTime+Th
i .ExecTime

)
;7:

Ti.Dep := buildDep(Ti);8:

for each thread Ti ∈ Tr do9:

Ti.PUD:=calculatePUD(Ti , t);10:

σtmp :=sortByPUD(Tr);11:

for each thread Ti ∈ σtmp from head to tail do12:

if Ti.PUD > 0 then13:

σ := insertByETF(σ, Ti);14:

else break;15:

HandlerIsMissed := false ;16:

if H �= ∅ then17:

for each thread T h ∈ H do18:

if T h /∈ σ then19:

HandlerIsMissed := true;20:

break;21:

if HandlerIsMissed := true then22:

Texe :=headOf(H);23:

else
Texe:=headOf(σ);24:

return Texe;25:

Algorithm 1. HUA: High Level Description

3.3 Computing Dependency Lists

HUA builds the dependency list of each thread—that arises due to mutually ex-
clusive resource sharing—by following the chain of resource request and
ownership.

Algorithm 2 shows this procedure for a thread Tk. For convenience, the thread
Tk is also included in its own dependency list. Each thread Tl other than Tk in
the dependency list has a successor job that needs a resource which is currently
held by Tl. Algorithm 2 stops either because a predecessor thread does not need
any resource or the requested resource is free. Note that “�” denotes an append
operation. Thus, the dependency list starts with Tk’s farthest predecessor and
ends with Tk.

520 B. Ravindran, E. Curley, and E.D. Jensen

input: Thread Tk; output: Tk.Dep ;1:

Initialization : Tk.Dep := Tk; Prev := Tk;2:

while reqRes(Prev) �= ∅
∧

3:

Owner(reqRes(Prev)) �= ∅ do
Tk.Dep :=Owner(reqRes(Prev)) ·Tk.Dep;4:

Prev := Owner(reqRes(Prev));5:

Algorithm 2. buildDep(Tk): Building Dependency List for a Thread Tk

3.4 Resource and Deadlock Handling

To handle deadlocks, we consider a deadlock detection and resolution strategy,
instead of a deadlock prevention or avoidance strategy precisely due to the dy-
namic nature of the systems of interest — which resources will be needed by
which threads, for how long, and in what order are all unknown to the sched-
uler. Under a single-unit resource request model, the presence of a cycle in the
resource graph is the necessary and sufficient condition for a deadlock to occur.
Thus, a deadlock can be detected by a straightforward cycle-detection algorithm.
Such an algorithm is invoked by the scheduler whenever a thread requests a
resource. A deadlock is detected if the new edge resulting from the thread’s re-
source request produces a cycle in the resource graph. To resolve the deadlock,
some thread needs to be aborted, which will result in some utility loss. To min-
imize this loss, we compute the utility that a thread can potentially accrue by
itself if it were to continue its execution, which is measured by its LUD (line 7,
Algorithm 1). HUA aborts that thread in the cycle with the lowest LUD.

3.5 Computing Thread PUD

Procedure calculatePUD() (Algorithm 3) accepts a thread Ti (with its depen-
dency list) and the current time tcur. It determines Ti’s PUD, by assuming that
threads in Ti.Dep and their handlers are executed from the current position (at
tcur) in the schedule, while following the dependencies.

To compute Ti’s PUD at time tcur, HUA computes the PUDs for the best-case
and worst-case failure scenarios and determines the minimum of the two.

For determining Ti’s total accrued utility for the best-case failure-scenario,
HUA considers each thread Tj that is in Ti’s dependency chain, which needs
to be completed before executing Ti. The total expected execution time upon
completing Tj is counted using the variable tc of line 4. With the known expected
completion time of each thread, we can derive the expected utility for each
thread, and thus obtain the total accrued utility U (line 5) for Ti’s best-case
failure-scenario.

For determining Ti’s total accrued utility for the worst-case failure-scenario, the
algorithm counts the total expected execution time upon completing Tj ’s handler
using the variable thc of line 6. The total accrued utility for the worst-case failure

On Scheduling Exception Handlers 521

input: Ti, tcur; output: Ti.PUD;1:

Initialization : tc := 0, th
c := 0, U := 0, Uh := 0;2:

for each thread Tj ∈ Ti.Dep, from tail to head do3:

tc := tc + Tj .ExecT ime;4:

U := U + Uj(tcur + tc);5:

th
c := th

c + T h
j .ExecT ime;6:

Uh := Uh + Uh
j (tcur + tc + th

c);7:

Ti.PUD := min
(
U

/
tc, U

h
/
(tc + th

c)
)
;8:

return Ti.PUD;9:

Algorithm 3. calculatePUD(Ti,tcur): Calculating the PUD of a Thread Ti

scenario Uh can be determined once the thread’s completion time followed by its
handler’s completion time is known (line 7).

The best-case and worst-case failure scenario PUDs can be determined as U
and Uh divided by tc and tc + thc , respectively, and the minimum of the two
PUDs is determined as Ti’s PUD (line 8).

Note that the total execution time of Ti and its dependents consists of two
parts: (1) the time needed to execute the threads that directly or transitively
block Ti; and (2) Ti’s remaining execution time. According to the process of
buildDep(), all the dependent threads are included in Ti.Dep.

Note that each thread’s PUD is calculated assuming that they are executed
at the current position in the schedule. This would not be true in the output
schedule σ, and thus affects the accuracy of the PUDs calculated. Actually, we
are calculating the highest possible PUD of each thread by assuming that it is
executed at the current position. Intuitively, this would benefit the final PUD,
since insertByETF() always selects the thread with the highest PUD at each
insertion on σ. Also, the PUD calculated for the dispatched thread at the head
of σ is always accurate.

3.6 Constructing Termination Time-Ordered Feasible Schedules

Algorithm 4 describes insertByETF() (invoked in Algorithm 1, line 14). insert
ByETF() updates the tentative schedule σ by attempting to insert each thread,
along with its handler, all of the thread’s dependent threads, and their handlers
into σ. The updated schedule σ is an ordered list of threads, where each thread
is placed according to the termination time that it should meet.

Note that the time constraint that a thread should meet is not necessarily its
termination time. In fact, the index value of each thread in σ is the actual time
constraint that the thread should meet.

A thread may need to meet an earlier termination time in order to enable
another thread to meet its termination time. Whenever a thread is considered
for insertion in σ, it is scheduled to meet its own termination time. However,
all of the threads in its dependency list must execute before it can execute, and

522 B. Ravindran, E. Curley, and E.D. Jensen

input : Ti and an ordered thread list σ1:

output: the updated list σ2:

if Ti /∈ σ then3:

Copy σ into σtmp: σtmp :=σ;4:

Insert(Ti, σtmp, Ti.X);5:

Insert(T h
i , σtmp, Ti.X + T h

i .X);6:

CuTT = Ti.X;7:

for each thread Tj ∈ {Ti.Dep − Ti} from head to tail do8:

if Tj ∈ σtmp then9:

TT=lookup(Tj , σtmp);10:

if TT < CuTT then11:
continue;

else12:

Remove(Tj , σtmp, TT);13:

TTh=lookup(T h
j , σtmp);14:

Remove(T h
j , σtmp, TTh);15:

CuTT :=min(CuTT, Tj .X);16:

Insert(Tj , σtmp, CuTT);17:

Insert(T h
j , σtmp, Tj .X + T h

j .X);18:

if feasible(σtmp) then19:

σ := σtmp;20:

return σ;21:

Algorithm 4. insertByETF(σ, Ti): Inserting a Thread Ti, Ti’s Handler, Ti’s Depen-
dents, and their Handlers into a Termination Time-Ordered Feasible Schedule σ

therefore, must precede it in the schedule. The index values of the dependent
threads may be changed with Insert()in line 17 of Algorithm 4.

The variable CuTT keeps track of this information. It is initialized with the
termination time of thread Ti, which is tentatively added to the schedule (line 7).
Thereafter, any thread in Ti.Dep with a later termination time than CuTT is
required to meet CuTT (lines 13; 16–17). If, however, a thread has a tighter
termination time than CuTT , then it is scheduled to meet that time (line 11),
and CuTT is advanced to that time since all threads left in Ti.Dep must complete
by then (lines 16–17).

When Ti (or any thread Tj ∈ Ti.Dep) is inserted in σ, its handler T h
i is imme-

diately inserted to meet a termination time that is equal to Ti’s termination time
plus T h

i ’s (relative) termination time (lines 6, 18). When a thread in Ti.Dep with
a later termination time than CuTT is advanced to meet CuTT , the thread’s
handler is also correspondingly advanced (lines 14–15; 18).

Finally, if this insertion (of Ti, its handler, threads in Ti.Dep, and their han-
dlers) produces a feasible schedule, then the threads are included in this schedule;
otherwise, not (lines 19–20).

On Scheduling Exception Handlers 523

Computational Complexity. With n threads, HUA’s asymptotic cost is O(n2 log n)
(for brevity, we skip the analysis). Though this cost is higher than that of many tra-
ditional real-time scheduling algorithms, it is justified for applications with longer
execution time magnitudes such as those that we focus on here. (Of course, this
high cost cannot be justified for every application.)

4 Algorithm Properties

We first describe HUA’s bounded-time completion property for exception
handlers:

Theorem 1. If a thread Ti encounters a failure during its execution, then under
HUA with zero overhead, its handler T h

i will complete no later than Ti.X+T h
i .X

time units (barring T h
i ’s failure).

Proof. If Ti fails at a time t during its execution, then Ti was included in HUA’s
schedule constructed at the scheduling event that occurred nearest to t, say at
t′, since only threads in the schedule are executed (lines 23–25, Algorithm 1). If
Ti was in HUA’s schedule at t′, then both Ti and T h

i (besides Ti’s dependents
and their handlers) were feasible at t′, since infeasible threads and their handlers
(along with their dependents) are rejected by HUA (lines 19–20, Algorithm 4).
Thus, T h

i was scheduled to complete no later than Ti.X + T h
i .X (lines 6, 18,

Algorithm 4).

When a thread Ti arrives after the failure of a thread Tj but before the comple-
tion of T h

j , HUA may exclude Ti from a schedule until T h
j completes, resulting in

some loss of the best-effort property. To quantify this loss, we define the concept
of a Non Best-effort time Interval (or NBI):

Definition 1. Consider a scheduling algorithm A. Let a thread Ti arrive at a
time t with the following properties: (a) Ti and its handler together with all
threads in A’s schedule at time t are not feasible at t, but Ti and its handler are
feasible just by themselves;3 (b) One or more handlers (which were released due
to thread failures before t) have not completed their execution at t; and (c) Ti

has the highest PUD among all threads in A’s schedule at time t. Now, A’s NBI,
denoted NBIA, is defined as the duration of time that Ti will have to wait after
t, before it is included in A’s feasible schedule. Thus, Ti is assumed to be feasible
together with its handler at t + NBIA.

We now describe the NBI of HUA and other UA algorithms including DASA [8],
LBESA [7], and AUA [15] (under zero overhead):

Theorem 2. HUA’s worst-case NBI is t+max∀Tj∈σt

(
Tj.X + T h

j .X
)
, where σt

denotes HUA’s schedule at time t. DASA’s and LBESA’s worst-case NBI is zero;
AUA’s is +∞.
3 If A does not consider a thread’s handler for feasibility (e.g., [7,8]), then the handler’s

execution time is regarded as zero.

524 B. Ravindran, E. Curley, and E.D. Jensen

Proof. The time t that will result in the worst-case NBI for HUA is when σt =
H �= ∅. By NBI’s definition, Ti has the highest PUD and is feasible. Thus, Ti

will be included in the feasible schedule σ, resulting in the rejection of some
handlers in H . Consequently, the algorithm will discard σ and select the first
handler in H for execution. In the worst-case, this process repeats for each of
the scheduling events that occur until all the handlers in σt complete (i.e., at
handler completion times), as Ti and its handler may be infeasible with the
remaining handlers in σt at each of those events. Since each handler in σt is
scheduled to complete by max∀Tj∈σt

(
Tj.X + T h

j .X
)
, the earliest time that Ti

becomes feasible is t + max∀Tj∈σt

(
Tj.X + T h

j .X
)
.

DASA and LBESA will examine Ti at t, since a task arrival is always a
scheduling event for them. Further, since Ti has the highest PUD and is feasible,
they will include Ti in their feasible schedules at t (before including any other
tasks), yielding a zero worst-case NBI.

AUA will examine Ti at t, since a thread arrival at any time is a scheduling
event under it. However, AUA is a TUF/UA algorithm in the classical admission
control mould and will reject Ti in favor of previously admitted threads, yielding
a worst-case NBI of +∞.

Theorem 3. The best-case NBI of HUA, DASA, and LBESA is zero; AUA’s
is +∞.

Proof. HUA’s best-case NBI occurs when Ti arrives at t and the algorithm in-
cludes Ti and all handlers in H in the feasible schedule σ (thus the algorithm
only rejects some threads in σt to construct σ). Thus, Ti is included in a feasible
schedule at time t, resulting in zero best-case NBI.

The best-case NBI scenario for DASA, LBESA, and AUA is the same as their
worst-case.

Thus, HUA’s NBI interval [0, max∀Tj∈σt Tj .X + T h
j .X] lies in between that of

DASA/LBESA’s [0] and AUA’s [+∞]. Note that HUA and AUA bound handler
completions; DASA/LBESA do not.

HUA produces optimum total utility for a special case:

Theorem 4. Consider a set of independent threads subject to step TUFs. Sup-
pose there is sufficient processor time for meeting the termination-times of all
threads and their handlers. Now, a schedule produced by EDF [3] is also produced
by HUA, yielding equal totaly utility.

Proof. For a thread Ti without dependencies, Ti.Dep only contains Ti. During
underloads, σ from line 14 of Algorithm 1 is termination time-ordered. The
TUF termination time that we consider is analogous to the deadline in [3].
From [3], an EDF schedule is optimal (with respect to meeting all deadlines)
during underloads. Thus, σ yields the same total utility as EDF.

HUA also exhibits non-timeliness properties including freedom from deadlocks,
correctness (i.e., the resource requested by a thread selected for execution by
HUA is free), and mutual exclusion. These properties are self-evident from the
algorithm description. For brevity, we omit their proofs.

On Scheduling Exception Handlers 525

5 Implementation Experience

We implemented HUA in a real-time Java platform. This platform consisted of
the meta-scheduler middleware scheduling framework in [14] implemented atop
Apogee’s Aphelion Real-Time Java Virtual Machine that is compliant with the
Real-Time Specification for Java (RTSJ). This RTSJ platform ran atop the De-
bian Linux OS (kernel version 2.6.16-2-686) on a 800MHz, Pentium-III processor.

Besides HUA, we implemented DASA and a simplified variant of HUA called
HUA-Non-Preemptive (or HUA-NP), for a comparative study. DASA does not
consider handlers for scheduling until failures occur. When a thread fails, DASA
then considers its handler for scheduling just like a regular thread, resulting in
zero NBI. Similar to DASA, HUA-NP also does not consider handlers for schedul-
ing until failures occur. However, when a thread fails, unlike DASA, HUA-NP
immediately runs the thread handler non-preemptively till completion, resulting
in a worst-case and best-case NBI of one handler execution time. In this way,
HUA-NP seeks to accrue as much utility as possible by excluding handlers from
schedule construction (and thus is more greedy than HUA), while maintaining
an upper bound on handler completion. Thus, DASA and HUA-NP are good
candidates for a comparative study as they represent two interesting end points
of the NBI-versus-handler-completion-time tradeoff space.

Our test application created several periodic threads that consume a certain
amount of processor time, request a shared resource, and periodically check for
abort exceptions. Each thread created had a unique execution time, period,
and maximum utility. These parameters were assigned based on three PUD-
based thread classes that were used: high, medium, and low. The classes differed
in thread execution times, thread periods, and threads PUDs by one order of
magnitude. The classes, however, differed in handler execution times, handler
periods, and handler PUDs only by a small factor. Within each class, thread
execution times and thread PUDs were higher than that of their handler exe-
cution times and handler PUDs, respectively, by one order of magnitude. For
all the experiments, an even number of threads from each of the three classes
were used. Thus, the three classes give the algorithms a rich mixture of thread
properties to exhibit their NBI and handler completion behaviors.

Our metrics to evaluate HUA included the NBI, Handler Completion Time
(HCT), Accrued Utility Ratio (AUR), and Deadline Miss Ratio (DMR). HCT
is the duration between a handler’s completion time and it’s release time. AUR
is the ratio of the total accrued utility to the maximum possible total utility
(possible if every released thread completes before its termination time). DMR
is the ratio of the number of threads that missed their termination times to the
number of released threads.

We manipulated five variables during our experiments: (1) the percentage of
failed threads, (2) system load caused by normal tasks, (3) system load caused
by handlers, (4) the ratio of handler execution time to normal task execution
time, and (5) the number of shared resources within the system. The variables
affect the system’s “stress factor” and influence the four metrics.

526 B. Ravindran, E. Curley, and E.D. Jensen

We measured the four metrics under a constant value for these variables,
except for the failure percentage, which was varied between 0% and 95%. To vary
the failure percentage, the set of threads that must fail for a given percentage
must be repeatable. However, to have a repeatable set of discrete failures (i.e.,
not a random distribution), the actual percentage of failures may be slightly
off from the predicted value—e.g., if an experiment had 50 threads and 25% of
them needed to be failed, it is impossible to fail 12.5 threads; thus the failure
percentage would be 24% or 26%.

Normal task load was 150%, handler load was 90%, and the ratio of handler
execution to normal execution was 50%. We first focused on zero shared resources
and then considered shared resources.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
B

I (
m

s)

Thread Failure Percentage

Non-Best effort time Interval (NBI)

HUA-ND
DASA

HUA-NP

Fig. 2. Non-Best effort time Interval (NBI)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
C

 (
m

s)

Thread Failure Percentage

Handler Completion Time

HUA-ND
DASA

HUA-NP

Fig. 3. Handler Completion Time

Figure 2 shows the measured NBI of DASA, HUA-NP, and HUA under in-
creasing number of failures. We observe that HUA provides a smaller NBI than
DASA and HUA-NP. HUA has a smaller NBI than DASA because DASA is un-
likely to execute low-PUD threads like handlers. Thus, it is likely to keep them
pending and incur a non-zero NBI due to scheduler overhead when a high PUD
thread arrives. HUA has a smaller NBI than HUA-NP because HUA-NP will
always have a non-zero NBI when a high PUD thread arrives during its non-
preemptive handler execution. However, the only time HUA will have a non-zero
NBI is when a high PUD thread arrives with such little slack that the pending
handlers cannot fit within that slack.

Figure 3 shows the average HCTs for HUA, DASA, and HUA-NP. In general,
DASA’s HCTs are highest and rather inconsistent, HUA-NP’s are smallest and
very consistent, and HUA’s are somewhat consistent, but always within a cer-
tain bound. As DASA was not designed to bound HCTs, it makes sense that its
HCTs would be larger than the other two algorithms. Likewise, it makes sense
that HUA-NP would have the least average HCT as the handler is run to com-
pletion when it is released. To allow more threads to be scheduled, HUA does
not immediately run the handler when it is released. This delay in running the
handler causes HUA’s average HCT to be higher than HUA-NP’s. However, as

On Scheduling Exception Handlers 527

HUA is designed to provide a finite bound on HCT, it will generally be smaller
than DASA’s.

Figures 2 and 3 also indicate that the trends acquired from our experiments
display a less than smooth response to changes in failure percentage. (Figures 4
and 5 also display this behavior.) This is likely due to the way the failure per-
centage is varied. Since the set of threads that fail for a given failure percentage
is not a strict subset of the set of threads that fail for a larger failure percent-
age, it is possible that lower-PUD threads may fail at higher failure percentages.
Thus, algorithms like DASA and HUA-NP may find a more beneficial schedule
at higher failure percentages.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
U

R
 (

%
)

Thread Failure Percentage

AUR

HUA-ND
DASA

HUA-NP

Fig. 4. Accrued Utility Ratio

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ea

dl
in

e
M

is
s

R
at

io
 (

%
)

Thread Failure Percentage

Deadline Miss Ratio

HUA-ND
DASA

HUA-NP

Fig. 5. Deadline Miss Ratio

Figure 4 shows how the AUR of each algorithm is affected under increasing
failures. In general, HUA will have a lower AUR as it reserves a portion of its
schedule for handlers which generally have lower PUDs or may not even execute.
However, as can be seen from the figure, HUA has an AUR that is comparable to,
if not better than that of DASA and HUA-NP for this thread set. This is because
DASA only analyzes handlers that have been released. This limits DASA’s ability
to discern whether it would be more beneficial to abort the thread and run its
handler instead. As HUA has no such limitation, it can better decide whether
to run the thread or abort the thread and run its handler.

Figure 5 displays the measured DMR under increasing failures. As the number
of failures increases, the number of termination times (or deadlines) missed also
increases. This is due to the added load that handlers put on the system. In
the case of DASA, this load is completely unforeseen and as the handlers have
less PUD than most normal threads, DASA may never schedule them causing
their termination times to be missed. Thus, DASA is affected most by increased
failures. While the handler load is also unanticipated for HUA-NP, the effects
are mitigated somewhat due to HUA-NP’s non-preemptive handler execution
property. Because HUA takes the handler load into consideration when forming
a schedule, the extra load on the system affects HUA the least.

Figure 6 and Figure 7 show the average HCT and average NBI of HUA under
increasing number of shared resources. From the figures, we observe that HUA’s

528 B. Ravindran, E. Curley, and E.D. Jensen

 0

 500

 1000

 1500

 2000

 0 2 4 6 8 10 12 14 16 18 20

H
C

 (
m

s)

Number of Shared Resources

Handler Completion Time (with Dependencies)

HUA

Fig. 6. Handler Completion Time with
Dependencies

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12 14 16 18 20

N
B

I (
m

s)

Number of Shared Resources

Non-Best effort time Interval (with Dependencies)

HUA

Fig. 7. NBI with Dependencies

HCT and NBI are unaffected by dependencies that arise between threads due to
shared resources.

6 Conclusions and Future Work

We presented a real-time scheduling algorithm called HUA. The algorithm’s
application model includes threads and their exception handlers with TUF time
constraints, and a transactional-style execution paradigm where handlers abort
the failed threads after performing recovery actions. Threads may serially share
non-processor resources. We showed that HUA bounds (A) the completion times
of handlers that are released for threads which fail during execution, and (B)
the time interval for which a high importance thread arriving during overloads
has to wait to be included in a feasible schedule. Our implementation on a RTSJ
Virtual Machine demonstrated HUA’s effectiveness.

Property (A) is potentially unbounded for best-effort algorithms, and property
(B) is potentially unbounded for admission control algorithms. By bounding (A)
and (B), HUA conceptually places itself between these two models, allowing for
applications to exploit the tradeoff space.

Directions for future work include extending the results to [16]’s variable cost
function model for thread/handler execution times, multiprocessor scheduling,
and scheduling [13]’s distributable threads.

References

1. Clark, R.K., et al.: Software organization to facilitate dynamic processor schedul-
ing. In: IEEE WPDRTS. (2004)

2. Clark, R., et al.: An adaptive, distributed airborne tracking system. In: IEEE
WPDRTS. (1999) 353–362

3. Horn, W.: Some simple scheduling algorithms. Naval Research Logistics Quaterly
21 (1974) 177–185

On Scheduling Exception Handlers 529

4. Maynard, D.P., Shipman, S.E., et al.: An example real-time command, control,
and battle management application for alpha. Technical report, CMU CS Dept.
(1988) Archons Project TR 88121.

5. Jensen, E.D., et al.: A time-driven scheduling model for real-time systems. In:
IEEE RTSS. (1985) 112–122

6. Ravindran, B., Jensen, E.D., Li, P.: On recent advances in time/utility function
real-time scheduling and resource management. In: IEEE ISORC. (2005) 55 – 60

7. Locke, C.D.: Best-Effort Decision Making for Real-Time Scheduling. PhD thesis,
Carnegie Mellon University (1986)

8. Clark, R.K.: Scheduling Dependent Real-Time Activities. PhD thesis, Carnegie
Mellon University (1990)

9. Northcutt, J.D.: Mechanisms for Reliable Distributed Real-Time Operating Sys-
tems - The Alpha Kernel. Academic Press (1987)

10. Bestavros, A., Nagy, S.: Admission control and overload management for real-time
databases. In: Real-Time Database Systems: Issues and Applications. Kluwer
Academic Publishers (1997)

11. Streich, H.: Taskpair-scheduling: An approach for dynamic real-time systems. Mini
and Microcomputers 17 (1995) 77–83

12. Kandasamy, N., et al.: Scheduling algorithms for fault tolerance in real-time em-
bedded systems. In Avresky, D.R., ed.: Dependable Network Computing. Kluwer
Academic Publishers, Norwell, MA, USA (2000)

13. OMG: Real-time corba 2.0: Dynamic scheduling specification. Technical report,
Object Management Group (2001)

14. Li, P., Ravindran, B., et al.: A formally verified application-level framework for
real-time scheduling on posix real-time operating systems. IEEE Transactions on
Software Engineering 30 (2004) 613 – 629

15. Curley, E., Anderson, J.S., Ravindran, B., Jensen, E.D.: Recovering from dis-
tributable thread failures with assured timeliness in real-time distributed systems.
In: IEEE SRDS. (2006) 267–276

16. Wu, H., et al.: Utility accrual real-time scheduling under variable cost functions.
In: IEEE RTCSA. (2005) 213–219

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 530–539, 2007.
© Springer-Verlag Berlin Heidelberg 2007

PR-MAC: Path-Oriented Real-Time MAC Protocol for
Wireless Sensor Network

Jianrong Chen, Peidong Zhu, and Zhichang Qi

College of Computer Science, National University of Defense Technology, Changsha, Hunan,
China, 410073

{Jrchen,Pdzhu,zcq}@nudt.edu.cn

Abstract. This paper proposes a Path-oriented Real-time Medium Access
Control (PR-MAC) protocol for sensor networks to guarantee the bounded
delay of data transmission. PR-MAC removes sleep delay with a Bidirectional
Pipelining Schedule (BPS) algorithm, and reduces communication delay caused
by contention with a multi-channel communication mechanism. BPS enables a
node to wake twice during a work cycle so as to support bidirectional data
transmission. In either direction, the nodes along a path wake up sequentially.
The multi-channel mechanism allocates a special channel for each
communication path so that multiple simultaneous events will not interfere with
one another. The data delay and energy consumption of PR-MAC is compared
with those of S-MAC and DMAC. We implement the prototype of PR-MAC on
the ns-2 simulator. Experiments showed PR-MAC performs better than S-MAC
in reducing the transmission delay of both data and control message.

Keywords: Sensor network, real time, MAC, schedule, channel.

1 Introduction

A Wireless Sensor Network (WSN) deploys a large number of sensors with
processing and communication capabilities for collecting information from and
responding to the physical world. A typical WSN consists of a set of nodes and one
common sink. The nodes collect information and deliver messages to the sink. The
sink is capable of processing the messages and controlling the working state of the
WSN accordingly. There are two directions of data transmission in WSNs: data
report from a source to the sink, and network control from the sink to a source.

Maximizing the network lifetime is a common objective of sensor network
research, since sensor nodes are assumed to be disposed when they are out of battery.
However, a great number of WSN applications, such as battlefield surveillance,
disaster and emergency response, are required of real time properties, which constrain
the delay of end-to-end data transmission [1]. For example, a WSN for environment
surveillance may require a sensor node to detect a fast moving target and to send the
information to the sink within one second. The sink is supposed to react by
commanding a node before the target moves out of the sensing range of the WSN.
However, to guarantee real time properties of sensor networks is challenging due to

 PR-MAC: Path-Oriented Real-Time MAC Protocol for Wireless Sensor Network 531

the following two reasons. First, the nodes in a WSN communicate through one
channel by contention, which leads to undeterministic communication delay. Second,
the sleep/wakeup mechanism for saving energy consumption results in sleep latency,
which means an intermediate node may have to wait until the receiver wakes up
before it can forward a packet received from its previous hop [3].

To achieve a bounded delay of end-to-end data transmission without much
sacrifice on energy, this paper proposes a new medium access control protocol,
named Path-oriented Real-time Media Access Control (PR-MAC). The protocol
addresses the two causes of data transmission delay with a schedule algorithm called
Bidirectional Pipelining Schedule (BPS) and a multi-channel communication
mechanism, respectively. The BPS schedule algorithm is devised to reduce sleep
latency in both directions of data transmission. BPS enables a node to wake up twice
during a work cycle, each for data transmission in one direction. The time interval of
two wakes of a node within one work cycle depends upon the number of hops
between the node and the sink. In either direction, the nodes along a path wake up
sequentially in the way of pipelining. PR-MAC replaces one channel mechanism in
traditional WSN protocols with the multi-channel communication mechanism to
reduce the data transmission delay due to the contention. The multi-channel
mechanism is only used on paths where data transmission occurs. BPS together with
the multi-channel mechanism enables a WSN to construct a quick bidirectional path
for each event. With the quick paths, the WSN can quickly adapt to changing real
time requirements in an application by changing its information sampling frequency
and waking up offset of nodes.

The remainder of the paper is organized as follows. Section 2 overviews the
existing delay-reducing solutions. In Section 3, we elaborate the design of the PR-
MAC protocol. In Section 4, the transmission delay and energy consumption of PR-
MAC are theoretically analyzed and compared with those of the most often cited
protocols S-MAC [2][3] and DMAC [4]. Section 5 presents the implementation of
PR-MAC on the ns-2 simulator. The experiments we conducted showed that PR-
MAC is able to satisfy real time constraints on applications featured by simultaneous
events. Section 6 concludes the paper with a discussion of future work.

2 Related Work

A number of protocols have been proposed to reduce sleep latency resulted from the
sleep/wakeup schedule, including S-MAC, T-MAC and LE-MAC. In S-MAC [3], the
time frame is divided into the listen and sleep periods. In order to reduce the sleep
latency, adaptive listen uses the RTS-CTS mechanism to wake up neighbors of the
sender and the receiver after a packet is delivered. The adaptive listen can avoid
schedule miss and half the latency. T-MAC [4] is another contention-based low duty
cycle MAC protocol. In contrast to S-MAC where nodes listen passively, T-MAC
uses an active future request-to-send (FRTS) scheme, which notices the third hop
node with a future-request-to-send packet. LE-MAC [8] exploits the feature of
physical carrier sensing in CSMA/CA. When nodes in the routing path between a
source and a sink are signaled of the traffic, they wake sometime later during the
sleep period for transmitting data. In comparison with S-MAC, LE-MAC is similar in
employing the overhearing mechanism, but performs better in energy saving.

532 J. Chen, P. Zhu, and Z. Qi

With the above protocols, sleep latency in WSNs can be reduced to some extent
but cannot be totally removed, because the scope of either overhearing or FRTS is
limited to a number of hops and not able to cover the whole paths in a WSN.

Schedule algorithms for avoiding sleep latency have also been researched. Among
them, DMAC [5] is closely related to BPS proposed in this paper. As a schedule
algorithm specifically designed for data gathering tree applications, where multiple
sources and a single sink in the network construct a data forwarding tree, DMAC
staggers the activity schedule of nodes on the multihop path to wake up sequentially
like a chain reaction. Sleep latency is eliminated if there is no packet loss due to
channel error or collision. In [6], a schedule algorithm similar to DMAC called FPA
is demonstrated with an implementation based on S-MAC.

DMAC and FPA can confine data transmisstion delay to about 100ms per hop.
However, they are still incapable of satisfying real time requirements on WSNs. The
inadequacy of them lies in three aspects. First, the delay bound of 100ms is
unacceptable in most real time applications. Second, the presumption of DMAC that
no packet loss occurs cannot generally hold because sensor networks usually run in
complex environment. Most importantly, the sleep latency of control messages
delivered from the sink is not addressed.

Among the researches about multi-channel communication, a protocol called
MMSN is proposed in [7]. MMSN takes advantage of multi-frequency availability of
communication hardware, and also takes into account the restrictions in wireless
sensor networks. Although MMSN provides four frequency assignment options, it
reduces rather than avoids communication collision. To our knowledge, none of the
existing protocols can ensure a bounded delay of data transmission.

3 The PR-MAC Protocol

We design a protocol called PR-MAC to ensure a bounded delay of data transmission
in sleep/wakeup sensor networks. Our work targets persistent applications where a
communication path can work for some time. PR-MAC aims to obtain a bounded and
minimal end-to-end delay of data transmission, fast adaptation to changing real-time
requirements, as well as low energy consumption.

3.1 Bidirectional Pipelining Schedule

Each node in PR-MAC wakes up periodically for listening. Fig.1 shows the schedule
of a set of nodes on a data delivery path, where Noden denotes a node whose distance
to the sink is n hops. During one work cycle, a node wakes up twice: Listenup for
transmitting data messages from source nodes to the sink, and Listendown for
transmitting control message from the sink to source nodes. In Fig.1, the fuscous and
gray panes respectively denote the time moment of Listenup and Listendown for each
node. In either direction between sources and the sink, nodes on a multi-hop path
wake up sequentially like pipelining with offset σ, which is long enough for
transmitting or receiving a packet. The moment Noden wakes depends on its depth n
in the path. The following equation (1) defines Tup(i), the relative time of Nodei’s

 PR-MAC: Path-Oriented Real-Time MAC Protocol for Wireless Sensor Network 533

Listenup ahead of the sink In the following equations, Tframe is the length of a work
cycle and x % y derives the remainder of x modules y.

Tup(i)=|Tframe-i*σ| % Tframe (1)

The interval of two wakes of a same node is:

Tinter(i)=(2*i*σ) % Tframe (2)

The time of Listendown of the node is

Tdown(i)=(Tup(i)+ Tinter(i)) % Tframe (3)

The above equations may lead to an interval less than σ between two wakes of a
same node, as shown by Node5 in Fig.1. Such an interval is too small for Listendown to
occur if a data message is delivered during Listenup. In order to ensure the occurrence
of Listendown in each work cycle on each node, the equation (4) practically replaces
the equation (2) to enlarge the interval.

Tinter(i)=2*σ*(i % (N-1)) (4)

where is the integer in [(Tframe-σ)/(2*σ), Tframe/(2*σ)].

Fig. 1. Bidirectional Pipelining Schedule

Since the waking time of each node depends on its local clock, synchronization is
needed. Local synchronization is enough because a node only needs to be aware of its
neighbors’ schedule. The following discussions assume that synchronization is
available.

In PR-MAC, the sink is responsible for obtaining real time requirements of the task
through analyzing the messages it receives. According to the real time requirements,
the sink calculates the sampling frequency and transmission latency for the source
nodes. For example, on receiving a message that represents a moving target with the
velocity of 1m/s, the sink is supposed to assign the sampling frequency as one
message per second and the transmission latency as less than 0.4 second. The
sampling frequency decides the Tframe for the nodes on the communication path. The
transmission latency is used to set the waking interval (σ) of two neighbor nodes. By

534 J. Chen, P. Zhu, and Z. Qi

sending the nodes a control message containing Tframe and σ, the sink is able to tune
the frequency and latency of the nodes. A node that receives the control message
changes its working pattern till the next work cycle. Despite that the waking offset of
a pair of neighbor nodes can vary in different tasks, it must be greater than scores of
ms to deal with communication collision. The limitation on offset prevents WSNs
from satisfying real time requirements of certain applications. In order to avoid the
communication collision, PR-MAC uses multi-channel communication.

3.2 Multi-channel Communication

Current WSN hardware, such as Micaz and Telos that use CC2420 radio [9], supports
multiple frequencies [10]. It is feasible for WSNs to use multi-frequency MAC
protocols to improve the network throughput with parallel transmission. IEEE
standard 802.15.4 regulates that there is a single channel between 868 and 868.6MHz,
10 channels between 902.0 and 928.0MHz, and 16 channels between 2.4 and
2.4835GHz. The standard also allows dynamic channel selection. Our protocol PR-
MAC exploits multiple channels by allocating one as the common channel and the
others as special channels. When the sink in a WSN receives a message from a path
and estimates that the path will be working for some time, it informs all nodes on the
path to use a special channel. Then all nodes on the path will use the special channel
in their next Listenup. The sink will still use the common channel to send control
messages.

In PR-MAC, each node maintains a table to record the channels used by and the
waking moments of its neighbor nodes. A node A sends a message to its neighbor B at
the waking moment of B through the channel B uses.

The mechanism of using the common channel differs from that of the special
channels. Nodes compete for using the common channel. To reduce collision, every
node backs off for a period (BP) plus a random time within a contention window at
the beginning of a sending slot. The window increases exponentially in the case of
contention. When the channel is available, the node exchanges RTS/CTS to avoid the
hidden node problem. When a node receives a packet, it transmits the ACK packet
back to sender after a short period (SP). In summary, the offset for the common
channel, denoted as σc is calculated as follows:

σc=BP+RTS +SP +CTS +DATA+SP+ACK

where RTS, CTS, DATA and ACK respectively represent the time periods of
transmitting the corresponding packets. In special channels, because Tframe is much
greater than σ, it is impossible for neighbor nodes to simultaneously send packets.
There is no hidden node problem, so RTS/CTS exchange is unnecessary and a node
sends data immediately after a backoff once the channel is available. Therefore, the
offset for the special channels, denoted as σs, is calculated as follows:

σs=BP+DATA+SP+ACK

When the monitored event finishes or the sink does not get message for some work
cycles, the sink sends the nodes a control packet to restore their work pattern to the
original.

 PR-MAC: Path-Oriented Real-Time MAC Protocol for Wireless Sensor Network 535

3.3 Working of the Sink

The sink in a WSN is the destination of data transmission. It works as the coordinator
and controller of the other nodes. In PR-MAC, the sink has three tasks, namely path
channel selection, data receive and network control.

For channel selection, the sink maintains a event table recording event location,
sampling frequency, channel frequency, wake offset and message arrival time. When
the sink receives some data that has been recorded in the event table, it updates the
corresponding item in the event table. If it receives some data that represents a new
event, the sink executes a procedure of channel selection as follows.

Step 1: If the sink has unoccupied special channels, it randomly selects a channel
for the event. Otherwise, it selects the channel of the existing event that is farthest to
the upcoming event in polar coordinate.

Step 2: Compute the event sampling frequency and waking offset.
Step 3: record the event in the event table.

After a channel is selected, the sink sends a control message including Tframe and σ
to all nodes on the path.

To receive data, the sink listens to the channels according to the channel frequency
recorded in its event table. When no event is to listen from the special channels, the
sink listens to the common channel.

The sink performs network control through analyzing the features of the received
events, or the working state of the network, or the requirement from the outside
terminals. Control messages in the whole network share the common channel. The
number of control messages is much less than that of data messages. Therefore no
much collision will happen on the common channel.

4 Performance Analysis

If there is no packet loss due to channel error, the delay of every hop is σs as defined in
the Section 3.3. The transmission delay of data message delivered by Nodei is i*σs . The
transmission delay of control message sent by Nodei is i*σc%(N-1) +i*Tframe /(N-1).

In the following, we compare the performance of PR-MAC with S-MAC and
DMAC with respect to transmission delays of the two types of messages. In S-MAC,
the two types of data have the same delay, of which the average is (i*Tframe/2+2 (BP+
DATA+SP+ACK)- Tframe/2). DMAC does not consider the delay of control messages.
The average delay of data messages in DMAC is (i*μ (μ=BP+ DATA+SP+ACK).

Fig. 2. shows the data delay on a set of nodes in a WSN with 10% duty cycle. The
interference between multiple events is disregarded. With any of the three protocols,
data delay on a node is linear to the distance between the node and the sink. PR-MAC
is better than DMAC because the backoff period is much less than that in DMAC.

Fig. 3 shows the data delays on the node whose distance to the sink is 5 hops in
WSNs with different duty cycles. Using either PR-MAC or DMAC, the delay is
independent of the duty cycle. It shows that the network does not consume more
energy for satisfying higher real time requirements.

Fig. 4 shows the delays of control messages of various nodes using PR-MAC and
S-MAC, respectively. With PR-MAC, the control delay of a node is approximately

536 J. Chen, P. Zhu, and Z. Qi

Fig. 2. Data delay on various nodes

Fig. 3. Data delay of Node5 in WSNs with different duty cycles

Fig. 4. Control delay using PR-MAC and S-MAC

 PR-MAC: Path-Oriented Real-Time MAC Protocol for Wireless Sensor Network 537

linear to the distance between the node and the sink. The minor variations to the linear
relation are caused by the intentional extention to the waking offset between neighbor
nodes. The control delay is little enough for the network to quickly adapt to different
types of events by changing its working pattern.

Besides the above advantages, PR-MAC needs an initialization period to construct
a special channel for an event. During the initialization period, data messages are
transmitted through the common channel. Data transmission of the initializing event
will not interfere with those of the events that have special channels. So the delay of
data transmission in the initialization period is acceptable and less than the average
data delay in DMAC. The working process of PR-MAC with an initialization period
matches the characteristics of general real time applications. Take the application that
monitors moving targets as an example. During the time span between the moments
that a target enters and leaves the sensing range, the sensor nodes detect the target
periodically. During the initialization period of the event, the purpose of the WSN is
just to detect the target. After the initialization, the WSN is supposed to react to the
event, which is required of stricter real time constraints. Meanwhile, the execution of
the protocol comes to a stable status.

Concerning energy consumption, PR-MAC needs one more waking in each work
cycle than traditional protocols. A wake for low power listen costs the time of 3 ms
and the power of 5.75 mW [11]. If the work cycle is 50s, PR-MAC consumes at most
0.4% more power than other protocols when there is no data transmission in the
network. When there is data transmission, the excessive power consumption is
negligible because RTS/CTS exchange is saved.

5 Experimentation

We implemented the prototype of PR-MAC on ns-2 simulator. The routing protocol
in ns-2 simulator is modified to support the execution of PR-MAC. We conducted an
experiment to compare the performance of PR-MAC to that of S-MAC with adaptive
listen. In the experiment, the work cycle of the WSN is set to 100 ms, and the duty

Fig. 5. Data delay of PR-MAC and S-MAC

538 J. Chen, P. Zhu, and Z. Qi

Fig. 6. Energy consumption of PR-MAC and S-MAC

cycle is 10%. Three interfering paths are used to send independent random packet
sequences. The average interval between two sequential packets is 100 ms. The radio
bandwidth is 250 kbps and radio energy character as table 1 in [11]. Fig. 5 shows the
data delay of the two protocols. When there are multiple interfering events, PR-MAC
keeps a bounded data delay which is decided just by the distance of the node. Fig. 6
shows the energy consumption of the two protocols. The multi-channel mechanism of
PR-MAC can reduce the energy consumption.

6 Conclusion

The paper proposed a protocol named Path-oriented Real-time MAC (PR-MAC) to
ensure bounded data transmission latency in multi-hop WSNs. PR-MAC employs
Bidirectional Pipelining Schedule (BPS) to remove sleep latency, and multi-channel
communication to reduce data latency. PR-MAC provides a soft real time service for
WSN applications. Experiments showed that our protocol has advantages in data
latency and energy consumption over existing protocols in the case of simultaneous
multiple events. The proposed protocol is suitable for applications which accepts slow
initialization and requires periodical data collection or query. The shortage of PR-
MAC is it needs the support of route layer and requires the sink to take more
operations, which complicates the implementation of the protocol. One of the future
working directions is to support the data fusion and the cross of multiple paths.
Another direction is to conduct more experiments on the real platform such as Micaz.

References

[1] Tian He, Pascal Vicaire, Ting Yan et al. Achieving Real-Time Target Tracking Using
Wireless Sensor Networks. In 12th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). 2006.

[2] W. Ye, J. Heidemann, and D. Estrin, An Energy-efficient MAC Protocol for Wireless
Sensor Networks, in 21st Conference of the IEEE Computer and Communications
Societies (INFOCOM). 2002. p. 1567--1576.

 PR-MAC: Path-Oriented Real-Time MAC Protocol for Wireless Sensor Network 539

[3] W. Ye, J. Heidemann, and D. Estrin, Medium access control with coordinated adaptive
sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking, 2004.
12(3): p. 493-506

[4] T.v. Dam and K. Langendoen, An Adaptive Energy-Efficient MAC Protocol for Wireless
Sensor Networks, in The First ACM Conference on Embedded Networked Sensor
Systems (SenSys'03). 2003, ACM Press: Los Angeles, California, USA. p. 171--180.

[5] G. Lu, B. Krishnamachari, and C.S. Raghavendra. An Adaptive Energy-Efficient and
Low-Latency MAC for Data Gathering in Sensor Networks. in Four Workshop on
Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN). 2004. Santa
Fe, NM.

[6] Y. Li, W. Ye, and J. Heidemann, Energy and Latency Control in Low Duty Cycle MAC
Protocols, in Proceedings of the IEEE Wireless Communications and Networking
Conference. 2005,New Orleans, LA, USA.

[7] Z. Gang, et al., MMSN: Multi-Frequency Media Access Control for Wireless Sensor
Networks. 2006.

[8] http://dx.doi.org/10.1007/11807964_45Changsu Suh, Deepesh Man Shrestha,
Young-Bae Ko. An Energy-Efficient MAC Protocol for Delay-Sensitive Wireless Sensor
Networks. EUC Workshops 2006: 445-454

[9] “CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver,”
http://www.chipcon.com.

[10] “XBOW MICA2 Mote Specifications,” http://www.xbow.com.
[11] Ye, W. and J. Heidemann, Ultra-Low Duty Cycle MAC with Scheduled Channel Polling,

in The 4th ACM Conference on Embedded Networked Sensor Systems. 2006: Boulder,
Colorado, USA.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 540–547, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Real-Time Traffic Packet Scheduling Algorithm in
HSDPA System Considering the Maximum Tolerable

Delay and Channel Assignment

Xiaodong Yu, Sung Won Kim, and Yong Wan Park

Department of Information & Communication Engineering, Yeungnam University,
Gyeongsan-si, Korea

silenceyu@hotmail.com, ksw@ieee.org, ywpark@yu.ac.kr

Abstract. In this paper, we consider a new packet scheduling algorithm for real
time traffic in the high speed downlink packet access system that has been in-
troduced for WCDMA system to providing high transmission rates. The objec-
tive of the design is to meet the maximum tolerable delay and consider the
channel assigning based on the received SIR for real-time traffic users. The
proposed scheduling algorithm shows that the users are ranked by the ratios of
the bits in the buffer to the residual time for transmission, the ranked users are
assigned channels based on the SIR value table and get service one by one. The
simulation results show that the proposed algorithm can provide the lower
packet drop rate for real time quality of service (QoS) requirement.

1 Introduction

Wideband Code Division Multiple Access (WCDMA) is the most widely adopted air
interface for Third Generation system. One of these technologies is the High Speed
Downlink Packet Access (HSDPA), which permits to increase user peak data rates up
to 10Mbps, reduce the service response time, and improve the spectral efficiency for
downlink packet data service. Its concept consists of a fast scheduling that supports
per 2-ms transmission time interval (TTI), adaptive modulation and coding scheme
(AMC), fast cell selection (FCS) and multiple input multiple output (MIMO) antenna
technology for higher performance.

In HSDPA, fast scheduling is the mechanism determining which user transmits in a
given time interval. Maximum system throughput is obtained by assigning all avail-
able radio resources to the user with the currently best radio-channel conditions, while
a practical scheduler should include some degree of fairness.

In this paper, we propose a QoS guarantee of packet scheduling algorithm consid-
ering requirement maximum tolerable delay and backlogged packet in the buffer to
decrease the packet drop of real-time service users. In this scheme we get the priority
users ranking by the ratio of maximum tolerable delay to backlogged packet in the
buffer, after that we assign different number of HS-PDSCH to the service user by the
received SIR that can provide the system throughput at the same time.

 Real-Time Traffic Packet Scheduling Algorithm in HSDPA System 541

2 Related Works

Many wireless packet scheduling algorithms have been designed to support data traf-
fic in the Third Generation Partnership Project (3GPP). Three schemes of packet
scheduling are introduced in the HSDPA specification such as Max CIR (maximum
carrier to interference), Round robin and Proportional Fairness.

The Max CIR scheduler directs transmission to the user with the momentarily best
channel conditions, allowing for the highest possible data rate at each instant and thus
maximizing the overall throughput. This serving principle has obvious benefits in
terms of cell throughput, although it is at the cost of lacking throughput fairness.

The round robin scheduler cycles through the list of active users and thus is fair in
the average sense. As the round robin scheduler is not based on the varying channel
quality, the throughput performance however suffers.

The proportional fairness scheduler schedules the user with the currently highest
ratio between instantaneous C/I and average transmission rate. It serves in every TTI
the user with largest priority:

))(/)(max(arg)(trtRtP iii = , (1)

where)(tPi denotes the user priority,)(tRi is the instantaneous supportable data

rate experienced by user i , and)(tri is the user throughput. In the current investiga-

tion, the user throughput)(tri is simply computed as the number of bits correctly

received by user i during the period),(tti divided by such a period, where it de-

notes the instant when the user starts his downlink transmission. This scheme is intro-
duced to compensate the disadvantage of Max CIR and Round robin.

Above schemes are very well suited for non-real time traffic, that only considering
the throughput and fairness as QoS requirement, but the transport of real-time traffic
over HSDPA is an important challenges in order to guarantee its quality of service
(QoS) requirement. Providing QoS, in particular meeting the data rate and packet
drop constraints of real-time traffic users, is one of the requirements in emerging
high-speed data network.

3 Proposed Algorithm

In this section, we present some basic concepts and definitions, and then described in
detail the steps to operate our proposed algorithm.

3.1 Minimum Requirement of Bit Rate for Maximum Tolerable Delay

For each user i with the total length of)(tLi bits for the backlogged packet in the

buffer at time slot t , maxT is the maximum tolerable delay for real-time traffic

542 X. Yu, S.W. Kim, and Y.W. Park

waiting in the buffer,)(tWi is the waiting time for a head of line (HOL) packet for

user i in each buffer. A minimum requirement bit rate at slot time t is defined as

)(

)(
)(

max tWT

tL
tP

i

i
i −

= (2)

From a conceptual perspective, the minimum requirement of bit rate can guarantee
the transmission of the backlogged packets in buffer transmitted without packet drop.
That is, if a user wants to transmit packets without packets drop, the user must con-
duct in accordance with the minimum requirement of bit rate of transmission in next
several time slots.

3.2 Channel Assignment in HSDPA

Scheduler in HSDPA system uses HS-DSCH for high transmission rate in downlink
case. HS-DSCH is consisting of 15 the real channels (HS-PDSCH) that can be as-
signed to the service users in one time slot.

In previous scheduling algorithm, 15 channels could be assigned to a service user
selected by the scheduler in each time slot. Here we assign different number of chan-
nels to multi-users depending on the SIR table. Scheduler collects all SIR values of
each user in CPICH to select service users for the next time slot. Table 1, is the as-
signed channel number based on received SIR. In this case, even highest-priority user
in a poor channel state can still guarantee the transmission of information. When the
channel state changes better, the user will get more channels to complete the informa-
tion transmission.

Table 1. SIR table for number of assigning channe

SIR level
Assigned channel num-

bers
SIR ≥27dB 15

27dB> SIR≥22dB 9
22dB> SIR≥16dB 6

16dB> SIR 4

3.3 Proposed Scheme Procedure

In this paper, we consider the real-time traffic in HSDPA system. Our design is to
decrease the packet drop of real-time service users ranking by the minimum require-
ment of bit rate transmission. For providing the system throughput at the same time,
we assign different numbers of HS-PDSCH to the service users by the received SIR
value. Figure 1 shows the proposed scheme process.

Step1: We need to calculate the minimum requirement on bit rate as a priority ranking
standards. In this process, if greater the amount of data storage in the buffer, the

 Real-Time Traffic Packet Scheduling Algorithm in HSDPA System 543

)(

)(
)(

max tWT

tL
tP

i

i
i −

=

Fig. 1. Proposed scheme flow chart

remaining service time is shorter; the user will be in a higher priority in the ranking.
Otherwise, the user would get service later.

Step2: Scheduler defines the SIR level using the table for the assigning channel num-
ber of the highest priority user. When the highest priority user gets service with the
defined number of channels, the residual channels will be assigned to the secondary
priority user based on the table. Step2 will be repeated until the residual amount of
channel is 0.

This scheme guarantees the higher priority and SIR value user transmitted with
more number of channels, the difference with previous schemes is the user with lower
SIR value but higher priority also could get channels for service, thus avoiding packet
drop by the long time delay and buffer overflow.

4 Performance Analysis and Evaluation

4.1 Simulation Environment

In this paper, the simulation system is based on the 3GPP standards. Table 2 gives the
major simulation parameters.

This subsection describes the configuration of the system level simulation. We em-
ployed a 3-sectored 19-cell model. In each sector, the distribution of topography and
constriction is basically the same. The correlation coefficient between cells sites and
that between sectors were 0.5 and 1.0. The location of each user was randomly as-
signed with a uniform distribution within each cell. Once the simulation begins, the
location of all users is fixed. The propagation model between the base station and
mobile station is)log(6.371.128 R+ , here)(KmR is the distance between base
station and mobile station, lognormal shadowing with a standard deviation of 8dB and
instantaneous 12 multi-paths fading.

544 X. Yu, S.W. Kim, and Y.W. Park

Table 2. Simulation Parameters

Parameter Value
Cell layout 19 cells, 3sector/cell

User distribution Uniform
Cell radius 1Km

BS total Tx power 17W
Standard deviation of shadowing 8dB

Correlation between sectors 1.0
Correlation between cells 0.5

Number of paths 12 paths
Hybrid ARQ scheme Chase combing

Carrier frequency 2000MHz

The number of users
Fixed (100 to 500 real-

time traffic user)

Table 3. Modulation and Coding Scheme

MCS level Coding rate Modulation Data rate
1 1/4 QPSK 1.2Mbps
2 1/2 QPSK 2.4Mbps
3 3/4 QPSK 3.6Mbps
4 3/4 8PSK 5.4Mbps
5 1/2 16QAM 4.8Mbps
6 3/4 16QAM 7.2Mbps
7 3/4 64QAM 10.8Mbps

Meanwhile, we applied AMC in the radio link level simulation, which controls the
MCS according to the average received SIR over one TTI. In the 7 MCS levels, in
table 3, the MCS used in this paper is mcs2, mcs5, mcs6 and mcs7. For FCS case, the
user will chose 3 cells with the most SIR values as the active set; the most one of the
3 cells will get service. In each cell, the number of the service provider is same.

To implement the HSDPA feature, the HS-DSCH (High Speed Downlink Shard
Channel) is introduced in the physical layer specification. HS-DSCH consists of 15
HS-PDSCH (High Speed Physical Downlink Shard Channel) which are the real chan-
nels, and can be assigned to the service users in one time slot. The Transmission Time
Interval (TTI) or interleaving period has been defined to be 2ms for the operation
between the base station and mobile station.

4.2 Traffic Model

In the paper it is assumed that the modified streaming traffic model is real-time traffic
model. Traffic model parameters of an RT streaming traffic are show in table 4.

 Real-Time Traffic Packet Scheduling Algorithm in HSDPA System 545

The size of each packet call is distributed based on the Pareto distribution with the
maximum size of m . This probability density function)(xfρ is expressed by using

the minimum value of the distribution k ,

α
αρ β

β

α
⎟
⎠
⎞

⎜
⎝
⎛=

⎪⎩

⎪
⎨
⎧

=

<≤×
= +

m

k

mx

mxk
x

k
xf ,

,

,)(1 , (3)

where α = 1.1, k = 4.5 Kbytes and m = 2 Mbytes. Based on these parameters, the
average value of the packet call size becomes 25 Kbytes. The reading time is ap-
proximated as a geometrical distribution with the average value of 5 sec. The maxi-
mum tolerable delay for each packet is fixed as 72ms; the maximum buffer capacity is
450000 bits.

Table 4. Major Traffic Model Parameters

 Distribution Parameters

Packet calls size
Pareto with

cutoff

α =1.1, k =4.5Kbytes
m =2Mbytes

Average packet call size
25Kbytes

Reading time Geometric Average 5 sec
Packet size 12Kbit

Packet inter-arrival time Geometric Average 6 ms
Maximum tolerable delay

(maxT) Fixed 72ms

4.3 Definition of Performance Indicators

We introduce the concept of the service throughput and packet loss rate for evaluation
of system performance.

Service throughput is a ratio between the transmission good bits and the total num-
ber of the cell:

∑
=

=
cellN

kcell

kService
N

throughputService
1

)(
1

_ , (3)

in the above function,)(kService are the successful transmission bits per TTI in

cell k . It is calculated as follows:

∑
=

=
ondN

i
bitsgood

ond

iN
N

kService
sec

1
_

sec

)(
1

)(, (4)

546 X. Yu, S.W. Kim, and Y.W. Park

here)(_ iN bitsgood is a successful transmission bit at time slot i and ondNsec is total

simulation time.
The real-time traffic packet drop rate is measured as the number of drop packets

divided to the total transmission packets

,
__

_
__

packettranstotal

packetdrop
ratedroppacket = (5)

where packetdrop _ consists of two parts. One is the packet loss caused by exceed-

ing the maximum tolerable delay and the other is total packet of the user exceeding its
buffer capacity.

4.4 Numerical Result and Evaluation

We compare the service throughput and packet drop rate among the proposed algo-
rithm and previous two schemes. An obviously improvement in packet drop rate as
well as high throughput can be obtained

Figure 2 shows the HSDPA service throughput versus the number of users. The
service throughput of the proposed scheme is increasing with the number of users in
the system. The proposed scheme is not much different from the Max C/I and PF
schemes.

Figure 3 shows the relationship between number of users and the packet loss rate.
The packet loss rate means the ratio of packet exceeding the maximum tolerance
delay to the total transmission packets. Considering the 72ms requirement delay, the
proposed scheme packet loss rate is lower than the MCI and PF schemes. More num-
ber of users is, the higher the performances are.

0

0.5

1

1.5

2

2.5

3

3.5

100 200 300 400 500

Total Real Time Users

S
er

vi
ce

 T
hr

ou
gh

pu
t(

M
bp

s)

Ser_thrp_MCI

Ser_thrp_PF

Ser_thrp_proposed

0

0.1

0.2

0.3

0.4

0.5

0.6

100 200 300 400 500

Total Real Time Users

P
ac

ke
t L

os
s

R
at

e

Pkt_loss_MCI
Pkt_loss_PF
Pkt_loss_proposed

 Fig. 2. Throughput performances Fig. 3. Packet loss performances

Figure 4 shows the buffer overflow performances. When the buffers of users ex-
ceed the maximum buffer capacity, the packets will be lost. In this simulation, the
buffer capacity is set 450000bits. In the packet drop statistic, the buffer overflow rate
is less influenced than the packet loss rate caused by exceeding the requirement delay,
but still need to be considered for real time traffic. The proposed scheme decreases by
0.5% as compared with the MCI scheme and 2% as compared with PF scheme.

Figure 5 shows the packet drop rate as the number of real-time traffic users in-
creases. It is obvious that the proposed scheme outperforms in packet drop rate per-
formance over the other two schemes, especially when the number of users increases.

 Real-Time Traffic Packet Scheduling Algorithm in HSDPA System 547

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

100 200 300 400 500

Total Real Time Users

B
uf

fe
r

O
ve

rf
lo

w
 R

at
e

Bf_overflow_MCI
Bf_overflow_PF
Bf_overflow_proposed

0

0.1

0.2

0.3

0.4

0.5

0.6

100 200 300 400 500

Total Real Time Users

P
ac

ke
t D

ro
p

R
at

e

Tol_pkt_drp_MCI
Tol_pkt_drp_PF

Tol_pkt_drp_proposed

Fig. 4. Buffer overflow performances Fig. 5. Packet drop performances

For the 72ms maximum tolerable delay, 450000 bits buffer capacity and 500 users,
the packet drop decrease of the proposed scheme is 10% as compared with Max C/I.
This improvement is more obvious with the PF schemes.

5 Conclusions

In this paper, we propose a scheduling algorithm for the real-time traffic in HSDPA
system for WCDMA downlink case. The proposed scheme can satisfy the QoS guar-
antee of the real-time traffic for both throughput and packet drop. The simulation
results elucidate that although the proposed scheme throughput is between the Max
C/I and PF method, it is advantageous in reduction of user packet loss rate and buffer
overflow. The last simulation in Fig. 5 is shown the packet drop rate of proposed
scheme is reduced by approximately 10% compared to Max C/I method and 15% to
PF method.

References

1. 3GPP, 3G TR 25.848. Physical Layer Aspects of UTRA High Speed Downlink Packet Access.
2. H. Holma, and A.Toskala. WCDMA for UMTS Radio Access for Third Generation Mobile

Communication. John Wiley & Sons, Ltd. (2004)
3. Y.Ofuji, A.Morimoto, S.Abeta, and M.Sawahashi. Comparison of packet scheduling algo-

rithms focusing on user throughput in high speed downlink packet access. in Proc. Of IEEE
PRMRC’02. (2002) vol.3, pp.1462-1466.

4. K.Ramanan, A.Stolyar, P.Whiting, M.Andrews, K.Kumaran, and R.Vijayakumar. Providing
quality of service over a shard wireless link. IEEE communication Magazine, (2001) vol.39,
no.2 , pp.150-154.

5. D.H.Kim, B.H.Ryu, and C.G.Kang. Packet Scheduling Algorithm Considering a Minimum
Bit Rate for Non-realtime Traffic in an OFDMA/FDD-Based Mobile Internet Access Sys-
tem. ETRI Journal. (2004) Volume 26, Number1, pp.48-52.

6. M.Adamou, S.Khanna,I.Lee,I,Shin, and S,Zhou. Fair Real-time Traffic Scheduling over A
Wireless LAN. (2001) IEEE, 0-7695-1420-0/01, pp.279-288.

7. C.J.Ong, Peter H.J.Chong, and Raymond Kwan. Effect of Various Packet Scheduling Algo-
rithms on the Performance of High Speed Downlink Shared Channel in a WCDMA Net-
work. (2003) IEEE, 0-7803/-7978-0/03, pp. 935-937.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 548–559, 2007.
© Springer-Verlag Berlin Heidelberg 2007

L4oprof: A System-Wide Profiler Using Hardware PMU
in L4 Environment

Jugwan Eom, Dohun Kim, and Chanik Park

Department of Computer Science and Engineering
Pohang University of Science and Technology

Pohang, Gyungbuk 790-784, Republic of Korea
{zugwan,hunkim,cipark}@postech.ac.kr

Abstract. The recent advance of L4 microkernel technology enables building a
secure embedded system with comparable performance to a traditional
monolithic kernel-based system. According to the different system software
architecture, the execution behavior of an application in microkernel
environment differs greatly from that in traditional monolithic environment.
Therefore, we need a performance profiler to improve performance of the
application in microkernel environment. Currently, L4’s profiling tools
provides only program-level information such as the number of function calls,
IPCs, context switches, etc. In this paper, we present L4oprof, a system-wide
statistical profiler in L4 microkernel environment. L4oprof leverages the
hardware performance counters of PMU on a CPU to enable profiling of a wide
variety of hardware events such as clock cycles and cache and TLB misses. Our
evaluation shows that L4oprof incurs 0~3% higher overhead than Linux
OProfile. Moreover, the main cause of performance loss in L4Linux
applications is shown compared with Linux applications.

Keywords: L4 microkernel, performance analysis, performance measures,
performance monitoring, statistical profiling, hardware PMU.

1 Introduction

To analyze a program’s performance, its execution behavior is investigated by
monitoring runtime information. Monitoring program execution is important, because
it can find the bottlenecks and determine which parts of a program should be
optimized. The type of collected information depends on the level at which it is
collected. It is divided into the following two levels.

1. The program level: the program is instrumented by adding calls to routines
which gather desired information such as the number of time a function is called, the
number of time a basic block is entered, a call graph, and an internal program state
like queue length changes in the kernel block layer.

2. The hardware level: the program does not need to be modified. CPU architecture
like caches, pipelines, superscalar, out-of-order execution, branch prediction, and
speculative execution can lead to large differences between the best-case and the

 L4oprof: A System-Wide Profiler Using Hardware PMU in L4 Environment 549

worst-case performances, which must be considered to increase program
performance. Most of current CPUs have a hardware component called PMU
(Performance Monitoring Unit) for programmers to exploit the information on CPU.
The PMU measures the micro architectural behavior of the program such as the
number of clock cycles, how many cache stalls, how many TLB misses, which is
stored in performance counters.

The goal of performance analysis is to find where time is spent and why it is spent
there. Program-level monitoring can detect performance bottlenecks, but finding their
cause is best solved with hardware-level monitoring, which may result from function
calls, algorithmic problems, or CPU stalls. Therefore, the two levels of monitoring
must be used complementarily for proper performance analysis.

The recent advance of L4 microkernel technology enables building a secure
embedded system with comparable performance to a traditional monolithic kernel-
based system. Industry such as QUALCOMM sees L4 microkernel’s potential as a
solution to the security problems of embedded systems. In a microkernel-based
system, the basic kernel functions such as communication, scheduling, and memory
mapping are provided by the microkernel and most of OS services are implemented as
multiple user level servers on top of the microkernel, in which the execution behavior
of an L4 application differs greatly from that in traditional monolithic environment.
Therefore, we need a performance profiler to improve performance of the application
in microkernel environment. However, L4 microkernel provides only program-level
profiling tools which do not utilize the PMU information that is also valuable for fine-
grained performance profiling, which enables to locate the cause of performance
inefficiency in an application.

In this paper, we present L4oprof, a system-wide statistical profiler in L4
microkernel environment. L4oprof leverages the hardware performance counters of
PMU on a CPU to enable profiling of a wide variety of hardware events such as clock
cycles and cache and TLB misses without program modification. L4oprof can profile
applications in the system and the L4 microkernel itself. This paper also shows the
main cause of performance loss in L4Linux applications compared that in Linux
applications. L4oprof has been modeled after the OProfile [5] profiling tool available
on Linux systems.

The remainder of the paper is organized as follows. Section 2 describes related
work. We describe the aspects of L4 and OProfile as background for our work in
Section 3. Section 4 describes the design and implementation of L4oprof. Then, we
present L4oprof’s performance in Section 5. Finally, we summarize the paper and
discuss the future work in Section 6.

2 Related Work

Several hardware monitoring interfaces [8, 9] and tools [6, 7, 10, 15] have been
defined for using hardware performance monitoring on different architectures and
platforms. Xenoprof [15] is a profiling toolkit for the Xen virtual machine
environment, which has inspired the current L4oprof’s approach.

In L4 microkernel-based environment, a few performance monitoring tools are
available. Fiasco Trace Buffer [11] collects the kernel internal events such as context

550 J. Eom, D. Kim, and C. Park

switches, inter process communications, and page faults. It is attached with the kernel
and configured via L4/Fiasco kernel debugger. rt_mon [14], GRTMon [12] and Ferret
[13] are user-space monitoring tools, which provide a monitoring library and sensors
that store the collected information. Currently, existing monitoring tools in L4
environment only use program level information via instrumentation and cannot help
pinpoint problems in how software uses the hardware features. L4oprof extends the
profiling abilities of L4, allowing hardware level performance events to be counted
across all system activities. Utilizing the information collected from the PMU enables
any application to be profiled without any modification.

3 Background

In this section, we briefly describe the L4 microkernel based environment and the
OProfile for statistical profiling on Linux.

Fiasco Microkernel

Sigma0
Root Pager

Roottask
Start basic L4env services

Dmphys
Phys. Memory

L4IO
I/O Server

Names
Name Server

Log
Log Output

Con
Virt. Console

SimpleTS
Task Server

LD.SO
ELF Linker

Loader
App. Loader

FProv
File Provider

L4Env
Servers

Application

libdm libl4io libnames liblog libcon

l4env crtx l4rm thread semaphore ulibc

Fiasco Microkernel

Sigma0
Root Pager

Roottask
Start basic L4env services

Dmphys
Phys. Memory

L4IO
I/O Server

Names
Name Server

Log
Log Output

Con
Virt. Console

SimpleTS
Task Server

LD.SO
ELF Linker

Loader
App. Loader

FProv
File Provider

L4Env
Servers

Application

libdm libl4io libnames liblog libcon

l4env crtx l4rm thread semaphore ulibcl4env crtx l4rm thread semaphore ulibc

Fig. 1. L4 microkernel-based Environment

3.1 L4 Microkernel-Based Environment

L4 is a second generation microkernel ABI [2]. Our work uses the Fiasco [17]
microkernel-based environment. As shown in Figure 1, this environment consists of a
set of cooperating servers running on top of the microkernel. All servers use the
kernel-provided synchronous interprocess communication mechanism for
communication.

L4Env [4] is a programming environment for application development on top of
the L4 microkernel family. It provides a number of servers and libraries for OS
services such as thread management, global naming, synchronization, loading tasks,
and resource management. L4Linux [3] is a para-virtualized Linux running on top of
the microkernel using L4Env, which is binary-compatible with the normal Linux
kernel. The Linux kernel and its applications run as a server in user mode and system
calls from Linux applications are translated into IPC to the L4Linux server. Current
L4Linux is unable to configure some features such as ACPI, SMP, preemption,
APIC/IOAPIC, HPET, highmem, MTRR, MCE, power management and other similar
options in the Linux.

 L4oprof: A System-Wide Profiler Using Hardware PMU in L4 Environment 551

3.2 OProfile

OProfile [5] is a low-overhead system-wide statistical profiler for Linux included in
the 2.6 version of the kernel. The Linux kernel supports OProfile for a number of
different processor architectures. OProfile can profile code executing at any privilege
level, including kernel code, kernel modules, user level applications and user level
libraries.

OProfile can be configured to periodically take samples to obtain time-based
information for indicating which sections of code are executed on the computer
system. Many processors include a dedicated performance monitoring hardware
component called PMU (Performance Monitoring Unit), which allows to detect when
certain events happen such as clock cycles, instruction retirements, TLB misses,
cache misses, branch mispredictions, etc. The hardware normally takes the form of
one or more counters that are incremented each time an event takes place. When the
counter value "rolls over," an interrupt is generated, making it possible to control the
amount of detail (and therefore, overhead) produced by performance monitoring.
OProfile uses this hardware to collect samples of performance-related data each time
a counter generates an interrupt. These samples are periodically written out to disk;
later, the statistical data contained in these samples can be used to generate reports on
system-level and application-level performance.

OProfile can be divided into three sections: the kernel support, the daemon, and the
sample database with analysis programs. The kernel has a driver which controls the
PMU and collects the samples. The daemon reads data from the driver and converts it
into a sample database. The analysis programs read data from the sample database
and present meaningful information to the user.

4 L4oprof

In this section, we describe the design and implementation of L4oprof which we have
developed for the L4 microkernel based environment. The L4oprof has similar
capabilities to OProfile. It uses the hardware PMU to collect periodic samples of
performance data. The performance of applications running in L4 environment
depends on interactions among the servers for OS services, for example, the L4Linux
server in case of the Linux application, and the L4 microkernel. In order to achieve a
proper performance analysis, the profiling tool must be able to determine the
distribution of performance events across all system activities.

Figure 2 shows an overview of the L4oprof. At an abstract level, the L4oprof
consists of a L4 microkernel layer which services performance-counter interrupts
and an OProfile server layer which associates samples with executable images, and
merges them into a nonvolatile profile database and a modified system loader and
other mechanisms for identifying executable images. As shown in Figure 2, the
L4oprof reuses the OProfile code and extends its capabilities to be used in the L4
environment instead of starting from scratch. The remainder of this section describes
these pieces in more detail, beginning with the L4 microkernel layer.

552 J. Eom, D. Kim, and C. Park

L4Linux

L4 Fiasco Microkernel

L4orof kernel layer

TAIL

HEAD

TAIL

HEAD

Extended OProfile

Share Sample Buffer

PC
samples

PMU
Interrupt

Daemon

PC samples
mapped to
symbols

L4 specific driver

L4 Env Loader
VIRQ

Syscall

L4 binary
image

information

Kernel

User
Space

Fig. 2. L4oprof overview

4.1 L4 Microkernel Layer

The L4 microkernel layer of the L4oprof uses the same hardware counter based
sampling mechanism as used in OProfile. It defines a user interface which maps
performance events to the physical hardware counters, and provides a system call for
OProfile server layer to setup profiling parameters, start and stop profiling. L4oprof
can be configured to monitor the same events supported by OProfile.

When a performance counter overflows, it generates a high-priority interrupt that
delivers the PC of the next instruction to be executed and the identity of the
overflowing counter. When the interrupt handler in the L4 kernel layer handles this
interrupt, it records the sample that consists of the task identifier (L4 Task ID) of the
interrupted process, the PC delivered by the interrupt, and the event type that caused
the interrupt. The L4 kernel layer hands over the PC samples collected on counter
overflow to the OProfile server layer for further processing. PC samples are delivered
via a shared sample buffer synchronized with a lock-free method in order to support
high-frequency performance counter overflow interrupt and reduce profiling
overhead. Next, the L4 kernel layer notifies the OProfile server layer of generating a
sample via a virtual interrupt. However, if current user process is not the Oprofile
server, it delays executing the virtual interrupt handler in OProfile server layer,
resulting in L4oprof’s poor performance. Therefore, we separated actual data
delivering from counter overflow notification.

4.2 OProfile Server Layer

The OProfile server layer extracts samples from the shared sample buffer and
associates them with their corresponding images. The data for each image is
periodically merged into compact profiles stored as separate files on disk.

The OProfile server layer operates in a manner mostly similar to its operation in
OProfile on Linux. For low level operations, such as accessing and programming
performance counters, and collecting PC samples, it is modified to interface with the
L4 microkernel layer of L4oprof. The high level operations of the OProfile server in
the layer remain mostly unchanged.

 L4oprof: A System-Wide Profiler Using Hardware PMU in L4 Environment 553

Architecture-specific components in OProfile are newly implemented to use the L4
kernel layer virtual event interface. The interrupt thread in L4Linux waits until the L4
kernel layer signals a generating sample. After copying PC samples from the shared
sample buffer, the OProfile server layer determines the routine and executable image
corresponding to the program counter on each sample in the buffer. In case of Linux
kernel and applications, this is determined by consulting the virtual memory layout of
the Linux process and Linux kernel, which is maintained in the L4Linux kernel
server. Since PC samples may also include samples from the L4 kernel address space,
the OProfile server layer is extended to recognize and correctly attribute L4 kernel’s
PC samples. In order to determine where the images of other L4 applications
including the L4Env servers are loaded, the L4Env loaders are modified. There are
two loaders in L4Env: the Roottask server starts applications using boot loader scripts
according to Multi Boot Information [18] and the Loader server supports dynamic
loading. A modified version of each loader handles requests from the OProfile server
layer. The response from the loader contains the L4 task ID, the address at which it
was loaded, and its file system pathname.

The OProfile server layer stores samples in an on-disk profile database. This
database structure is the same as the Linux OProfile’s database structure. Thus, post-
profiling tools in OProfile can be used without any modification.

5 Evaluation

The profiling tools must collect many thousands of samples per second yet incur
sufficiently low overhead so that their benefits outweigh their costs. Profiling incurs
performance slowdown of applications compared to the performance of applications
without profiling. In this section, we summarize the results of experiments designed
to measure the performance of our profiler. The hardware used for evaluation was a
Pentium 4 1.6GHz processor with 512MB of RAM, and Intel E100 Ethernet
controller. For the comparison, OProfile in Linux 2.6.18.1 is used. Table 1 shows the
workloads used.

Table 1. Description of Workloads

Workload Description
Multiply Multiplies two numbers by using two different methods

in the loop, CPU-bound
Tar Extracts Linux kernel source, Real workload
Iperf [16] Measures network bandwidth, IO-bound

5.1 Profiling Test and Verification

Prior to presenting the performance overhead, we demonstrate that L4oprof works
correctly. We tested and verified our profiling tool under time-biased configuration,
i.e. GLOBAL POWER EVENTS event that is the time during which the processor is
not stopped, in which L4oprof monitors the clock cycles by running the Multiply
workload. This configuration generates the distribution of time spent in various

554 J. Eom, D. Kim, and C. Park

routines in Multiply workload. We compared the profiling result of L4oprof to that of
OProfile and GNU gprof. GNU gprof enables us to know the exact number of times a
function is called using the instrumentation; it is enabled using the -pg option of
GNU cc. Figure 3 shows the result which each profiler has produced. All profilers
have a similar distribution of time spent in three functions, main,
slow_multiply, and fast_multiply.

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ns/call ns/call name
99.05 3.14 3.14 4000000 785.00 785.00 slow_multiply
0.63 3.16 0.02 main
0.32 3.17 0.01 4000000 2.50 2.50 fast_multiply

(a)

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ns/call ns/call name
99.05 3.14 3.14 4000000 785.00 785.00 slow_multiply
0.63 3.16 0.02 main
0.32 3.17 0.01 4000000 2.50 2.50 fast_multiply

(a)

CPU: P4 / Xeon, speed 1513.55 MHz (estimated)
Counted GLOBAL_POWER_EVENTS events (time during which processor is
not stopped) with a unit mask of 0x01 (mandatory) count 100000
samples % image name symbol name
827170 99.4093 multiply slow_multiply
4533 0.5448 multiply main
391 0.0458 multiply fast_multiply

(c)

CPU: P4 / Xeon, speed 1513.55 MHz (estimated)
Counted GLOBAL_POWER_EVENTS events (time during which processor is
not stopped) with a unit mask of 0x01 (mandatory) count 100000
samples % image name symbol name
827170 99.4093 multiply slow_multiply
4533 0.5448 multiply main
391 0.0458 multiply fast_multiply

(c)

CPU: P4 / Xeon, speed 1513.55 MHz (estimated)
Counted GLOBAL_POWER_EVENTS events (time during which processor is
not stopped) with a unit mask of 0x01 (mandatory) count 100000
samples % image name symbol name
824571 99.3596 multiply slow_multiply
4920 0.5929 multiply main
395 0.0476 multiply fast_multiply

(b)

CPU: P4 / Xeon, speed 1513.55 MHz (estimated)
Counted GLOBAL_POWER_EVENTS events (time during which processor is
not stopped) with a unit mask of 0x01 (mandatory) count 100000
samples % image name symbol name
824571 99.3596 multiply slow_multiply
4920 0.5929 multiply main
395 0.0476 multiply fast_multiply

(b)

Fig. 3. Comparison of profiling result from the three profiles (a) GNU gprof (b) OProfile (c)
L4oprof

5.2 Profiling Performance

The accuracy and overhead of the profiling can be controlled by adjusting the
sampling interval (i.e., the count when notifications are generated). We evaluated our
profiling tool’s performance in terms of profiling overhead caused by handling
overflow interrupts. To measure the overhead, we ran each workload at least 10 times
varying the frequency of overflow interrupts. The PMU was programmed to monitor
GLOBAL POWER EVENTS event, because it basic event type. We compared the
profiling overhead of L4oprof to that of OProfile. OProfile is well known for its low
overhead and is one of the most popular profilers for Linux.

Figures 4, 5, and 6 show the profiling overhead of L4oprof and OProfile under
running Multiply, Tar, Iperf workload respectively. L4oprof incurs 0~3% higher
profiling overhead than OProfile under the default settings which cause around
15000, 13050, and 750 interrupts per seconds with Multiply, Tar, and Iperf workload
respectively. These figures also indicate that the performance of L4oprof is more
sensitive than that of OProfile to the frequency of the generated interrupts since the
overhead gap between L4oprof and OProfile is increasing as the interrupt frequency
increases.

 L4oprof: A System-Wide Profiler Using Hardware PMU in L4 Environment 555

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1000 2000 5000 7500 10000 15000 30000 50000 60000 120000

Interrupts / Seconds

O
v
e
r
h
e
a
d

(
%
)

L4oprof OProfile

Fig. 4. Profiling overhead, L4oprof vs. OProfile (Multiply)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

870 1740 4350 6525 8700 13050 26100 43500 52200 104400

Interrupts / Seconds

O
v
e
r
h
e
a
d

(
%
)

L4oprof OProfile

Fig. 5. Profiling overhead, L4oprof vs. OProfile (Tar)

0.00

0.50

1.00

1.50

2.00

2.50

50 100 250 375 500 750 1500 2500 3000 6000

Interrupts / Seconds

O
v
e
r
h
e
a
d

(
%
)

L4oprof OProfile

Fig. 6. Profiling overhead, L4oprof vs. OProfile (Iperf)

556 J. Eom, D. Kim, and C. Park

5.3 The Cause of Profiling Overhead

There are two main components to L4oprof’s overhead. First is the time to service
performance-counter interrupts. Second is the time to read samples and merge the
samples into the on-disk profiles for the appropriate images. To investigate the cost of
the first component, we gathered the number of cycles spent in the interrupt handlers
of L4oprof and OProfile. We believe that the second component does not contribute
to the overhead gap between L4orpof and OProfile, since the operation of the second
component in L4oprof was not changed greatly from that in OProfile. In order to
optimize performance, however, it must be fine-tuned, which will be our future work.
During handling performance-counter interrupts, OProfile directly accesses the
performance counters and collects the PC samples itself. But in the case of L4oprof,
this operation is divided into the interrupt handler in the L4 microkernel and the
virtual interrupt handler in the L4Linux kernel server of the OProfile server layer.
Therefore, we read the Time Stamp Counter (TSC) values increased each clock signal
at the beginning and the end of each interrupt handler and used the difference as the
elapsed cycles for the interrupt service. We collected a total of 2327 samples.

Figure 7 shows that L4oprof’s interrupt service time and its variance are larger
than OProfile. As Figure 8 shows, the virtual interrupt handler in the L4Linux kernel
server causes large variance of time to interrupt service in L4oprof, which is why
L4oprof has lower performance than OProfile when the interrupt is generated more
frequently. If the interrupt frequency is becoming higher and higher, L4oprof can
become more easily overloaded with counter interrupts than OProfile.

Finally, we must answer the question, “why this happen in L4oprof?” This is
mainly caused by running Linux in user mode on top of the microkernel. For L4Linux
to receive a virtual interrupt IPC, context switching may be needed. And, in the
middle of handling an interrupt, the L4Linux kernel server can be preempted. This
phenomenon cannot occur in normal Linux. In other words, the current performance
overhead gap between L4oprof and OProfile is neither caused by L4oprof’design nor
its implementation being defective.

0

5000

10000

15000

20000

25000

C
l
o
c
k

C
y
c
l
e
s

L4oprof OProfile

Fig. 7. The clock cycle distribution for interrupt service, L4oprof vs. OProfile

 L4oprof: A System-Wide Profiler Using Hardware PMU in L4 Environment 557

0

2000

4000

6000

8000

10000

12000

14000

16000

C
l
o
c
k

C
y
c
l
e
s

L4Linux kernel server L4 kernel

Fig. 8. The components of clock cycle distribution for interrupt service in L4oprof

5.4 Performance Analysis of L4Linux Applications Using L4oprof

An application’s performance in L4linux differs from its performance in normal
Linux. Figure 9 compares the performance of the L4Linux and Linux for Multiply
and Tar workloads.

Fig. 9. Relative user application’s performance on L4linux and Linux

In L4linux, an application’s performance is about 5~17% slower than Linux. We
profile the Linux and L4linux, and compare the aggregate hardware event counts in
the two configurations for the following hardware events: instruction counts, L2
cache misses, data TLB misses, and instruction TLB misses. Figure 10 and 11 show
the normalized values for these events relative to the Linux numbers.

Figures 10 and 11 show that L4linux has higher cache and TLB miss rates
compared to Linux. Because the L4 kernel considers L4Linux’s applications as user
process, each L4Linux system call leads to at least two context switches, i.e., one
context switch from the application to the L4Linux server and the other context
switch back to the application, resulting in more TLB flushes and performance
degrade. It is the main cause of performance degrades in L4Linux.

558 J. Eom, D. Kim, and C. Park

0

2

4

6

8

10

12

14

16

18

Instruction
Count

L2 Cache Miss Data TLB Miss Instruction TLB
Miss

Linux L4Linux

Fig. 10. Relative hardware event counts in L4Linux and Linux for Multiply workload

0

0.5

1

1.5

2

2.5

3

3.5

4

Instruction
Count

L2 Cache Miss Data TLB Miss Instruction TLB
Miss

Linux L4Linux

Fig. 11. Relative hardware event counts in L4Linux and Linux for Tar workload

6 Conclusions

In this paper, we presented L4oprof, a system-wide statistical profiler in the L4
microkernel environment. L4oprof leverages the hardware performance counters of
PMU on a CPU to enable profiling of a wide variety of hardware events such as clock
cycles and cache and TLB misses. It is the first performance monitoring tool using the
hardware PMU in an L4 microkernel based environment. We reused the OProfile in
Linux and extended its capabilities to be used in the L4 environment instead of
starting from scratch. L4oprof can help in building a L4 microkernel-based secure
embedded system with good performance.

Our evaluation shows that L4oprof incurs 0~3% higher overhead than Linux
OProfile, depending on sampling frequency and workload. We discovered that the
major overhead of L4oprof is caused by running Linux in user mode on top of the
microkernel. Moreover, it is also shown that profiling user applications running on
L4Linux by L4oprof allows locating the main cause of performance loss compared to
the same applications running on Linux.

Currently, L4oprof only supports Intel Pentium 4 CPU. We will port it to
additional CPU modes such as ARM/Xscale and AMD64. Supporting multiple

 L4oprof: A System-Wide Profiler Using Hardware PMU in L4 Environment 559

L4Linux instances is also part of our future work. To reduce the performance
overhead gap compared to OProfile, we will find an alternative structure, for example,
moving the operations in the current OProfile server layer into the L4 microkernel
layer, to eliminate the user-mode running effects.

Acknowledgement

This research was supported by the MIC(Ministry of Information and Communication),
Korea, under the ITRC(Information Technology Research Center) support program
supervised by the IITA(Institute of Information Technology Assessment) (HY-SDR
Research Center).

References

1. Intel. IA-32 Architecture Software Developer's Manual. Vol 3. System Programming
Guide, 2003

2. J. Liedtke. L4 reference manual (486, Pentium, PPro). Research Report RC 20549, IBM T.
J. Watson Research Center, Yorktown Heights, NY, September 1996.

3. Adam Lackorzynski. L4Linux Porting Optimizations. Master's thesis, TU Dresden, March
2004.

4. Operating Systems Group Technische Universitat Dresden. The l4 environment.
http://www.tudos.org/l4env.

5. J. Levon. OProfile. http://oprofile.sourceforge.net.
6. J. M. Anderson, W. E. Weihl, L. M. Berc, J. Dean, S. Ghemawat. Continuous profiling:

where have all the cycles gone? In ACM Transactions on Computer Systems, 1997
7. Intel. The VTuneTM Performance Analyzers. http://www.intel.com/software/

products/vtune.
8. S. Eranian. The perfmon2 interface speciation. Technical Report HPL-2004-200(R.1), HP

Labs, Feb 2005.
9. M. Pettersson. The Perfctr interface. http://user.it.uu.se/mikpe/linux/perfctr

10. ICL Team University of Tennessee. PAPI: The Performance API.,http://icl.cs.utk.edu/
papi/index.html.

11. A. Weigand. Tracing unter L4/Fiasco. Grober BelegTechnische Universitat Dresden,
Lehrstuhl fur Betriebssysteme, 2003.

12. T. Riegel. A generalized approach to runtime monitoring for real-time systems. Diploma
thesis, Technische Universitat Dresden, Lehrstuhl fur Betriebssysteme, 2005.

13. M. Pohlack, B. Dobel, and A. Lackorzynsiki. Towards Runtime Monitoring in Real-Time
Systems. In Eighth Real-Time Linux Workshop, October 2006

14. M. Pohlack. The rt_mon monitoring framework, 2004.
15. A. Menon, J. R. Santos, Y. Turner, G. Janakiraman, and W. Zwaenepoel. Diagnosing

Performance Overheads in the Xen Virtual Machine Environment. In First ACM/USENIX
Conference on Virtual Execution Environments, June 2005

16. The University of Illinois. Iperf. http://dast.nlanr.net/Projects/Iperf.
17. Michael Hohmuth. The Fiasco kernel: System architecture. Technical Report TUD-FI02-

06-Juli-2002, TU Dresden, 2002. I, 2
18. Free Software Foundation, Multiboot Specification, http://www.gnu.org/software/grub/

manual/multiboot/multiboot.html

An Adaptive DVS Checkpointing Scheme for

Fixed-Priority Tasks with Reliability Constraints
in Dependable Real-Time Embedded Systems

Kyong Hoon Kim1 and Jong Kim2

1 Department of Computer Science and Software Engineering
The University of Melbourne, Carlton, VIC, Australia

jysh@csse.unimelb.edu.au
2 Department of Computer Science and Engineering

Pohang University of Science and Technology (POSTECH), Pohang, Korea
jkim@postech.ac.kr

Abstract. Recent research on embedded real-time systems has focused
on dynamic power management for fault-tolerance or dependability. In
this paper, we provide an adaptive checkpointing scheme for fixed
priority-based DVS scheduling in dependable real-time systems. Since
there are some trade-offs in selection of dynamic processor scaling in
terms of energy consumption and task reliability, we provide an adap-
tive energy-aware scaling assignment scheme with the feasibility test for
fixed-priority scheduling with checkpointing. In the provided scheme, we
analyze the number of tolerable faults of a task and the optimal check-
pointing interval in order to meet the deadline and guarantee its specified
reliability. The feasibility analysis of the fixed priority-based scheduling
algorithm in dependable real-time systems is provided as well.

1 Introduction

The rapid growth of computer and communication technologies has induced the
significant development of embedded devices, such as PDAs. The performance of
embedded processors keeps increasing, which enables to execute various recent
real-time applications. However, these embedded systems have power-constraints
due to the battery lifetime. In order to overcome the power consumption, much
research has focused on power reduction using dynamic voltage scaling (DVS)
technique [1,2,3]. The DVS scheme reduces dynamic energy consumption by
lowering the supply voltage at the cost of performance degradation. Recent em-
bedded processors support such ability to adjust the supply voltage dynamically.

In embedded real-time systems, DVS technique is useful to reduce the en-
ergy consumption. The slowdown of the processor performance with low supply
voltage results in tardiness of a task result. This late completion of the task
execution can be allowed as long as the task meets its deadline. Therefore, much
recent research has been done on DVS scheduling in real-time systems [4,5]

Another issue of embedded devices is reliability or fault-tolerance. Better
portability and less power of embedded devices may decrease system reliability.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 560–571, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Adaptive DVS Checkpointing Scheme for Fixed-Priority Tasks 561

Therefore, fault-tolerant techniques need to be applied in embedded real-time
systems to provide the required reliability. Checkpointing and rollback recov-
ery scheme is an efficient way of overcoming transient faults. In checkpointing
scheme, a task stores its status to a stable device and re-executes from the most
recent status in case of fault.

A few recent studies have been conducted on power management in check-
pointing of real-time tasks [6,9,10,11]. In [6,10], they investigate an integrated
approach for achieving fault tolerance and energy reduction under the assump-
tion of fixed number of faults. EDF scheduling strategy is used in [6] in order
to analyze the effect of checkpointing to task slack time. In [9], they analyze the
adaptive checkpointing based on fixed-priority scheduling. Reliability-awareness
of checkpointing is first taken into consideration as well as energy savings in
[10]. The task reliability is defined as the probability of being executed correctly
at the maximum processor speed without any fault. It does not consider fixed-
priority scheduling, but focuses on energy-efficient use of a task slack time. In
[11], an adaptive checkpointing for double modular redundancy (DMR) with two
processors is provided.

In this paper, we consider an energy-efficient DVS checkpointing for real-
time tasks which require their minimum reliabilities for fixed-priority scheduling.
Tasks have different reliabilities according to significance and criticality. The task
reliability in [10] is determined by the system fault rate and the task execution
time. This paper generalizes it more so that a task can be specified with the
reliability value that a user wants to be guaranteed. In addition, the proposed
scheme gradually increases the supply voltage as faults occur. Since it is based
on fixed priority-based scheduling, this paper includes the feasibility analysis of
a task set while taking energy savings into consideration.

The rest of this paper is organized as follows. Section 2 describes system
model and problem definition dealt with in this paper. In Section 3, the pro-
posed scheduling and checkpointing scheme is provided. Analysis of reliability
and feasibility with checkpointing is given in Section 4, and this paper concludes
with Section 5.

2 System Model and Problem Definition

2.1 Energy Model

The main power consumption in CMOS circuits is composed of dynamic and
static power. We only consider the dynamic power dissipation because it is more
dominating factor in the total power consumption. The dynamic energy con-
sumption by a task is proportional to V 2

dd and Ncycl, where Vdd is the supply
voltage and Ncycl is the number of clock cycles of the task [3]. The DVS scheme
reduces the dynamic energy consumption by decreasing the supplying voltage,
which results in slowdown of the execution time.

Another approach to model the dynamic energy consumption is based on
the normalized processor speed and the task execution time. Since the clock
speed or processor frequency is in proportion to the supply voltage, the dynamic

562 K.H. Kim and J. Kim

power consumption can be represented by a function of the normalized speed.
For a normalized processor speed S (Smin ≤ S ≤ Smax = 1), the total energy
consumed during the time interval [t1, t2] is E =

∫ t2
t1

P (S(t))dt, where P (S) is a
power consumption function of the speed S. P (S) is usually a increasing convex
function and represented by a polynomial of at least the second degree [1,6]. In
this paper, we assume the dynamic energy consumption under the normalized
processor speed S during time interval t is defined as following, where α is a
proportional constant [6].

E = αS2t (1)

We assume that the processor can adjust its supply voltage from V1 to Vm

discretely. The associated processor speed, Si, with each supply voltage Vi is
normalized by the maximum speed Sm with the voltage Vm (Sm = 1, 0 < Si ≤ 1).
Without loss of generality, Si+1 is assumed to be larger than Si (i = 1, . . . , m−1).

2.2 Task Model

A task set T = {τ1, τ2, · · ·, τN } is given in the system. Each task τi is defined
by (Pi, Ei, Di, Ci, Ri) and each parameter is described as followings.

– Pi: The period of released jobs. Each task releases jobs periodically so that
a job of task τi is released at every Pi unit times.

– Ei: The execution time requirement of a job. The worst-case execution time
of τi’s job is assumed to be Ei under the maximum speed (Sm) of the system.
Ei is the execution time requirement in fault-free condition.

– Di: The relative deadline of each job. A job of task τi should be finished
before Di time units from its released time (Di ≤ Pi).

– Ci: The checkpointing cost. It is given by Ci time units under the maximum
speed of the system.

– Ri: The reliability of task τi. It is defined as the probability that a job of
task τi is finished by the deadline regardless of several transient faults.

A task set is composed of N periodic tasks with their own parameters. The
task set is assumed to be schedulable by a fixed priority-based scheduling algo-
rithm such as RM (Rate Monotonic) under fault-free condition. Tasks are sorted
by the priority so that task τi has higher priority than τi+1 (1 ≤ i ≤ N − 1).

Since tasks have different size of execution codes and require various amount of
memory, we define each task τi’s checkpointing cost as Ci time units including the
checkpointing latency and overhead [12]. Both Ei and Ci are defined under the
maximum processor speed in fault-free condition. If a job of task τi is executed
on the processor with speed S in fault-free condition, its execution time and
checkpointing cost are defined as Ei/S and Ci/S, respectively.

Our system model differentiates each task’s fault-tolerance or reliability with
Ri, so that a task requiring higher reliability can be specified with larger Ri.
In [10], a task’s reliability is defined by the probability of executing the task
correctly on the maximum speed processor without any fault. Thus, it is defined
by e−λEi under the assumption of the fault rate λ. However, mission-critical

An Adaptive DVS Checkpointing Scheme for Fixed-Priority Tasks 563

tasks may require higher reliabilities than e−λEi so that they should meet their
deadlines in spite of several faults. In [9], all tasks can tolerate k faults regardless
of each task’s required reliability. This paper generalizes these previous models
[9,10] in a way that each task can be specified by its own reliability.

2.3 Fault and Recovery Models

We assume that a transient fault may occur at the system and it causes the fault
of the task that is running at the instance of the fault arrival. The transient fault
is generally recovered by re-executing the task that affected by the fault. It is also
assumed that the system can detect the fault immediately at each checkpointing
point.

The fault arrivals are modeled by Poisson process with a rate λ. The prob-
ability of k fault arrivals during time interval t is defined by (λt)ke−λt

k! and the
mean number of faults during time interval t is λt. In DVS-processor systems,
transient faults can be affected by voltage scaling according to each supply volt-
age and processor frequency [10,13,14]. Thus, the fault rate at processor speed
S is generally modeled as following [10].

λ(S) = λm · g(S)

where λm is the average fault rate at the processor speed Sm. Transient fault
rates are generally exponentially-related to the supply voltage [10]. For example,

g(S) is modeled as 10
d(1−S)
1−S1 in [10], where d is a constant. Hereafter, the fault

rate for each processor speed Sj is denoted as λj (1 ≤ j ≤ m). Since the fault
rate is generally increasing in a low speed processor, it follows that λj ≥ λj+1
(1 ≤ j ≤ m − 1).

The fault recovery scheme in this paper is based on checkpointing strategy.
Each job stores its job status occasionally to a stable storage for the purpose of
restarting it from the most recent checkpointing point in case of a fault occur-
rence. The checkpointing scheme reduces the average execution time by avoiding
restarting from the beginning when a fault occurs. Figure 1 shows examples of
checkpointing and rollback recovery with three checkpointings during task exe-
cution. We assume there is no fault during task checkpointing.

The dynamic power management scheme can be applied to checkpointing in
order to reduce the energy consumption. Figure 1 shows examples of executing
the same task on two different speed processors. On a high-speed processor
(Figure 1(a)), the task completes earlier but may consume much energy due
to the high supply voltage. As long as the task meets the deadline, it can be
executed on a low-speed processor, as shown in Figure 1(b).

2.4 Research Motivations

In our system model, we consider DVS checkpointing for reducing energy con-
sumption as well as meeting task deadlines and reliabilities. There are some
trade-offs in selection of processor speed. Executing a task on a high-speed pro-
cessor generally provides high reliability because of two main reasons. First, the

564 K.H. Kim and J. Kim

(a) Checkpointing and rollback recovery on a high−speed processor

Fault

rollback

Fault Fault

rollback rollback

low speed

task realease deadline

(b) Checkpointing and rollback recovery on a low−speed processor

: task execution

: checkpointing
high speed

deadlinetask realease

Fig. 1. DVS checkpointing and rollback technique

possibility of meeting the deadline is higher by executing it fast and reducing
the exposure time to possible faults. Second, if we run a processor at very low
voltages for low-power operation, then the processor is more prone to timing
errors [13,14]. However, it consumes much energy as indicated in Equation (1).

On the contrary, running a task on a low-speed processor tends to reduce
the energy consumption at the cost of reliability, which comes from the opposite
reasons of high speed case: low possibility of meeting the deadline and fault-prone
property of low processors. Moreover, occasional rollbacks from transient faults
may consume more energy because the consumed energy is also in proportional
to the execution time, as shown in Equation (1). Thus, this paper deals with an
appropriate selection of speed scaling with consideration of checkpointing.

The problem in this paper is to provide an energy-aware checkpointing scheme
for fixed-priority scheduling in fault-tolerant real-time systems. The m different
normalized speed levels {S1, . . . , Sm} and corresponding fault rates {λ1, . . . , λm}
are given. So, the problem is to assign appropriate speed scalings to tasks in
T = {τi(Pi, Ei, Di, Ci, Ri) | i = 1, . . . , N} for the purpose of minimizing the
total energy consumption, under the constraints of guaranteeing their specified
reliabilities and meeting their deadlines based on fixed-priority scheduling.

3 An Adaptive DVS Scheduling with Checkpointing

The scheduling approach in this paper is based on fixed-priority scheduling, such
as Rate Monotonic (RM) and Deadline Monotonic (DM). It is also possible to
give higher priorities to tasks of which reliability requirement is higher. Thus,
the scheduler always executes the highest-priority job among available jobs. As
shown in Figure 2(a), tasks periodically generate their jobs which are inserted to
the waiting queue. The dispatcher selects the highest-priority job in the waiting
queue and executes it. At the same time, it controls the supply voltage level

An Adaptive DVS Checkpointing Scheme for Fixed-Priority Tasks 565

Power
Controller Fault

Handler

: task execution

: checkpointing

Task pool

Preempting a job

Waiting−Queue

Selecting the job with

Dispatcher Processor

checkpointing

from checkpoiting
Recovering

the speed level

Detecting faultperiodic jobs
Generating

the highest priority

Setting the
job’s speed level

Executing
the job

Increasing

Periodic

task realease deadline

speed level

j
j+1

j+2
rollback

rollback
Fault

Fault

Increase
one speed level

Increase
one speed level

(a) DVS scheduling and checkpointing scheme

(b) Adaptive checkpointing and rollback recovery

Stable
Storage

Fig. 2. DVS scheduling and checkpointing scheme

of the processor as the pre-defined one for each task. We will discuss how to
determine the speed level of each task in Section 4.3.

The fault handler in Figure 2(a) plays a role in checkpointing and recovery
from fault. It periodically checkpoints the current executing job to a stable stor-
age for the case of fault. If a fault is detected, the job is recovered from the
recent checkpointed data. In addition, the proposed DVS checkpointing scheme
can control the speed level of task τi adaptively according to fault arrival. Let
us consider that a job is executed under the speed level j (1 ≤ j < m). As long
as no fault occurs, the voltage level is kept at the same level as j. However, once
a fault arrives, the speed level is raised to j + 1 in order to enhance the job’s
reliability. When a fault occurs at the maximum speed level m, the processor is
operated at the same level. Figure 2(b) shows an example of adjusting the speed
level of a job according to fault arrivals.

The proposed scheme considers both inter-task and intra-task Dynamic Power
Management (DPM). Since each task has its own speed level σi, the scheduler
differentiate the speed level between tasks (Inter-task DPM). The DVS check-
pointing scheme can change the speed level of a task if faults occur during its
execution (Intra-task DPM).

In order to provide energy-efficiency and reliability, several key issues should
be solved. The followings are main problems based on the proposed DVS scheme
and will be discussed in the next section.

566 K.H. Kim and J. Kim

– The number of tolerable faults (in Section 4.1): The number of tolerable
faults of a task means how many faults the task can overcome during its ex-
ecution. Since the scheduling algorithm is based on fixed-priority, the worst-
case execution time of each task should be clarified for feasibility analysis.
Moreover, in order to meet the task’s reliability requirement, a certain num-
ber of tolerable faults are to be guaranteed.

– The optimal number of checkpointing (in Section 4.2): The checkpointing
interval indicates how often a job should be checkpointed. A short check-
pointing interval causes much overhead in case of no fault, while a long
interval increases the re-execution time after recovery. The optimal number
of checkpointing is critical to system performance.

– The speed level of a task (in Section 4.3): The objective of dynamic power
management is to reduce the energy consumption. There are some trade-
offs between high speed level and low one. An appropriate choice of a task’s
speed level is important for energy-efficiency.

– The feasibility analysis of a task set (in Section 4.3): A task set is said to be
feasible if all tasks in the set is guaranteed to meet the deadline under their
reliability constraints. Feasibility analysis of the proposed DVS scheduling
shows the condition of feasibility of a given task set.

4 Analysis of the Proposed DVS Scheduling and
Checkpointing

4.1 The Number of Tolerable Faults for Guaranteeing Task
Reliability

In order to meet the reliability requirement of a task, the proposed scheme
defines the number of faults that the task’s job can tolerate. As long as the
number of faults does not exceed this value, the job can recover from faults. It
is obvious that the more number of tolerable faults implies the higher reliability
guaranteed. In this subsection, we derive the least number of tolerable faults to
guarantee a task’s reliability.

Let us define PF (λ, t, k) as the probability of at most k-fault arrivals during t
unit times when the fault arrival rate is λ. Then, PF (λ, t, k) is given by Equation
(2) according to Poisson distribution.

PF (λ, t, k) =
k∑

i=0

(λt)ie−λt

i!
, k = 0, 1, . . . (2)

When the task can tolerate maximum k faults, the reliability of the task is
given by PF (λ, t, k). Let us assume that a task’s reliability is r, the execution
time is t, and a fault rate is λ. Then, the least number of tolerable faults, k,
should satisfy PF (λ, t, k) ≥ r in order to guarantee the required reliability r, as
in Equation (3).

k = the least i such that PF (λ, t, i) ≥ r, where i = 0, 1, . . . (3)

An Adaptive DVS Checkpointing Scheme for Fixed-Priority Tasks 567

Now, we define the number of tolerable faults of a task for each speed level.
For a given task τi, the minimum number of tolerable faults under the processor
speed Sj is denoted as Ki,j. The task execution time is Ei/Sj on the Sj-speed
processor. The fault rate of the Sj speed is defined by λj . Therefore, Equation
(4) tells the least number of tolerable faults in order to meet the reliability of
task τi under the processor speed Sj .

Ki,j = the least k such thatPF (λj , Ei/Sj , k) ≥ Ri, where k = 0, 1, . . . (4)

For example, let us consider a DVS-enabled processor with six different supply
voltage levels, as shown in Table 1. Fault rates are also assumed to be given as
the second column in Table 1. For a given reliability requirement of task τi,
we can obtain the number of tolerable faults to meet Ri,j . Table 1 shows those
values (Ki,j) for each reliability (Ri) according to Equation (4). In Table 1, Ei

is assumed to be 25.

Table 1. An example of the number of tolerable faults (Ki,j)

Speed level Fault rate Reliability requirement (Ri)
(Sj) (λj) 0.7 0.8 0.9 0.95 0.99 0.999

0.5 0.1 6 7 8 9 11 13
0.6 0.0398 2 3 3 4 5 7
0.7 0.0158 1 1 2 2 3 4
0.8 0.0063 0 0 1 1 2 3
0.9 0.0025 0 0 0 1 1 2
1.0 0.001 0 0 0 0 1 1

4.2 The Optimal Number of Checkpointing

One important issue in checkpointing scheme is to determine the optimal check-
pointing interval. If the interval is too short, the checkpointing itself leads to
overhead in case of no fault. On the contrary, if the checkpointing interval is too
long, the amount of restarting time at a fault arrival becomes large. Thus, the
optimal checkpointing interval needs to be analyzed.

Suppose that (n−1) checkpoints are placed during a task τi’s execution under
the maximum speed Sm (n > 0). The worst-case execution time Wi,m(n) for
Ki,m-fault tolerance is given by Equation (5). The term (n − 1) · Ci corresponds
to the total checkpointing overhead, while Ki,m · Ei

n is the worst-case re-execution
time in case of Ki,m fault arrivals.

Wi,m(n) = Ei + (n − 1) · Ci + Ki,m · Ei

n
(5)

In case of the speed level Sj < Sm, the worst-case execution time is the
maximum value among worst-case execution times for each fault occurrence.

568 K.H. Kim and J. Kim

j+1

i /S j

: task execution

: checkpointing

speed level

j
j+1

j+2

(a) No fault (k = 0)

E i /4Sj

speed level

j
j+1

j+2
rollback

Fault

Fault

rollback

(c) Two faults (k = 2)

E i /4S

speed level

j
j+1

j+2
rollback

Fault

(b) One fault (k = 1)

E i /4S

j+2

j+1

Ci /S

C

Fig. 3. Worst-case execution times vs. the number of faults (n = 4)

For example, let us consider task τi with Ki,j = 2 and n = 4. Figure 3 shows
the worst-case execution time of each number of fault occurrences. Thus, the
generalized form of Wi,j(n) is given by Equation (6).

Wi,j(n) =
Ki,j
max
k=0

{(
Ei

n·Sj
+

Ci

Sj

)
(n−k)+

k∑

m=1

(
Ei

n·Sj+m
+

Ci

Sj+m

)
+

k−1∑

m=0

Ei

n·Sj+m
− Ci

Sj+k

}

(6)

where Sm+j = Sm if j ≥ 1

In Equation (6), Ei

Sj
and Ci

Sj
are greater than Ei

Sj+1
and Ci

Sj+1
, respectively.

Since we consider the worst-case execution time, W ∗
i,j(n) is used for deriving the

optimal checkpointing number.

W ∗
i,j(n) =

Ei

Sj
+ (n − 1) · Ci

Sj
+ Ki,j · Ei

n · Sj
(7)

The optimal checkpointing number ni,j of task τi under the speed Sj is ob-
tained by minimizing W ∗

i,j(n). Such optimal value is
√

Ki,j · Ei/Ci. Since ni,j

is a integer value, it is either �
√

Ki,j · Ei/Ci� or �
√

Ki,j · Ei/Ci�. Thus, the
optimal checkpointing interval under the Sj speed is given by Ei,j

Sj ·ni,j
.

For example, Table 2 shows the optimal number of checkpointing for each
checkpointing overhead based on the same system model as in Table 1. The
checkpointing overhead is defined by Ci

Ei
. As the checkpointing overheard be-

comes larger, the number of checkpointing decreases. In addition, the processor
under higher-speed level requires less checkpointing because it is more reliable.

4.3 Assignment of Speed Level and Feasibility Analysis

Fixed priority-based scheduling algorithms in DVS should consider both energy
minimization and feasibility of tasks. For a given task set T = {τ1, τ2, . . . , τN}

An Adaptive DVS Checkpointing Scheme for Fixed-Priority Tasks 569

Table 2. The optimal number of checkpointing (ni,j) of Table 1 when Ri = 0.99

Speed level Fault rate Tolerable Faults Checkpointing overhead (Ci/Ei)
(Sj) (λj) (Ki,j) 2.5% 5% 10% 15% 20%

0.5 0.1 11 20 14 10 8 7
0.6 0.0398 5 14 10 7 5 5
0.7 0.0158 3 10 7 5 4 3
0.8 0.0063 2 8 6 4 3 3
0.9 0.0025 1 6 4 3 2 2
1.0 0.001 1 6 4 3 2 2

Algorithm Feasibility Test with Speed Assignment (T)
/∗ - T = {τi(Pi, Ei, Di, Ci, Ri)|i = 1, . . . , N} : a task set
∗/
1: for i from 1 to N do
2: σi ← 0;
3: Ei ← LARGE V ALUE;
4: for j from 1 to m do
5: Calculate ni,j as described in Section 4.2.
6: Ei,j ← αS2

j Wi,j(ni,j);
7: if (∃t ≤ Di such that RTi,j(t) ≤ t) then
8: if (Ei,j < Ei) then
9: σi ← j;
10: Ei ← Ei,j ;
11: endif
12: endif
13: endfor
14: if (σi == 0) then return Non-Feasible
15: endfor
16: return Feasible

Fig. 4. Feasibility test and speed level assignment

and a set of processor speed levels {S1, S2, . . . , Sm}, the optimal solution can
be found by the exhaustive search of O(Nm). This paper provides an algorithm
that assigns the speed level of each task and tests the schedulability at the same
time from higher-priority tasks first.

Figure 4 shows the pseudo-algorithm of feasibility test and speed level assign-
ment. In Figure 4, the speed level assignment of task τi is denoted by σi. Also,
we define the response time of task τi under the speed Sj by Equation (8). The
feasibility test in fixed priority-based scheduling algorithms can be obtained by
worst-case response time analysis [16]. Equation (8) shows τi’s response time
function of t considering the worst-case time of Ki,j-fault occurrence which is
given by Wi,j(ni,j). The speed assignment of higher-priority tasks than τi is

570 K.H. Kim and J. Kim

already done at the time of τi’s test so that σh is used in Equation (8). If there
exists a specific t ≤ Di such that RTi,j(t) ≤ t, then τi is schedulable [16].

RTi,j(t) = Wi,j(ni,j) +
i−1∑

h=1

� t

Ph
� · Wh,σh

(nh,σh
) (8)

The algorithm in Figure 4 tests higher-priority tasks first (line 1). For each
speed level Sj , the optimal checkpointing number (ni,j), and the expected en-
ergy consumption (Ei,j) are calculated (line 5 and 6). If the feasibility test is
successfully passed under the speed Sj (line 7), the assignment of the speed level
is set to Sj if Ei,j is the minimum energy consumption which is less than Ei (line
8-11). Throughout the algorithm in Figure 4, the feasibility test is done and the
assignment of speed level to each task is obtained as a result.

5 Conclusions

This paper considers a problem on checkpointing of reliability-aware real-time
tasks on DVS-enabled embedded systems based on fixed-priority scheduling al-
gorithms. We proposed an adaptive DVS scheduling and checkpointing scheme
which gradually increases the supply voltage as faults occur to the system. In
order to guarantee the task reliability, the number of tolerable faults is analyzed
and guaranteed. For each scaling speed, the optimal checkpointing number and
the expected energy consumption is analyzed. The proposed scheme reduces the
energy consumption by testing the feasibility from the speed level with lower
expected energy consumption.

We plan to study other issues related on the proposed scheme, such as global
optimization of assigning tasks’ speed levels. The global optimization of energy
reduction requires the exhaustive search of O(Nm), where N is the number of
tasks and m is the number of available speed levels. It can be improved by ap-
plying other techniques such as branch-and-bound scheme or genetic algorithms.

Acknowledgement

This research was supported by the MIC (Ministry of Information and Commu-
nication), Korea, under the ITRC (Information Technology Research Center)
support program supervised by the IITA (Institute of Information Technology
Assessment) (IITA-2005-C1090-0501-0018).

References

1. Hong, I., Qu, G., Potkonjak, M., Srivastava, M.B.: Synthesis techniques for low-
power hard real-time systems on variable voltage processors. Proceedings of 19th
IEEE Real-Time Systems Symposium (1998) 178–187

An Adaptive DVS Checkpointing Scheme for Fixed-Priority Tasks 571

2. Hong, I., Kirovski, D., Qu, G., Potkonjak, M., Srivastava, M.B.: Power optimiza-
tion of variable-voltage core-based systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (1999) 18(12) 1702–1714

3. Burd, T.D., Brodersen, R.W.: Energy efficient CMOS microprocessor design. Pro-
ceedings of the 28th Annual Hawaii International Conference on System Sciences
(1995) 288–297

4. Krishna, C.M., Lee, Y.H.: Voltage-clock-scaling techniques for low power in hard
real-time systems. Proceedings of IEEE Real-Time Technology and Applications
Symposium (2000) 156–165

5. Pillai, P., Shin, K.: Real-time dynamic voltage scaling for low-power embedded
operating systems. Proceedings of 18th ACM Symposium on Operating System
Principles (2001) 89–102

6. Melhem, R., Mosse, D., Elnozahy, E.N.: The interplay of power management and
fault recovery in real-time systems. IEEE Transactions on Computers 53(2) (2004)
217–231

7. Zhang, Y., Chakrabarty, K.: Energy-aware adaptive checkpointing in embedded
real-time systems. Proceedings of IEEE/ACM Design, Automation and Test in
Europe Conference (2003) 10918–10925

8. Zhang, Y., Chakrabarty, K.: Task feasibility analysis and dynamic voltage scaling
in fault-tolerant real-time embedded systems. Proceedings of IEEE/ACM Design,
Automation and Test in Europe Conference (2004) 1170–1175

9. Zhang, Y., Chakrabarty, K.: A unified approach for fault tolerance and dynamic
power management in fixed-priority real-time embedded systems. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 25(1) (2006)
111–125

10. Zhu, D.: Reliability-aware dynamic energy management in dependable embedded
real-time systems. Proceedings of 21th IEEE Real-Time and Embedded Technolo-
gies and Applications Symposium (2006) 397–407

11. Li, Z., Chen, H., Yu, S.: Performance optimization for energy-aware adaptive check-
pointing in embedded real-time systems. Proceedings of Design, Automation and
Test in Europe (2006) 678–683

12. Vaidya, N.H.: Impact of checkpoint latency on overhead ratio of a checkpointing
scheme. IEEE Transactions on Computers 46(8) (1997) 942–947

13. Ernst, D., Das, S., Lee, S., Blaauw, D., Austin, T., Mudge, T., Kim, N.S., Flautner,
K.: Razor: circuit-level correction of timing errors for low-power operation. IEEE
Micro 24(6) (2004) 10–20

14. Zhu, D., Melhem, R., Mosse, D.: The effects of energy management on reliability
in real-time embedded systems. Proceedings of the International Conference on
Computer Aided Design (2004) 35–40

15. Punnekkat, S., Burns, A., Davis, R.: Analysis of checkpointing for real-time sys-
tems. Journal of Real-Time Systems 20 (2001) 83–102

16. Liu, J.W.: Real-Time Systems. Upper Saddle River, NJ: Prentice-Hall (2000)

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 572–583, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Energy-Efficient Fixed-Priority Scheduling for Periodic
Real-Time Tasks with Multi-priority Subtasks

Zhigang Gao1, Zhaohui Wu1, and Man Lin2

1 College of Computer Science, Zhejiang University,
Hangzhou, Zhejiang, P.R. China, 310027
{gaozhigang,wzh}@zju.edu.cn

2 Department of Mathematics, Statistics and Computer Science,
St. Francis Xavier University

Antigonish, NS, B2G2W5, Canada
mlin@stfx.ca

Abstract. With the rapid development of embedded systems, battery life
becomes a critical restriction factor. Dynamic voltage scaling (DVS) has been
proven to be an effective method for reducing energy consumption of
processors. This paper proposes an energy-saving algorithm under a task model
(the MSPR model) where a task consists of multiple subtasks with different
fixed priorities. This algorithm includes two parts. The first part is a static
algorithm, which exploits the relationship among tasks to set the slowdown
factors of subtasks. The second part is an algorithm that dynamically reclaims
and reuses the slack time of precedent subtasks during the execution of tasks.
To the best of our knowledge, this is the first work for energy-efficient
scheduling under the complex periodic real-time task model where a task
consists of multiple subtasks with different fixed priorities. Experimental results
show this method can reduce energy consumption by 20%-80%, while
guaranteeing the real-time requirements of systems.

1 Introduction

Many of embedded real-time systems are powered by rechargeable batteries in order
to provide autonomy and/or mobility. Among components in embedded systems,
processors are one of the most energy-consuming components. Because the current
advances in battery technology fall far behind those in processor technology, battery
life becomes a critical restriction factor.

DVS technology, which uses the energy characteristics of modern processors made
by CMOS (Complementary Metal-Oxide-Semiconductor Transistor) technology and
the fact that tasks usually have some slack time, can reduce energy consumption at the
cost of increasing the execution time of tasks.

In hard real-time systems, the extension of a task’s execution time must respect its
timing requirements, i.e., its deadline must be met. Although many research works
have been carried out on hard real-time DVS [2-8], most of them only consider
regular fixed-priority task sets where a task is the smallest unit in a system and has
only a single priority. In this paper, we focus on DVS for periodic task sets where

 Energy-Efficient Fixed-Priority Scheduling 573

each task consists of a sequence of subtasks with different fixed priorities. We call
this task model the MSPR model (multiple subtasks with precedence relationship),
which is an extension to regular fixed-priority task model. With the statically assigned
multi-priorities for the subtasks, the MSPR model allows a task to run at different
priority level at runtime without requiring OS (operating system) support for dynamic
priority adjustment.

There have been some research efforts on the energy-saving problem under
precedent task model [10, 11]. However, they are aimed at multiple processors using
list scheduling [13], and complex priority-assigning mechanism and dynamic dispatch
of tasks are needed. The method presented in this paper uses fixed priority scheduling
and fixed task set on a single processor, and aims at the systems with restricted
resources and critical hard real-time requirements.

In this paper, we propose an energy-saving scheduling algorithm under the MSPR
model. This algorithm includes two parts. The first part calculates the slowdown
factor of each subtask by analyzing the relationship among tasks. And the second part
reclaims and reuses the slack time of precedent subtasks during runtime. The
algorithm aims at energy savings while at the same time guaranteeing all the tasks to
meet their deadlines.

The rest of this paper is organized as follows. Section 2 describes the task model,
processor model, and timing analysis technique used in this paper. Section 3 proposes
the energy-saving algorithm. Section 4 gives the evaluation of this algorithm. We
conclude this paper in Section 5.

2 System Model and Timing Analysis Technique

In this section, we introduce the task model, processor model, and timing analysis
technique that will be used throughout this paper.

This paper uses the MSPR task model. In this task model, a system is composed of
n periodic tasks, represented as Г={τ1,···,τn}. A task τi is represented as a three-tuple
{Ti, Di, Ci}, where Ti is the period, Di is the relative deadline, and Ci is the worst-case
execution time (WCET). One instance of τi is generated every Ti intervals, called a job
of τi. The task τi consists of m subtasks, τ(i,1),···,τ(i,m). The subtask τ(i,k) is characterized
by a WCET C(i,k) and a priority P(i,k). τ(i,k) has the same period as that of τi, and the
WCET of τi is equal to the sum of the WCET of all τi’s subtasks. After a job of τi is
released, its subtasks are executed sequentially. We assume no subtask can be
included in more than one task; there is no blocking time caused by resource sharing
among subtasks of different tasks; and system overheads, such as scheduler and
context-switching overheads, are ignored. In this paper, we only consider the energy-
saving problem on a single processor. And we also assume that there is no energy
consumption difference among different instruction types.

We assume processors can run at a sequence of discrete operating frequencies with
corresponding supply voltages. That is, a processor Pri has the parameters of
{(f1,V1),···, (fmax,Vmax)}, where f is the operating frequency, and V is the supply
voltage. In this paper, subtasks are the fundamental entities that apply DVS
technology. We apply a suitable voltage for a subtask to achieve the purpose of
energy savings. We are only interested in the relative energy consumption of subtasks

574 Z. Gao, Z. Wu, and M. Lin

when they run on different supply voltages. Therefore, we normalize the energy to the
maximum energy consumption. If Pri is running on Vi, its unit energy consumption
Wi is defined as Vi

2fi/(Vmax
2fmax). Note that the WCET and the actual execution time

(AET) of a subtask τ(i,j) are all measured at the full speed of the processor where τ(i,j)

resides.
Timing analysis algorithm is the foundation of guaranteeing the real-time

requirements of tasks. This paper uses the timing analysis algorithm for MSPR model
under fixed priority scheduling policy presented by Harbour, Klein, and Lehoczky [1]
(We call it the HKL algorithm). Because of the limitation of space, we only introduce
some notations used in this paper.

For a task τk, Pmin(k) refers to the minimum priority of all τk’s subtasks. If
Pmin(k)≥P(i,j), τk has multiply preemptive effect on τ(i,j). We use MP(τi) to denote the task
set that has multiply preemptive effect on τi. If its initial multiple continuous subtasks’
priorities is higher than P(i,j), and can preempt τ(i,j) once, τk has singly preemptive effect
on τ(i,j). If its internal multiple subtasks’ priorities is higher than P(i,j), and can block
τ(i,j) once, τk has blocking effect on τ(i,j).

The canonical form of a task τi is a task τi' whose subtasks maintain the same order,
but have monotonically increasing priorities. The HKL algorithm has proven that the
response time of a task is equal to that of its canonical form. A subtask in the
canonical form is called a canonical form subtask. When we analyze the completion
time of τ(i,j)', an H segment stands for multiple continuous subtasks whose priorities
are not lower than P(i,j)'; an L segment stands for multiple continuous subtasks whose
priorities are lower than P(i,j)'. Ci

h denotes the execution time of the initial H segment
of τi; Bi denotes the blocked time that τi suffers. The response time of τi can be
analyzed as follows: first, convert τi into τi'. Second, classify other tasks into five
types (from type1 to type 5) according to the priority of τ(i,1)', and calculate the busy
period of τi'. Third, calculate the response time of every job of τi' in its busy period in
order of subtasks. The longest response time of all τi'’s jobs is the worst-case response
time (WCRT) of τi. When we analyze the completion time of τ(i,j)', the type-1 tasks
only have multiply preemptive effect on τ(i,j)'; the type-2 and type-3 tasks have singly
effect or blocking effect on τ(i,j)'; the type-4 tasks only have blocking effect on τ(i,j)';
the type-5 tasks have no influence on τ(i,j)'.

3 Voltage Assignment Algorithm

In this section, we present an energy-saving scheduling algorithm—HDVS algorithm.
The HDVS algorithm includes two parts. First, it sets slowdown factors of subtasks
using a hierarchical method. Second, it reclaims and reuses the slack time of runtime
subtasks, and dynamically sets voltages of subtasks.

3.1 Static Slowdown Factor

In this subsection, we first introduce the Time Scaling Factors for a Single
task/subtask (TSFS) and its calculation method in the MSPR model, and then present
the method for setting static slowdown factors of subtasks.

 Energy-Efficient Fixed-Priority Scheduling 575

TSFS and its Calculation Method. Lehoczky et al. [9] presented the notion of
Critical Scaling Factor (CSF), which is a metric of the time sensitivity of a task set.
For a system with the CSF of α, if we multiply all tasks’ WCET by a factor of α,
the system will still be schedulable. In this paper, we borrow the idea of CSF, and
propose the notion of TSFS. For a task τi with the TSFS of α, if we multiply all
tasks’ WCET by a factor which is no more than α, τi is still schedulable (Note that
the schedulability of other tasks is not considered in the notion of TSFS for a task. It
is obvious that the CSF of a system is equal to the least TSFS of all its tasks). If a task
τi has the TSFS of α, all the subtasks of τi have the default TSFS of α. In the
following subsection, we will see a subtask of τi can also have a different TSFS of
β(obviously, β≤α).

Algorithm Find_TSFS (i, TS)
/* i is the task number; TS is the task set in the
system; THh is the biggest threshold of the TSFS of i; THl

is the least threshold of the TSFS of i; Ri is the WCRT of
the task i.*/
Begin
Calculate the WCRT of i;
if (Ri>Di) return -1;
THh= Di/Ri;
THl=1;
while (abs(THh-THl)>=0.000001)
{

Calculate Ri when all tasks’ WCET is multiplied by a
factor of (THh+THl)/2;
if (Ri>Di)
THh=(THh+THl)/2;

else
THl=(THh+THl)/2;

}
return (THh+THl)/2;

End

Fig. 1. Find_TSFS algorithm

Under the MSPR model, a task’s WCRT is obtained by calculating all subtasks’
completion time subsequently. Scaling the WCET of a task may change the singly
preemptive time, multiply preemptive time, or blocking time for other tasks, which
increases the computation complexity of TSFS. In this paper, we develop a binary
search algorithm named Find_TSFS algorithm to calculate the TSFS of an arbitrary
task τi. In the Find_TSFS algorithm, we first calculate the WCRT of τi, Ri. Then set
the threshold of the TSFS of τi as follows: if Ri≤Di, we set its maximum TSFS to be
Di/Ri, least TSFS to be 1. If Ri>Di, the Find_TSFS returns –1 to denotes the TS is
unschedulable. After the THh and Thl of τi have been set, we can use binary search to
determine the TSFS of τi.

576 Z. Gao, Z. Wu, and M. Lin

The Method of Hierarchical Setting Static Slowdown Factor. When τ(i,k)’s
execution speed is slowed down, we call its maximum allowable execution time
maximum time extension, and (the maximum time extension)/C(i,k) the maximum time
extension factor. From the definition of TSFS, we know that TSFS(τi) only denotes
the possible maximum time extension factor of τi. In fact, τi may have multiply
preemptive effect, singly preemptive effect, or blocking effect on other tasks. In order
to guarantee the schedulability of other tasks, the time extension of the subtasks of τi
must be restricted, and no more than TSFS(τi). The HDVS algorithm sets supply
voltages on the base of subtasks. For a subtask, its slowdown factor is equal to its
TSFS. So the slowdown factor and TSFS are interchangeable for subtasks. For a task
τj, its first canonical form subtask has the least priority. In the following sections,
when we say τi can singly preempt, or block τj, it means τi can singly preempt, or
block τ(j,1)'.

Based on the timing analysis theory of the HKL algorithm and the definition of
TSFS, when changing the execution speeds of the task τi, three rules must be
followed:

A. If τi is a multiply preemptive task of τ(j,1), the maximum time extension factor of
all τi’s subtasks can not exceed TSFS(τj);

B. If τi is a type-2 or type-3 task of τj, the maximum time extension factor of τi’s
initial H segment can not exceed TSFS(τj); the maximum time extension of τi’s
internal H segments can not exceed TSFS(τj)*(Ci

h+ Bj). If τi is a type-3 task of τj,
the maximum time extension of τi’s final H segments can not exceed
TSFS(τj)*Bj.

C. If τi is a type-4 task of τj, the maximum time extension of the internal H segments
of τi can not exceed TSFS(τj)*Bj.

It must be noted that the rules A, B, and C are sufficient conditions for the
schedulability of task sets, but not necessary conditions. Under fixed priority
scheduling and discrete voltage levels, assigning the optimal slowdown factors is an
NP-hard problem [12]. In this paper, we do not try to find the optimal slowdown
factors of subtasks, but to find feasible slowdown factors of subtasks.

For all tasks in systems, we must guarantee the rules A, B, and C are met when
setting their static slowdown factors. We present a method of hierarchical setting
slowdown factors (HSSF). HSSF first calculates the TSFSes of all the tasks in
systems, and then sets the slowdown factors of subtasks.

The HSSF algorithm can be divided into two parts.
The first step is classifying tasks into different levels, as shown in Figure 2, and

sets subtasks’ slowdown factors. The original task set is TS, which contains all the
tasks in a system. Assume τk is the task with the least TSFS in TS. In the level L1, TS
is divided into two parts where the left node is MP(L1) (note that MP(L1)= τk+
MP(τk)); the right node, OT(L1), is equal to TS-MP(L1). For each task τm in MP(τk)-
τk, the TSFSes of all the subtasks is set to be TSFS(τk) in order to avoid the multiply
preemptive time from τm being too long. If a task τm is a type-2 or type-3 task in
OT(L1), the slowdown factors of the subtasks in the initial H segment of τm is set to be
TSFS(τk). Then we find the task with the least TSFS in OT(L1), classify OT(L1) into
MP(L2) and OT(L2) and set the TSFSes of subtasks. This process is iterated until no
task is left. For a task τm, because the changes of the TSFSes of the subtasks in τm will

 Energy-Efficient Fixed-Priority Scheduling 577

TS

L1

L2

L3

L0

Fig. 2. Task level tree

influence the maximum time extension of τm’s internal H segments and final H
segment, we do not set the TSFSes of all internal and final H segments of τm, and deal
with them in the second step.

The second step is to perform TSFS adjustment. For each task τj in TS, find the
type-2, type-3, and type-4 tasks of τj. If τk is a type-2 or type-3 task of τj, calculate the
maximum time extension TM of each internal H segment Hb of τk. TM is defined as

(,)

(,) (,)()
k p b

k p k p
H

TSFS C
τ

τ
∈

⋅∑ . If TM is larger than TSFS(τj)*(Bj+Ck
h), it means Hb

may block τj longer than expected. We adjust the TSFSes of the subtasks in Hb, and
multiply their TSFSes by a factor of TSFS(τj)*(Bj+Ck

h)/TM. If τk is a type-3 task of
τj, except the internal H segments of τk, we should also calculate the maximum time
extension TM of its final H segment Hf. If TM is larger than TSFS(τj)*Bj, it means Hf
may block τj longer than expected. We multiply the TSFSes of all subtask in Hf by a
factor of TSFS(τj)*Bj/ TM. If τk is a type-4 task, calculate the maximum time
extension TM of each internal H segment Hb in τk. If TM is larger than TSFS(τj)*Bj,
multiply the TSFSes of all subtasks in Hb by a factor of TSFS(τj)*Bj/ TM to avoid too
long blocking time from τk.

3.2 Dynamic Reclamation and Reuse of Slack Time

Section 3.1 uses WCET as the time parameter of a task to set it subtasks’ slowdown
factor. WCET is a pessimistic estimation of the execution time of a task. In the
runtime of tasks, their actual execution time is usually shorter than their WCET.
When executing a task τi, we can use the slack time caused by the difference between
its AET and WCET to lower the operating frequency further while guaranteeing τi’s
deadline.

578 Z. Gao, Z. Wu, and M. Lin

Under the MSPR model, a task is composed of multiple subtasks. In this paper, our
slack time reclamation algorithm only reclaims the slack time in the identical job of a
task. Before running a subtask τ(i,j), the slack time of the completed subtasks of τi,
together with the WCET of τ(i,j) is used to determine the lowest operating frequency of
τ(i,j). Changing the operating frequency of τ(i,j) not only influence the WCRT of τi but
also influence the WCRT of other tasks.

From the HKL algorithm, we know that, if we do not consider the blocking effect
from τj, then all subtasks of τj can reuse the slack time from its precedent subtasks, and
do not influence the response time of other tasks. Similarly, we can prove the reuse of
the slack time intra a task will not increase its WCRT.

Reclamation and Reuse of Slack Time. Although any subtask τ(i,k) reuses the slack
time from its precedent subtasks in the same job does not increase the response time
of τi, it may increase other tasks’ response time when τ(i,k) belongs to an internal or
final H segment for other tasks, while its precedent subtasks do not.

In order to restrict the maximum slack time that the subtasks in the non-initial H
segments of the type-2, type-3, and type-4 tasks can reuse, we use the STA algorithm
to set the reclamation tags of subtasks and their maximum slack time available.

Algorithm STA (TS)
/* TS is the task set in the system; Bi is the maximum
blocking time of i; MST is the maximum slack time that a
subtask can reuse. MTE(Hi) is the maximum time extension
of all subtasks in Hi.*/
Begin
for (each task i in TS)
{
Set the reclamation flag of the first subtask of i to
be false, and the reclamation flag of the other
subtasks of i to be true;
Set the MST of each subtask of i to be 0;

}
for (each task i in TS)
{
Convert i into its canonical form i';
Use P(i,1)` to classify other tasks;
for (each task k in TS- i)
{
if (k is a type-2 or a type-3 task of (i,1)`)
{
for (each internal H segment Hi of k)
{
TM= MTE(Hi) + the maximum reclaimed slack time;
ti=TSFS(i)*(Bi+Ck

h);
if (TM> ti)

Fig. 3. STA algorithm

 Energy-Efficient Fixed-Priority Scheduling 579

{
Set the reclamation tag of the first subtask in
Hi to be false.
if (the MST of the first subtask in Hi is

larger than ti -MTE(Hi))
Set the MST of the first subtask in Hi to be
ti -MTE(Hi);

}
}
if (k is a type-3 task of (i,1)`)
{
TM = the maximum time extension of all subtasks

in k’s final H segment Hi + the maximum
reclaimed slack time;

ti=TSFS(i)*Bi;
if (TM> ti)
{
Set the reclamation tag of the first subtask in
Hi to be false.
if (the MST of the first subtask in Hi is

larger than ti -MTE(Hi))
Set the MST of the first subtask in Hi to be ti
-MTE(Hi);

}
}

}
else if (k is a type-4 task for (i,1)`)
{
for (each internal H segment Hi of k)
{
TM = MTE(Hi) + the maximum reclaimed slack time;
ti=TSFS(i)*Bi;
if (TM> ti)
{
Set the reclamation tag of the first subtask in
Hi to be false.
if (the MST of the first subtask in Hi is

larger than ti -MTE(Hi))
Set the MST of the first subtask in Hi to be
ti -MTE(Hi);

}
}

}
}

}
End.

Fig. 3. (continued)

Because most of the STA algorithm is similar to the second part of the HSSF
algorithm, we do not explain it in detail. It should be noted that the maximum
reclaimed slack time of Hi refers to the maximum time extension of all the subtasks in
τi before Hi. We use the MST(τ(i,j)) to restrict the maximum slack time that τ(i,j) can

580 Z. Gao, Z. Wu, and M. Lin

reuse in order to avoid too long blocking time for other tasks. A reclamation tag
denotes whether we should consider the MST of a subtask. If the reclamation tag of a
subtask is false, the maximum slack time that it can reuse should be no more than its
MST. If a subtask belongs to the first subtask of multiple H segments, its MST is the
least one.

STA algorithm sets all subtasks’ reclamation tags before the task set is admitted to
be executed. After a task τi is released, its subtasks are executed one by one. We use
the DSTR algorithm to set the dynamic operating voltage of a subtask τ(i,j). If τ(i,j) is a
subtask whose reclamation tag is false, we use MST(τ(i,j)) to restrict the maximum
slack time that τ(i,j) can reuse. Then the maximum time extension of τ(i,j) is set to be
TSFS(τ(i,j))`=(TSFS(τ(i,j))*C(i,j)+ TST(τi))/ C(i,j) in order to reuse the slack time.
Assuming Vi is the lowest voltage that makes fi/fmax equal to or larger than
1/ TSFS(τ(i,j))`, the operating voltage of the processor, V(i,j)`, is set to be Vi before τ(i,j)
is released. The total slack time of τi, TST(τi), is set to be TST(τi)+TSFS(τ(i,j))*C(i,j) -
fmax/f(V(i,j)`)*AET(i,j) at the end of τi’s execution. This process is repeated until τi
ends.

DSTR ((i,j))
/* (i,j) is the subtask to be executed. CTA is the current
time available. TST(i) is the current slack time of i.
f(V(i,j)) is the operating frequency corresponding to V(i,j);
f(V(i,j)`) is the operating frequency corresponding to
V(i,j)`; AET(i,j) is the actual execution time of (i,j). */
Before task release:
CTA = TST(i);
if (the reclamation flag of (i,j) is false)
{
if (TST(i)> MST((i,j)))
CTA = MST((i,j));`

}
TSFS((i,j))`=(TSFS((i,j))*C(i,j)+ CTA)/ C(i,j);
if (Vi is the least voltage that makes fi/fmax equal to or

larger than 1/ TSFS((i,j))`);
Set the operating voltage V(i,j)` to be Vi;

Upon task completion:
TST(i) = TST(i)+TSFS((i,j))*C(i,j) -fmax/f(V(i,j)`)*AET(i,j);

Fig. 4. DSTR algorithm

4 Experiment and Analysis

Because the task model and scheduling policy in this paper is different from the
existing work in energy-saving research, we are not able to compare our method to
other known DVS algorithm, such as the RT-DVS algorithm [4], the DRA algorithm
[7], and the DVSST algorithm [8]. We developed a simulator to test the algorithm
presented in this paper. In the following experiments, we use the method presented in

 Energy-Efficient Fixed-Priority Scheduling 581

[4] to generate test task sets. The WCET of tasks are assigned using the product of the
system utilization and the task periods with a maximum deviation of 20%. We use a
uniformly distribution function to generate the AET of tasks. The TSFS range of task
set refers to the TSFSes under the utilization of 0.9. With the decrease of the
utilization, the TSFSes of tasks will increase correspondingly. Every data point is an
average value of ten experiments. The total energy of the task set is measured in [0,
LCM], where LCM is the least common multiple of all tasks’ periods.

Different speed/voltage function
In this experiment, we use three processors with different speed/voltage functions to
investigate their effect on energy consumption. Their speed/voltage functions are
listed as follows.

Processor 1 (P1): { (1, 1.35), (0.9, 1.3), (0.8, 1.2), (0.667, 1.1), (0.533, 1), (0.433,
0.925), (0.3, 0.8) }

Processor 2 (P2): { (1, 1.3), (0.75, 1.1), (0.5, 1), (0.25, 0.85) }
Processor 3 (P3): { (1, 1.3), (0.75, 1.2), (0.5, 1.1) }
We use a task set generated randomly with the following parameters: task number:

6; subtask number in each task: 2-5; TSFS: 1.01-6.11. The experiment results are
shown in Figure 5(a).

Fig. 5. (a) Energy consumption on P1, P2, and P3 (b) Energy consumption with different task
number

Figure 5(a) shows that, the finer the granularity of speed/voltage adjustment, the
less the energy consumption of task set is. It also shows that the energy consumption
under low utilization is restricted by the lowest energy consumption of a processor,
while under high utilization (above 0.7), the energy consumption depends on the
bigger values of the speed/voltage function.

In the following experiments, we use processor 1 as the processor platform.

582 Z. Gao, Z. Wu, and M. Lin

Different task number
In this experiment, we use three task sets with task number of 3 (T3), 6 (T6), and 9
(T9) to investigate their effect on energy consumption. They have the following
parameters: subtask number in each task: 2-5; TSFS: 1.01-7.25. The experiment
results are shown in Figure 5(b).

Figure 5(b) shows the HDVS algorithm is not sensitive to task number. But under
the high utilization (above 0.7) and the medium utilization (0.3-0.6), the energy
consumption of T6 is higher than that of T3 and T9 because its moderate task number
cannot make good use of static slowdown factor and dynamic slack reuse.

Different subtask number
In this experiment, we use three task sets, the task set 1 (TS1), the task set 2 (TS2), and
the task set 3 (TS3). Each task in TS1 has 2-4 subtasks; there are 5-7 subtasks in a task
in TS2, 8-10 subtasks in a task in TS3. Except the subtask number, TS1, TS2, and TS3
have the same task parameter. The experiment results are shown in Figure 6(a).

Figure 6(a) shows under the low utilization (0.1-0.3), the energy consumption of
TS1, TS2, and TS3 has no notable difference because they are all restricted by the
lowest energy consumption of the processor P1. When the utilization is larger than
0.3, the larger the utilization is, the larger the difference of the energy consumption is;
the more the average subtask number is, the least the energy consumption is.

Fig. 6. (a) Energy consumption with different subtask number (b) Energy consumption with
different TSFS range

Different TSFS range
In this experiment, we investigate the influence of different TSFS range, but with the
similar CSF. We use a task set with the following parameters: task number: 6; subtask
number in each task: 2-5. We adjust the priorities of subtasks in order to change the
range of TSFSes of the task set, and obtained three TSFS ranges: 1.06-1.37 (T137),
1.05-2.5 (T250), 1.03-5.08 (T508). The experiment results are shown in Figure 6(b).

 Energy-Efficient Fixed-Priority Scheduling 583

The experiment results show the energy consumption of a task set is mainly
restricted by its least TSFS (i.e. the CSF of the task set). The HDVS algorithm is not
sensitive to the TSFS distribution because the static slowdown factors and dynamic
slack reuse mechanism can work efficiently. From Figure 6(b), we can see the least
the TSFS range is, the more smooth the curve line of energy consumption is. It means
the less TSFS distribution has the advantage of more predictable energy consumption.

5 Conclusions and Future Work

Aimed at the MSPR task model, we present an energy-saving method called the
HDVS algorithm. The HDVS algorithm uses TSFSes of subtasks to decide slowdown
factors of subtasks, and reclaims and reuses slack time in the runtime of tasks. Our
future work will focus on how to assign the priorities of subtasks in order to obtain
better energy-saving effect.

References

1. Harbour, M., Klein, M.H., Lehoczky, J.: Timing analysis for fixed-priority scheduling of
hard real-time systems. IEEE Trans. Software Eng.. Vol. 20, no. 2. (1994) 13-28

2. Yao, F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy. Proc.
IEEE Symp. Foundations Computer Science. (1995) 374–382

3. Saewong, S., Rajkumar, R.: Practical Voltage-Scaling for Fixed-Priority RT-Systems.
Proc. Ninth IEEE Real-Time and Embedded Technology and Applications Symp. (RTAS).
(2003)

4. Pillai, P., Shin, K.G.: Real-Time Dynamic Voltage Scaling for Low-Power Embedded
Operating Systems. Proc. 18th ACM Symp. Operating Systems Principles. (2001)

5. Gruian, F.: Hard real-time scheduling using stochastic data and DVS processors. In
International Symposium on Low Power Electronic and Design. (2001)

6. Liu, Y., Mok, A.K.: An Integrated Approach for Applying Dynamic Voltage Scaling to
Hard Real-Time Systems. Proc. Ninth IEEE Real-Time and Embedded Technology and
Applications Symp.. (2003) 116-123

7. Aydin, H., Melhem, R., Mosse´, D., Mejı´a-Alvarez, P.: Power-Aware Scheduling for
Periodic Real-Time Tasks. IEEE Trans. Computers. Vol. 53, no. 5. (2004) 584-600

8. Qadi, A., Goddard, S., Farritor, S.: A Dynamic Voltage Scaling Algorithm for Sporadic
Tasks. Proc. 24th Real-Time Systems Symp.. (2003) 52-62

9. Lehoczky, J., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: exact
characterization and average case behavior. Proc. IEEE Real-Time Systems Symposium.
(1989) 166–171

10. Gruian, F., Kuchcinski, K.: LEneS: task scheduling for low-energy systems using variable
voltage processors. Proc. 2001 conference on Asia South Pacific design automation (ASP-
DAC). (2001) 449-455

11. Zhu, D., Mossé, D., Melhem, R.G.: Power-Aware Scheduling for AND/OR Graphs in
Real-Time Systems. IEEE Trans. Parallel Distrib. Syst.. Vol 15, no. 9. (2004) 849-864

12. Yun, H., Kim, J.: On energy-optimal voltage scheduling for fixed priority hard real-time
systems. Trans. Embed. Comput. Syst., Vol. 2, no. 3. (2003) 393–430

13. Dertouzos, M.L., Mok, A.K.: Multiprocessor On-Line Scheduling of Hard-Real-Time
Tasks. IEEE Trans. Software Eng.. Vol. 15, no. 12. (1989) 1497-1505

A C-Language Binding for PSL

Ping Hang Cheung and Alessandro Forin

Microsoft Research, One Microsoft Way, Redmond, WA, USA
cheung@cecs.pdx.edu, sandrof@microsoft.com

Abstract. In recent years we have seen an increase in the complexity of
embedded system design and in the difficulties of their verification. As a
result, engineers have been trying to verify the specifications at a higher
level of abstraction. In this paper we present an automated tool which
is able to perform runtime verification of a programs logical properties
asserted by the programmer. The idea is to leverage the Assertion Based
Verification language PSL, which is widely used by hardware engineers,
extending it to the software verification of C language programs. The
properties expressed in a simple subset of PSL are evaluated by the
tool during full system simulation. Like in hardware Assertion Based
Verification, the tool can handle both safety properties (absence of bad
events) and liveness properties (good events eventually happen). The
liveness property is not widely supported in existing verification tools.

Keywords: Property Specification Language, C, Assertion Based
Verification.

1 Introduction

Assertions Based Verification (ABV) is an approach that is used by hardware
design engineers to specify the functional properties of logic designs. Two popular
languages based on ABV are the Property Specification Language PSL and the
SystemVerilog Assertion system SVA [1]. PSL is now an IEEE standard P1850
[2]. PSL specifications can be used both for the design and for the verification
processes. A single language can be used first for the functional specification of
the design and later on as an input to the tools that verify the implementation.
The backbone of PSL is Temporal Logic [3], [4]. Temporal Logic can describe the
execution of systems in terms of logic formulas augmented by time sequencing
operators.

In this paper, we introduce a binding of PSL to the C programming language.
A programmer can write PSL statements about her C program and the proper-
ties are verified during execution. Our initial work has shown that the approach
is feasible; we have defined a simple subset of PSL (sPSL) and realized a few
tools with which we can perform ABV of C programs using Linear Temporal
Logic (LTL). The sPSL LTL operators are provided for describing events along
a single computation path.

sPSL is implemented using the Giano simulator [5] as the execution platform.
Giano is a dual headed hardware software simulator. It is capable of performing

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 584–591, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A C-Language Binding for PSL 585

the full system simulations of CPUs and hardware peripherals as well as the
behavioral simulation of hardware designs written in Verilog. The sPSL engine
is realized modifying an existing ARM CPU simulation module from Giano.

The rest of the paper is structured as follows. Related work in the verifica-
tion field is discussed in Section 2. Section 3 introduces the sPSL language. The
architecture of the sPSL execution engine is described in Section 4 and Sec-
tion 5 provides some simple examples. Section 6 concludes with a discussion of
improvements we have planned for further assessments of the sPSL capabilities.

2 Related Work

LTL properties can be translated into code that is added to the target program
to monitor it during execution, as with the Temporal Rover and DBRover tools
[6], [7]. Temporal Rover is a code generator which accepts source code from
Java, C, C++, Verilog or VHDL. The LTL assertions are expressed as comments
embedded in the source code. With the aid of a parser, the assertions are inserted
in the source code that is then compiled and executed.

Roşu [8] suggests re-writing techniques to evaluate LTL formulas. The exe-
cution of an instrumented program creates traces of interesting events and the
rewriter operates on such traces. Some algorithms assume the entire trace is
available for (backward) analysis, others can process each event as it arrives.
Roşus algorithms make it possible to generate very efficient monitors that can
be used by practical tools such as the Java PathExplorer (JPaX) [9].

In Design by Contract [15], a class specification is augmented with behavioral
specifications. The user (client) must agree both to the syntactic requirements and
to the behavioral requirements in order to invoke a method specified by such a
class. One instance is the Java Modeling Language (JML) [10]. JML is a behav-
ioral interface specification language for Java modules. The JML Compiler (jmlc)
compiles JML code into runtime checks of the class contracts. In [11], the jmlc
compiler is used in conjunction with an Extended Static Checker for Java version2
(ESC/Java2). In [12] this approach is used to perform verification of a full com-
piler. ESC/Java2 makes additional use of static analysis, a technique that does
not require actually executing the program for fault detection. Another instance
is Spec# [13]. The Spec# programming language is a superset of C# which pro-
vides method contracts in the form of pre-conditions and post-conditions, as well
as object invariants. The Spec# compiler provides runtime checking for method
contracts and object invariants. A Spec# static program verifier generates the log-
ical verification for Spec# programand an automated theorem prover analyzes the
verification directives to prove the programs correctness.

All of these systems insert instrumentation code into the executing program
to monitor and check events and therefore introduce some execution overhead
that can potentially modify the programs temporal behavior. This is not accept-
able for real-time programs and even a limited overhead is poorly received by
developers. In our approach the program binary is not modified in any way, the
monitoring is performed entirely by the execution engine (the Giano simulator).

586 P.H. Cheung and A. Forin

3 sPSL

Properties in the sPSL are expressed as declarations in the PSL language. In
order to validate the system we need to use verification directives vunit that
specify how/when those properties hold true. Since we are considering simulation
based verification, formal verification flavored units like assume are not currently
covered. Assume statements specify the values of input variables for use by a
formal verification tool.

3.1 Declarations

Each sPSL property declaration is introduced by an identifier for that property.
The property is then followed by an expression involving one or more operators.
Time advances monotonically along a single path, left to right through the ex-
pression. Only a subset of the PSL operators is included in sPSL, taken from
the Foundational Language (FL) subset. Valid sPSL operators are always, never,
eventually, until, before and next. Each operator belongs to an operator class.
For instance, always and never are the FL invariance operators, eventually and
until are the FL occurrence operators, before and next are the bounding oper-
ators. In order to express the liveness properties we also support the operators
eventually!, until!, before! and next!.

3.2 Operators

always - The operator always guarantees that a temporal expression will hold
true. If the expression is a global variable, always in this case means for the
entire life of the program. If the expression instead refers to local variables then
the property will be checked only while those variables are in scope, meaning for
the duration of the function call.

never - guarantees that the expression will never become true.

until - guarantees that an expression is true until a second expression becomes
true.

before - guarantees that an expression is true before a second expression becomes
true. There are two variations of this operator - before and before!. The strong
operator before! requires that the expression will eventually become true and it is
an error if this never happens. This is not an error instead for the operator before.

next - guarantees that an expression will hold true in the next execution cycle.
The existing prototype supports the use of the next and next! variants. This
operator is slightly different from the original PSL definition, which referred
to a concept of system clocks and cycle counts that is not directly applicable
to software. In sPSL the ”next execution cycle” means rather ”the next event”.
We use next to require that if left operand becomes true then in next assignment

A C-Language Binding for PSL 587

that affects any of the logic properties it will be right operand that becomes
true. The operator next! is used in the same way as PSL, to require that if left
operand becomes true then right operand will eventually become true as well.
This operator can be useful when dealing with critical sections of code where
the processor cannot be interrupted.

eventually! - guarantees that ”something good” eventually happens. If the ex-
pression left operand becomes true then there must be an execution path which
leads to right operand also becoming true sometimes in the future. It is indeed
a violation of the property if right operand never becomes true.

4 Evaluation

There are two separate components that make up our implementation, namely
the data model generator and the evaluation engine. The data model genera-
tor is responsible for processing data from the sPSL source, C source file, and
from a textual dump of the debugging information contained-in/related-to the
executable image and collect it into a single file for later use by the evaluation
engine.

The evaluation engine has two interfaces, one to the execution processor and
one to the data model. It retrieves from the execution processor such informa-
tion as memory addresses, instructions, and register contents. It uses the data
generated by the data model generator to realize the desired property checking.
Figure 1 depicts the architecture of the prototype.

Giano
Simulator

Evaluation
Engine

Data
Model

Generator

Debugging
Information

C Source

sPSL
Source

Pass/Fail

Compiler,
Linker and
Assembler

Addresses,
Memory,
Registers

Regular flow

Additional
sPSL flow

Verification
Layer

Data
Model

Fig. 1. Architecture of the Prototype

4.1 Data Model Generation

The sPSL source is processed first by a script to create one entry for each property
declared in the sPSL source file. After processing the C source file the model will

588 P.H. Cheung and A. Forin

also contain a tag for each of the variables and functions found in the C source. The
C source is compiled and the compiler is instructed to generate maximum debug-
ging information. This information is extracted into a text file by compiler tools
such as OBJDUMP or similar. The data model generator reads that information
and adds to the data model the addressees and offsets of functions and variables,
register allocation information and the values of some individual instructions. The
data model also contains the start and end addresses of the basic blocks, which are
needed to recognize the entering and exiting of the scope of local variables. If the
image is actually executed at a different load address (runtime relocation) an offset
is added to the statically identified information.

4.2 Evaluation Engine

The sPSL evaluation engine is a module that is physically part of the Giano
simulator and monitors the instruction addresses, memory references, and regis-
ters accesses during program execution. Every time a new program is launched
during execution, the runtime system notifies the Giano simulator of the pro-
gram name and the address at which it was loaded. The evaluation engine uses
the program name to look for a corresponding data model file, if it finds it, it
parses it and creates the corresponding PTree. When a specific property is live,
the engine creates and initializes an evaluation tree for that individual property
(ETree) and the monitoring task is started.

4.3 Tree Evaluation

The evaluation of the ETree is performed with a depth-first, left-first traversal.
Each branch/sub-branch corresponds up to 2 leaves. These leaves contain either
a value or an operator. We use ternary logic during the evaluation, with the
values true (T), false (F) and undefined (Z).

Let us illustrate this with an example property:
always(a = 1 next b = 1) → until (c = 1) where the node a=1 is the first node
of the property. The parent node is a next operator, we need to wait until the
next event to be able to decide whether the operator is satisfied or not, therefore
we return Z. If the next event is indeed an assignment of ”1” to the variable b
the next operator can return T. If instead the variable is ”0” an F is returned.
Either way the operator next can now return a defined value. Once the parent
node until receives a ”T” from the left-side subtree it can monitor the release
point for the right-hand subtree, namely c=1. Until the c=1 is satisfied we return
Z. Once c=1 and provided that a=1 next b=1 still hold, the until can return T
to the parent node always.

The invariance operator always cannot return a definite value until termina-
tion, which is either the exiting of the scope or program termination. The event
of its operand becoming true does have an effect though, logically the property
is satisfied and immediately re-instated. Evaluation restarts then from the initial
state. Notice that when a subtree reports an F this is not cause for failure, only
if this happens at the top of the tree. A simple counter-example is ”not (a=1)”.

A C-Language Binding for PSL 589

5 Examples

1 : int main()
2 : {
3 : UINT 32 addr1 = 1;
4 : UINT 32 addr2 = 2;
5 : UINT 32 INTR = 0;
6 : UINT 32 op = 0;
7 :
8 : send to HW (addr2, 0x0, 0x3);
9 :
10 : while(1)
11 : {
12 : INTR = TheBCTRL → GCTRL out;
13 : if(INTR == 1)
14 : {
15 : op = 5;
16 : send to HW (addr1, addr2, op);
17 : break;
18 : }
19 : }
20 : return(0);
21 : }

The partial code shown above is a real-time C program with two simple steps.
On line 8 the function call to send to HW(addr2, 0x0, 0x3) affects a certain pe-
ripheral hardware, which is expected to trigger an interrupt in return. On line
13, if INTR is 1 it means that the interrupt has indeed happened.

1 : vunit check intr(example.c :: main)
2 : property intr event =
3 : always(send to HW (addr2, 0x0, 0x3) → eventually! INTR = 1)
4 : assert intr event;

In the above code, we create a property intr event to monitor that INTR even-
tually happens. The left operand send to HW(addr2,0x0,0x3) is the insertion
point for the tree and INTR=1 is marked as release point. When the insertion
point is satisfied, the evaluation engine will monitor the release point. Before the
release point holds, the eventually! node returns a “Z”. It returns a T only once
the right operand holds. Iff the right operand does not hold until the scope exits
the property fails.

1 : int i = 0;
2 : charbuffer[10];
3 :
4 : intmain()
5 : {
6 : while(1)

590 P.H. Cheung and A. Forin

7 : {
8 : i + +;
9 : buffer[i] = 1;
10 : }
11 : return(0);
12 : }

The partial code shown above is a general purpose C program. On line 9, a
buffer overflow error will occur if the index into the buffer exceeds 10.

1 : vunit check overflow(example.c)
2 : property overflow = never((i > 10) OR (i < 0));
3 : assert overflow;

The above sPSL code shown the property ”overflow” monitors the increment
of i. The operator never holds the value ”T” if 0¡i¡10. Otherwise, ”F” is returned.

6 Conclusion and Future Work

The first prototype of sPSL shows that it is possible to use a simple subset of
the Property Specification Language PSL to perform assertion based verification
of C language programs. To our knowledge, this is the first time that PSL, an
IEEE-standard language widely used for hardware verification, has been applied
to software programs.

The approach we used, namely to use a modified full-system simulator to
execute the program, has not been used before for the verification of software
programs. The main advantage of this approach is that no modifications are
made to the executable program and no additional instrumentation code is re-
quired, thereby increasing the confidence in the verification process itself.

The prototype generates execution traces in terms of function calls and vari-
able changes that are useful to the programmer to understand the reason for
the erroneous behavior. The traces could also be used by other tools for further
analysis, such as performance analysis and assessment of execution time bound-
aries. The tool already supports real-time specification and this could be used
for performance verification as well.

The sPSL language and the evaluation engine do not depend on the particu-
lar programming language we used, they would apply just as well to any block-
structured language implemented by a stack-register architecture. It should
therefore be possible to extend sPSL to other languages like C# or even FOR-
TRAN simply by creating the corresponding programming language parser. Sim-
ilarly for a different processor like the PowerPC or the MIPS.

The current prototype does not provide support for the Sequential Extended
Regular Expressions (SERE). Within the FL operators, suffix implication and
partial logical implication will be implemented for the next prototype. The cur-
rent prototype supports only the equality operator in Boolean expressions, and
furthermore expressions can only refer to a single variable.

A C-Language Binding for PSL 591

We have made no attempt at this point to quantify and/or minimize the
overhead in execution time due to the sPSL engine. One possible extension of
this work is to attack the problem of mixed software-hardware verification. Giano
would appear to be a promising tool in this regard. [14] component based co-
verification is one project that is trying to find a unified solution to the problem.

References

1. Accellera, ”SystemVerilog.”
2. Accellera, ”IEEE P1850 PSL.”
3. Past, Present and Future: Oxford University Press, 1967.
4. ”The temporal logic of programs,” Proceedings of the 18th IEEE Symposium on

the Foundations of Computer Science (FOCS-77), pp. 46-57, 1977.
5. A. Forin, B. Neekzad, and N. L. Lynch, ”Giano: The Two-Headed System Simu-

lator,” Microsoft Research Technical Report, vol. MSR-TR-2006-130, 2006.
6. D. Drusinsky, ”The Temporal Rover and the ATG Rover,” Proceedings of SPIN’00:

SPIN Model Checking and Software Verification, vol. 1885, pp. 323-330, 2000.
7. D. Drusinsky, ”Monitoring Temporal Rules Combined with Time Series.,” Proc-

ceedings of CAV’03: Computer Aided Verification, vol. 2725, pp. 114-118, 2003.
8. G. Roşu and K. Havelund, ”Rewriting-based Techniques for Runtime Verification,”

J. of ASE, vol. 12, pp. 151-197, 2005.
9. K. Havelund and G. Roşu, ”Java PathExplorer — A runtime verification tool,”

Proceedings 6th International Symposium on Artificial Intelligence, Robotics and
Automation in Space, ISAIRAS’01, Montreal, Canada, 2001.

10. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Muller, J. Kiniry,
and P. Chalin, ”JML Reference Manual,” 2006.

11. P. Chalin and P. James, ”Cross-Verification of JML Tools: An ESC/Java2 Case
Study,” Microsoft Research Technical Report, vol. MSR-TR-2006-117,2006.

12. P. Chalin, C. Hurlin, and J. Kiniry, ”Integrating Static Checking and Interactive
Verification: Supporting Multiple Theories and Provers in Verification,” in VSTTE
2005, 2005.

13. K. R. M. L. Mike Barnett, Wolfram Schulte, ”The Spec# programming system:
An over-view,” CASSIS 2004, LNCS vol. 3362, 2004.

14. F. Xie, X. Song, H. Chung, and R. Nandi, ”Translation-based co-verification,”
3rd ACM IEEE International Conference on Formal Methods and Models for Co-
Design (MEMOCODE 2005), pp. 111-120, 2005.

15. B. Meyer, ”Object-Oriented Software Construction, Second Edition”, Prentice Hall
Professional Technical Reference, 1997.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 592–603, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Cut Sequence Set Generation for Fault Tree Analysis

Dong Liu1, Weiyan Xing2, Chunyuan Zhang1, Rui Li1, and Haiyan Li1

1 Department of Computer, National University of Defense Technology,
Changsha, Hunan 410073, China
windleaf1980@163.com

2 China Huayin Ordnance Test Center, Huayin 714200, China

Abstract: For a fault tree, especially for a dynamic fault tree, the occurrence of
top event depends on not only the combination of basic events, but also on the
occurrence order of basic events. Cut sequence is a set of basic events that fail
in a particular order that can induce top event. Cut sequence set (CSS) is the
aggregate of all cut sequences in a fault tree. The paper puts forward an
algorithm, named CSSA (CSS Algorithm), to generate the CSS of a fault tree.
CSSA uses sequential failure symbol (SFS) to describe the sequential failure
relationship between two events. And then, cut sequence can be expressed by
sequential failure expression (SFE), which is a chain of basic events connected
by SFSs. In order to get the CSS, SFS transformation is applied to static gates
and dynamic gates, the result of which is reconstructed to the standard form of
CSS according to the inference rules of SFE. At length, an example is used to
illustrate the detailed processes of the approach. CSSA provides a new
qualitative method that extends the existing fault tree analysis models.

Keywords: fault tree analysis; cut sequence set; sequential failure expression.

1 Introduction

In the field of dependability analysis, fault tree model is well accepted by reliability
engineers and researchers for its advantages of compact structure and integrated
analyzing methods. There have been many methods developed for the evaluation of
fault trees [1] [2]. With the development of computer technology, former static fault
tree analysis is not suitable for some new situations, since static fault trees can not
deal with the systems that characterize dynamic behaviors, such as sequential failure
or redundancy. Hence, dynamic fault trees, which contain some new dynamic gates,
such as FDEP (Functional Dependency), CSP (Cold Spare), PAND(Priority AND)
and SEQ (Sequence Enforcing), was put forward to analyze the systems that
characterize function dependency, redundancy, sequential failure and so on [3].

Markov model and Monte-Carlo simulation are two primary methods to analyze
dynamic fault trees [4]. If there is only a little part of dynamic fault trees containing
dynamic gates, modular solutions [5] [6] can be used to decompose dynamic fault
trees, which are widely adopted in commercial software [7] [8]. Even though the use
of modular solutions, if the subtree under top event is a large dynamic tree, we still
have to tend to Markov model, Monte-Carlo simulation or other approximate

 Cut Sequence Set Generation for Fault Tree Analysis 593

methods, and traditional methods, such as cut set and BDD (Binary Decision
Diagram) analysis, are not applicable any more. However, both Markov model and
Monte-Carlo simulation have to confront the exponential complexity of time and
space.

For a dynamic fault tree, the occurrence of top event relies on not only the
combination of basic events (namely cut set), but also on the occurrence order of
basic events. The dynamic behaviors such as sequential failure bring the difficulty to
analyze dynamic fault trees.

[9] is the first one that analyzed the sequential logic of PAND gate, where Fussell
et al. provided a quantitive method for PAND gate with no repair mechanism.

Tang et al. introduced sequential failure to the traditional minimal cut set for
dynamic fault tree analysis, and provided the concept of minimal cut sequence [10].
Minimal cut sequence is the minimal failure sequence that causes the occurrence of
the top event in a dynamic fault tree. In the generation of minimal cut sequence,
dynamic gates are replaced with the static gates corresponding to their logic
constraints, firstly; then, minimal cut set of the new static fault tree is generated using
ZBDD (Zero-suppressed BDD) algorithm [11]; finally, each minimal cut set is
expanded to minimal cut sequence by considering the timing constraints. However,
[10] does not provide the detailed processes that indicate how to expand minimal cut
set to minimal cut sequence.

Assaf et al. provided a method to diagnose failed system using diagnostic decision
tree (DDT) [12] [13]. DDT is created based on minimal cut set and component
sensitivity. If DDT method is used to diagnose dynamic system, it has to construct the
minimal cut sequence of dynamic fault trees.

Besides the above methods, Distefano et al. introduced a new approach to
modeling the system reliability, i.e., dynamic reliability block diagrams, DRBD [14],
attempting to offer an effective and flexible solution to dynamics, dependencies,
redundancy and load sharing. Boudali et al. presented a Bayesian network approach to
solve dynamic fault trees, and has applied the method to the Galileo tool [15].

From the above investigation, we figure that cut sequence provides a powerful
modeling to express the dynamic behavior of components in a system. Therefore, it is
an applicable way to analyze cut sequence for dynamic fault trees. This paper focuses
on the generation of cut sequence and cut sequence set (CSS), the aggregate of cut
sequences, to provide a new method to study the reliability of dynamic system.

Section 2 of this paper provides the background and assumptions of cut sequence.
Section 3 presents an integrated method to generate CSS. In section 4, an example is
used to illustrate the processes of our method. And the conclusion is made in section 5.

2 Background and Assumptions

Using dynamic gates, dynamic fault trees attain the ability to describe dynamic
systems in a more feasible and flexible way. The top event of dynamic fault trees not
only depends on the combination of basic events (namely cut set), but also on the
failure sequence of basic events. Rauzy et al. provided an integrated algorithm that
generates the minimal cut set of static fault trees using ZBDD in [11]. And Tang et al.
expended the concept of minimal cut set for static fault trees on the base of Rauzy’s

594 D. Liu et al.

research, and provided the concept of minimal cut sequence for dynamic fault trees.
Cut sequence is a basic event sequence that can result in the occurrence of top event
in a dynamic fault tree, whereas cut set does not consider the sequential failure
relation among basic events. For example, cut sequence {A->B} means that top event
will occur if basic event A fails before event B; otherwise, if B fails before A, top
event will not occur.

In this paper, we use the following assumptions for a system:

• The failure time of components is random, and components are s-independent;
• There is no common cause failure;
• Components or system can not be repaired;

3 Generation of Cut Sequence Set

3.1 Cut Sequence Set

Since top event has a close relation to the sequential failure of basic events, it should
be described in a manner that is composed of basic events and their sequential failure
relation. Thus, in this paper, we define a new symbol, sequential failure symbol (SFS)
“→” to express the failure sequence of events (the events need not to be basic events).

SFS connects two events, which indicates that the left event fails before the right
event. SFS and its two events constitute sequential failure expression, SFE, such as
A→B, where A and B may be basic events. Several events can be chained by SFS. For
example, A→B→C indicates that A, B and C fail according to their positions in the
expression, namely, A fails first, B fails next and C fails last.

Using SFS, top event of dynamic fault trees can be expressed by SFEs, i.e. cut
sequences. And all the cut sequences of a dynamic fault tree constitute the cut
sequence set, CSS. If there are not less than two cut sequences, CSS can be expressed
by the OR conjunction of some SFEs.

In fact, cut set of static fault trees can also be translated into CSS. For example, for
cut set {AB}, its corresponding CSS is {(A→B)∪(B→A)}. Therefore, in this paper,
we will integrate cut set of static fault trees and CSS of dynamic fault trees, and use
CSS to express the top event of general fault trees.

Several SFEs can be assembled in a form that contains OR or AND gates, such as
CSS = {(A→(B∪C))∪(C→(A∪B))}. We call this type of anomalous form as the
elementary form of CSS. In order to clarify the expression of CSS, we present some
other concepts about CSS.

• Standard SFE (SSFE): the SFE that only contains “¬”, “→” and basic events,
where logic NOT symbol “¬” only acts on a basic event.

• Standard Cut Sequence (SCS): the cut sequence that is expressed by a SSFE.
• Standard CSS (SCSS): the CSS that is expressed by SCSs.

SCSS reflects all the sequential failure modes that incur the occurrence of top
event. In order to generate the CSS that is composed of SFEs, we should decompose
static gates and dynamic gates into SFEs. We call the processes of decomposition as
SFS transformation.

 Cut Sequence Set Generation for Fault Tree Analysis 595

3.2 SFS Transformation of Static Gates and Dynamic Gates

3.2.1 AND Gate
For an AND gate that has n inputs, n! SFEs can be obtained. For example, if the
structure function of a fault tree is Ф = ABC, it has 3! = 6 SFEs, namely

)}()()(

)()(){(

ABCBACACB

CABBCACBACSS

→→∪→→∪→→
∪→→∪→→∪→→= (1)

Generally, the CSS of a fault tree has more than one cut sequence and is expressed
by the OR-structure of several SFEs, so there is no need to transform OR gate.
Furthermore, since k/n gate can be reconstructed by AND and OR gates, we will not
consider the SFS transformation of k/n gate.

Since the SFS transformation of AND gate will generate a great deal of SFEs, and
AND gate has no restraints on the sequence of its inputs, we can sometimes remain ∩
in SFE and neglect the decomposition of AND gate. We call the CSS that contains ∩
as the simplified form of CSS.

3.2.2 PAND Gate
PAND gate is an extension of AND gate. Its input events must occur in a specific
order. For example, if a PAND gate has two inputs, A and B, the gate output is true if:

• Both A and B have occurred, and
• A occurred before B.

If A or B has not occurred, or if B occurred before A, PAND gate does not fire.
Since we assume that there is no common cause failure, the output of PAND gate
only relates to the occurrence sequence of inputs. In the SFS transformation of PAND
gate, we use SFSs to connect its inputs according to their positions. For example, if a
fault tree has the structure function Ф = A PAND B PAND C, the CSS of it will be
CSS = {A→B→C}.

3.2.3 FDEP Gate
FDEP gate has tree types of events:

• A trigger event: it is either a basic event or the output of another gate in the tree.
• A non-dependent output: it reflects the status of the trigger event.
• One or more dependent events: they functionally rely on the trigger event, which

means that they will become inaccessible or unusable if the trigger event occurs.

FDEP gate reflects the occurrence relation among inner events in a fault tree, but,
in fact, it is equivalent to a combination of other logic gates, just like k/n gate. For
example, in the dynamic fault tree that shown in Fig. 1(a), A is the trigger event, and
B is a dependent event. The failure of A will result in the failure of B, and the top
event will occur if both B and C fail. The fault tree can be transformed to the fault tree
shown in Fig. 1(b), where the top event will occur if both A and C, or both B and C
fail. Then, the CSS of the fault tree is CSS = {(A→C)∪(C→A)∪(C→B)∪(B→C)}.

596 D. Liu et al.

In the SFS transformation of FDEP gate, the gate should be transformed to its
equivalent static gates firstly. Then, the SFS transformation of the static gates is used
to get the CSS of the new generated fault tree. The following describes the detailed
processes that transform FDEP gate into its equivalent static gates.

1. The trigger event is denoted by E1;
2. Suppose that E1 has occurred. In this condition, all dependent events become

inaccessible and should be neglected. Analyze the residual fault tree, and the result
is denoted by E2;

3. Suppose that E1 do not occur. Analyze the residual fault tree in the new condition,
and the result is denoted by E3;

4. Then, the equivalent fault tree is: (E1∩E2)∪E3.

Top event

A B C

FDEP

(a) (b)

Top event

A C B

)}()(

)(){(

CBBC

ACCACSS

→∪→
∪→∪→=

Fig. 1. The processes that generate the CSS of FDEP gate

3.2.4 CSP Gate
CSP gate has a primary input and one or more alternate inputs. All inputs are basic
events. The primary input is initially powered on, and the alternate input(s) specify
the components that are used as the cold spare unit. The output of CSP gate becomes
true if all inputs occur. The basic event representing the cold spare unit has inputs to
more than one CSP gates depending on which of the primary units fails first.

Concept 1: BA
0

BA
0 has a left superscript 0 and a left subscript A. It means that B is a cold spare unit

of A, and that B starts to work after A fails. The failure rate of B is zero before A fails.

Since the failure rate of cold spare units is zero, we can use BA A
0→ to show the

failure relation between A and B, where B is a cold spare unit of A. Notice that,

BA
0 must occur after A fails.

Concept 2: A>>B
The symbol >> means that A fails before B.

>> is different from →. For A>>B, there maybe exist some other events between A
and B. However, A→B means that it is B that fails just after A, and that there is no

event between A and B. Thereby, if B is a cold spare unit of A, there must be A>> BA
0 .

 Cut Sequence Set Generation for Fault Tree Analysis 597

The SFS transformation of CSP gate is described below:

1. The primary unit of CSP gate is denoted by E1;
2. Suppose that E1 has occurred. The residual fault tree is analyzed in this condition,

and the result is denoted by E2;
3. If there are more than one alternate, 1) - 2) are executed recursively;
4. Then, a part of the CSS is CSS1 = {E1→E2};
5. If there exist alternates that are shared by several CSP gates, 1) - 4) are executed

recursively for each CSP gate. The result are denoted by CSS2, CSS3, …, CSSn
respectively;

6. Then, the final result of SFS transformation is CSS = {CSS1∪CSS2∪…∪CSSn}.
An example is used in Fig. 2 to show the processes of getting the CSS of CSP
gates, where B and C are cold spare units that are shared by A and D.

CSP

Top event

A

B, C

CSP

D

))]}(())([({

))]}(())([({

))]}(())([({

))]}(())([({

0000

0000

0000

0000

CBAABCD

BCAACBD

CBDDBCA

BCDDCBACSS

DACD

DABD

ADCA

ADBA

∪→∪∪→→

∪∪→∪∪→→

∪∪→∪∪→→

∪∪→∪∪→→=

Fig. 2. The processes that generate the CSS of CSP gates

3.2.5 WSP Gate
WSP gate is similar to CSP gate except that the alternate units in a WSP gate can fail
independently before primary active unit. In order to show this kind of relation, we
will define additional two concepts.

Concept 3: BA
α , (0<α<1)

BA
α has a left superscript α and a left subscript A. It means that B is a warm spare unit

of A, and that B goes into operation state after A fails. The dormancy factor of B is α,
which means that the failure rate of B is α times to its normal failure rate before A
fails.

Concept 4: Bα , (0<α<1)

Bα has only one left superscript. It means that B fails independently and its
dormancy factor is α before B fails.

For events A and B, BA
α can not occur after Aβ , where β is the dormancy factor

of A. The legitimate relationship is A>> BA
α or AC

β >> BA
α , where C is the event that

leads A to start to work.

598 D. Liu et al.

Suppose that the primary input of a WSP gate is E, and x1, x2, …, xn are the
alternate units, there are more than one failure modes of the WSP gate, since xi
(1≤i≤n) can fail independently in warm standby state or fail in operation state. For
example, for a WSP gate that has a primary input E and two alternate inputs, x1 and
x2, if x1 fails before x2, all the possible failure modes are:

21
2

1

1 xxE xx

xE

αα →→ (2)

21
21 xxE xx

E

αα →→ (3)

We designed the function WSP-AddScript(E, X) to generate the SFE like formula
(2), where X={x1, x2, …, xn} are the alternate units of E, and x1, x2, …, xn have the
time relationship x1>>x2>>…>>xn. WSP-AddScript(E, X) adds left superscripts and

left subscripts for xi, and the result is { 1
1 xx

E

α
, 2

2

1
xx

x

α
, …, nx xnx

n

α
1−

}.

We designed the function WSP-FindIndependent(E, X) to find all the possible
failures modes that contain independent failures (the SFEs like formula (3)). The
function is described below:

//there are i events failed independently in {x1, x2, …,
xn}, where 1<=i<n.

for (i=1; i<n; i++) {

 Choose i events in {x1, x2, …, xn},
 and denote the chosen events as {x1’, x2’, …, xn’}.
 Add left superscripts for these events,

 the result of which is { '1
'1 xxα

, '2
'2 xxα

, …, ''

ixixα
}.

 The left events are denoted by Y={x1”, x2”, …, xn-i-1”}.
 Call WSP-AddScript(E, Y).

}

The SFS transformation of WSP gate is described below:

1. The primary unit of WSP gate is denoted by E;
2. The WSP gate is considered to be a CSP gate. The SFS transformation of CSP gate

is used to generate a set of SFEs. In all the generated SFEs, if event xi has a left
superscript 0, the superscript is changed to the dormancy factor. The result of this
step is denoted by CSS1.

3. The WSP gate is considered to be an AND gate. The SFS transformation of AND
gate is used to generate a set of SFEs. In all the generated SFEs, if one SFE has the
form like E>>x1>>x2…>>xn, call WSP-FindIndependent(E, X), where X={ x1,
x2, …, xn}. The result of this step is denoted by CSS2.

4. The final result of SFS transformation is CSS = {CSS1∪CSS2}.

An example is used in Fig. 3 to show the processes that generate the CSS of WSP
gates.

 Cut Sequence Set Generation for Fault Tree Analysis 599

Top event

A

B

D

C

}

{2

DBCBDC

DCBCDB

BCDCBD

ABCBAC

ACBCAB

BCACBACSS

D

D

DD

A

A

AA

→→∪→→

∪→→∪→→

∪→→∪→→
∪→→∪→→

∪→→∪→→

∪→→∪→→=

αααα

αααα

αααα

αααα

αααα

αααα

))]}(())([({

))]}(())([({

))]}(())([({

))]}(())([({1

CBAABCD

BCAACBD

CBDDBCA

BCDDCBACSS

DACD

DABD

ADCA

ADBA

αααα

αααα

αααα

αααα

∪→∪∪→→

∪∪→∪∪→→

∪∪→∪∪→→
∪∪→∪∪→→=

Step 4

CSS=CSS1∪ CSS2

Step 3

Step 2

CSP

Top event

A

B, C

CSP

D

Top event

A

B, C

D

WSP WSP

Fig. 3. The processes that generate the CSS of WSP gates

3.2.6 SEQ Gate
SEQ gate forces events to occur in a particular order. The output of SEQ gate does not
occur until all its inputs has occurred in the left-to-right order. All the inputs, except
the first one, of SEQ gate must be basic events, so, if the first input is a basic event,
SEQ gate is the same to CSP gate. Therefore, in this subsection, we only consider the
condition where the first input is not a basic input.

Let E, x1, x2, …, and xn be the inputs of SEQ gate, where xi (1≤i≤n) is a basic event
and E is not a basic event. E is the first input, and x1, x2, …, xn are the 2nd, 3rd, ..,
(n+1)th input, respectively. Then, the failure process of x1, x2, …, xn is almost the same
to that of the alternates in CSP gate, except that the time when x1 goes into operation
state depends on the last basic event in E. For example, if the inputs of a SEQ gate are
E, x1, x2 respectively, where E={y1∩y2} can be rewritten to the standard form
E={(y1→y2)∪(y2→y1)}, the final SFS transformation result of the SEQ gate will be

)()(2
0

1
0

122
0

1
0

21 1112
xxyyxxyy xyxy →→→∪→→→ (4)

3.3 Inference Rules of SFE

The elementary form of CSS is the combination of several SFEs. In order to get the
final SCSS from the elementary form, we will use some inference rules of SFE, which
are described in table 1 and table 2.

Similar expressions can also be deduced from the above inferences. The inferences
can be proved according to the occurrence relations among events. For example,
x→(y∪z) means that x occurs before y or z, which has the same meaning to

600 D. Liu et al.

Table 1. The inference rules of normal SFEs

x→(y∪z) (x→y)∪(x→z)
x→(y∩z) (x→y)∩(x→z)
(x∪y)→z (x→z)∪(y→z)

Distributive
Law

(x∩y)→z (x→z)∩(y→z)
Associative

Law
x→(y→z) (x→y)→z x→y→z

x→x or (x→y)∪x X
(x→y)∪y Y

Absorptive
Law

(x→y)∩x or (x→y)∩y x→y

OR
distributive

law

(x1→x2→…→xm)∩
(y1→y2→…→yn)

where m ≤ n, and xi≠yj
(1≤i≤m，1≤j≤n)

(x1→x2…→xm
→y1→y2…→yn)∪(x1→x2…→x

m-1
→y1→xm→y2…→yn)∪

…
(y1→y2…→yn→x1→x2…→xm)

Illegal SFEs x→y1→y2→…→yn→x, x→¬x

Table 2. The inference rules of SFEs of CSP and WSP gates

Inference rules bout CSP gate
yyx x ∪>>)(0 or

yyx x ∩>>)(0
 yx x

0>>

yyx x ∪>>)(α yyx x
αα ∪>>)(

Inference rules bout WSP gate
yyx x ∩>>)(α)(yx x

α>>

Illegal SFEs xyx >>0 , xyx >>α , zy zy

xx
αα

11
>>

(x→y)∪(x→z). OR distributive law is used to decompose ∩ and get the final SCSS.
Absorptive law is used to simplify SFEs in CSS.

In the real world, the SFEs, like x→y1→y2→…→yn→x, x→¬x and so on, do not
exist, so we should cancel these illegal SFEs.

3.4 CSS Generation Algorithm

According to the above study, we summarize the CSS generation algorithm in this
subsection. The flow chart of the algorithm, named CSSA, is show in Fig. 4.

In order to get the CSS of a fault tree, static gates and dynamic gates should be
transformed to SFEs firstly. The result is the elementary form of CSS. Then, inference
rules of SFEs are used to get the SCSS of the fault tree.

In CSS, a cut sequence is similar to a failure chain in Markov model. It is known
that Markov model will confront the problem of combination explosion with the
increment of events. It is the same to CSSA. But there are differences between two
models. Cut sequence does not contain the events that do not influence the occurrence

 Cut Sequence Set Generation for Fault Tree Analysis 601

of top event, and the events can either be in operation state or in failed state, so, in this
point, it is similar to ZBDD [11]. Furthermore, the simplified form of CSS, containing
∩, is equivalent to the modular approach of Markov model, so it has less computation
complex to figure out the CSS of a fault tree.

SFS

SFE

Inference
rules of SFEs

Static gates and
dynamic gates

Elementary form of
CSS SCSS

Fig. 4. 0Flow chart of CSSA

4 Case Study

In this section, we will present the detailed processes about the generation of CSS
using a case system. The system is referred in [6], and named HDS, Hypothetical
Dynamic System.

HDS has four components, namely A, B, C and S. We would like to suppose that A,
B and C are power supports of an equipment, and S is a switch that controls C. C is a
cold spare unit that will take over A or B depending on which one fails first. If S fails
before A or B, it will affect C that C can not switch into the system and thus can be
thought failed. However, if S fails after it switches C into the system, it will no longer
influence C. HDS requires at least two power supplies for operation. The fault tree of
HDS is shown in Fig.5, where FDEP gate indicates that its trigger event, the output of
a PAND gate, will suspend C. The output of PAND gate becomes true if S fails before
A or B.

1. SFS transformation of dynamic gates
HDS contains dynamic gates, i.e. CSP, PAND and FDEP gates, and two static OR

gates. The SFS transformation of dynamic gates is listed below:
• CSP gate

Two CSP gates are transformed into))}(())({(00
1 ACBCBAE BA ∪→∪∪→= .

• PAND gate
The PAND gate can be transformed into)}({2 BASE ∪→= .

• FDEP gate
The FDEP gate can be transformed into)}({ 23 BAEE ∪∩= .

2. Generate the elementary form of CSS
The elementary form of CSS is

))}())((()))(())({((

}{
00

31

BABASACBCBA

EECSS

BA ∪∩∪→∪∪→∪∪→=

∪=

(5)

602 D. Liu et al.

3. Get the SCSS

SCSS =
))}())(((

)))(())({((00

BABAS

ACBCBA BA

∪∩∪→
∪∪→∪∪→

 =
))}())((()(

)()(){(00

BABASAB

CBCABA BA

∪∩∪→∪→
∪→∪→∪→ distributive law

 =
))}(()(

)()(){(00

BASAB

CBCABA BA

∪→∪→
∪→∪→∪→ absorptive law

 =
)}()()(

)()(){(00

BSASAB

CBCABA BA

→∪→∪→
∪→∪→∪→ distributive law

The SCSS of HDS is

)}()()(

)()(){(00

BSASAB

CBCABASCSS BA

→∪→∪→
∪→∪→∪→= (6)

From the above SCSS, we can figure out all the possible failure modes of HDS: A
fails before B, or A fails before C, or B fails before C, or B fails before A, or S fails
before A, or S fails before B.

 Top event

FDEPCSP CSP

A

C

B

S

A B

C

E1

E2

E3

Fig. 5. The fault tree of HDS

5 Conclusion

This paper presents a new method to analyze fault trees using cut sequence set. The
method is a new qualitative way that extends the existing fault tree analysis models.

 Cut Sequence Set Generation for Fault Tree Analysis 603

Based on the generation of CSS, further quantitive analysis can be done to get the
occurrence probability of top event in a fault tree.

Acknowledgements. This work was supported by National Natural Science
Foundation of China (No. 60573103).

References

1. Coudert O, Madre J. C.: Fault tree analysis: 1020 prime implicants and beyond. Reliability
and Maintainability Symposium, (1993) 240-245

2. Amari, S. V., Akers, J. B.: Reliability analysis of large fault trees using the Vesely failure
rate. RAMS'04, (2004) 391-396

3. Dugan, J. B., Bavuso, S., and Boyd, M.: Dynamic fault tree models for fault tolerant
computer systems. IEEE Transactions on Reliability, vol.41, (1992) 363-377

4. Manian, R., Coppit, D. W., Sullivan, K. J., et al.: Bridging the gap between systems and
dynamic fault tree models. In Annual Reliability and Maintainability Symposium 1999
Proceedings, Washington, DC, USA, (1999) 105-111

5. Gulati, R., Dugan, J. B.: A Modular Approach for Analyzing Static and Dynamic Fault
Trees. Philadelphia: RAMS’97, January, (1997) 57-63

6. Ou Yong, Dugan, J. B.: Modular solution of dynamic multi-phase systems. IEEE
Transactions on Reliability, vol.53, (2004) 499–508

7. Joanne Bechta Dugan, Bharath Venkataraman, and Rohit Gulati: DIFTree: A software
package for the analysis of dynamic fault tree models. RAMS’97, Philadelphia, PA,
(1997) 13-16

8. Kevin J. Sullivan, Joanne Bechta Dugan, and David Coppit: The Galileo fault tree analysis
tool. In Proceedings of the 29th Annual International Symposium on Fault-Tolerant
Computing, Madison, Wisconsin, (1999) 232-235

9. Fussell, J.B., Aber, E.F., Rahl, R.G.: On the quantitative analysis of priority-AND failure
logic. IEEE Transactions on Reliability, (1976) 324–326

10. Tang Zhihua, Dugan, J. B.: Minimal Cut Set/Sequence Generation for Dynamic Fault
Trees. In Annual Reliability and Maintainability Symposium 2004 Proceedings, LA,
(2004)

11. Rauzy A.: Mathematical foundations of minimal cut sets. IEEE Transactions on
Reliability, vol.50, (2001) 389-396

12. Assaf T., Dugan, J. B.: Diagnostic Expert Systems from Dynamic Fault Trees.
Proceedings of 2004 Annual Reliability and Maintainability Symposium, LA, (2004)

13. Assaf T. and Dugan, J. B.: Automatic generation of Diagnostic Expert Systems from Fault
Trees. RAMS’03, Tampa, FL, (2003)

14. Distefano S., Xing Liudong. A New Approach to Modeling the System Reliability:
Dynamic Reliability Block Diagrams. RAMS '06, (2006) 189-195

15. Boudali H., Dugan, J. B.: A new bayesian network approach to solve dynamic fault trees.
RAMS'05, (2005) 451-456

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 604–614, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Multilevel Pattern Matching Architecture for Network
Intrusion Detection and Prevention System

Tian Song, Zhizhong Tang, and Dongsheng Wang

Department of Computer Science and Technology
Tsinghua University, Beijing, P.R. China

songt02@mails.tsinghua.edu.cn,
{tzz-dcs,wds}@tsinghua.edu.cn

Abstract. Pattern matching is one of the most performance critical components
in network intrusion detection and prevention system, which needs to be accel-
erated by carefully designed architectures. In this paper, we present a highly
parameterized multilevel pattern matching architecture (MPM), which is im-
plemented on FPGA by exploiting redundant resources among patterns for less
chip area. In practice, MPM can be partitioned to several pipelines for high fre-
quency. This paper also presents a pattern set compiler that can generate RTL
codes of MPM with the given pattern set and predefined parameters. One MPM
architecture is generated by our compiler based on Snort rules on Xilinx FPGA.
The results show that MPM can achieve 4.3Gbps throughput with only 0.22
slices per character, about one half chip area than the most area-efficient archi-
tecture in literature. MPM can be parameterized potential for more than 100
Gbps throughput.

1 Introduction

With the development of networking applications, network security becomes more
and more important against a larger number of system hacks, worms, viruses and et
al. To protect computer and network from these attacks, applications of network secu-
rity require much more efficient inspections on the payload of packets. Network In-
trusion detection and prevention systems (NIDS/NIPS) are well-suited to this purpose
not only for packet header checking, but also for packet payload scanning.

The widely used NIDS/NIPS are misused based, which scan every incoming byte
to look for patterns that would indicate intrusions. In practice, there are thousands of
patterns with various formats and it is hard for software-based systems to keep up
with gigabit line rate. The Snort system [1], for example, can handle link rates only up
to 100Mbps under normal traffic conditions and worst case performance is even less.
The software solutions can not meet the needs of modern network applications.

At the same time, experimental results on Snort show that up to 80% of total proc-
essing is due to pattern matching, which is the most computationally intensive parts
and the performance bottleneck.[3] Therefore, seeking for hardware-based solutions,
especially using FPGA for pattern matching is a better way to increase performance
of related systems for gigabit rate speed.

 MPM Architecture for Network Intrusion Detection and Prevention System 605

Besides NIDS/NIPS, other systems based on the payload checking require pattern
matching architecture. These systems include spam filter, content filter, anti-virus
systems, uniform threat management (UTM) and et al.

FPGAs are flexible, reconfigurable with high frequency. They can be programmed
for fast pattern matching by taking advantages of their internal logics and on-chip
memory. In this paper, we take advantage of FPGAs and design a highly parameter-
ized pattern matching architecture, named MPM (multilevel pattern matching).

The remainder of this paper is organized as follows. Section 2 provides an over-
view of related works on pattern matching architecture. Section 3 begins our method
by giving symbols and definitions used in this paper. Then our multilevel pattern
matching architecture is proposed in details in section 4. In section 5, the parameter-
ized pattern set compiler which can generate RTL code from parameters and given
pattern set is presented. The example MPM architecture is generated and results are
shown in section 6. Finally some conclusions are drawn.

2 Related Works

Pattern matching is not a new issue to be focused in network security. The traditional
method is to optimize algorithms for higher efficiency. New method based on hard-
ware design is proposed from 2001. All the related works can be classified to two
categories: the ones based on FPGA and others based on ASIC (application specific
integrated circuit) [16,17].

The difference between the two categories is the method to store the pattern set.
ASIC designs store pattern set in the memory (RAM or CAM) with proper format,
such as DFA model, while FPGA designs convert pattern set to logics and present
them inside FPGA. Although some ASIC designs may use FPGAs as the prototype,
we classify them into the category of ASIC.

In this paper, we mainly focus on the architectures based on FPGA, which convert
pattern set to logics. This model can take advantage of high parallelism and distrib-
uted internal memory of FPGA.

S.Dharmapurikar presented a multiple-pattern matching solution by using the algo-
rithm of parallel bloom filters [4]. The proposed scheme builds a bloom filter for each
possible pattern length. This could conquer parallelism limits in some virus databases
because pattern lengths may vary from tens to thousands of bytes.

I. Sourdis [7] proposed a pattern matching architecture on FPGA using the idea of
decoding. It can achieve area efficient by using character pre-decoding CAM and
efficient shift register implementation. At the same time, it can achieve high operating
frequencies by using fine grain pipelining and decoupling the data distribution net-
work from the processing components.

Later Christopher R. Clark and David E. Schimmel [8] present an efficient and
scalable FPGA design scheme for pattern matching at network speed from 1 Gbps to
100 Gbps and beyond. It uses multi-character decoder NFA technique to produce
high-performance circuits over a wide range of pattern set sizes.

606 T. Song, Z. Tang, and D. Wang

Peter Sutton[10] introduces the idea of partial character decoding in which the char-
acter matching units are shared so that the number of signals needed to be routed is
reduced.

Tian Song [15] furthers the research by proposing a select character decoding
(SCD) scheme, which results in the most area efficient.

There are also several pattern matching architectures based on NFA.[5-15]. For ex-
ample, Sidhu and Prasanna mapped NFA for regular expression onto FPGA to im-
plement fast pattern matching [5]. In this paper, our MPM architecture will continue
the research of the same topic and improve the performance a lot.

3 Some Definitions of Pattern Set

Rules are the essential elements in network intrusion detection and prevention systems
(NIDS/NIPS). Each rule consists of rule header and body. Patterns are part of rule
body, which are matched to discover the malicious codes.

In this section, some symbols and definitions of pattern and pattern related concep-
tions are addressed, which may be used as the basis of our highly parameterized multi-
level pattern match architecture throughout this paper.

Definition 1. Pattern is represented as a vector, signed as p=(c1c2" cl), where l is the
length and ci (i=1,2," ,l) are the corresponding characters.

Definition 2. Pattern set includes all patterns existed in the rules, signed as Pn, in
which n is the number of elements in the pattern set.

Definition 3. Length of pattern set is defined as the maximal length of all patterns in
Pn, signed as lmax, and the corresponding pattern is signed as pmax.

Characters can be explained as any width of binary format in NIDS. For example,
the character ci with 8 bit width can be represented as two characters c1

i and c2
i with 4

bit width each. Here we give a definition for this circumstance.

Definition 4. Width of Characters is defined as the number of bits to represent each
character under some understanding, signed as WoC.

In this paper, the default value of WoC is 8 bit except specific explanation.

Definition 5. Full alphabet (fA) is defined as the set of all possible characters with
some WoC, signed as ∑WoC. ∑8 is signed as ∑ for simplification.

Definition 6. Alphabet of pattern set (Aps) includes all the characters existing in pat-
tern set Pn, signed as ∑P. To each pattern pi=(ci1ci2" cil) ∈Pn, there is cij∈∑P.

Definition 7. Alphabet of vertical left alignment (Avla) is constructed by vertical ar-
rangement of all the patterns in the set of Pn with the manner of left alignment, as
figure 1 shows.

Alphabets of vertical left alignment are the sets of characters in columns of figure 1.
For example, ∑j (j=1,2, " ,lmax) stands for the set of characters in jth column. For a
given Pn, the number of alphabets of vertical left alignment equals with the length of Pn
(lmax). Obviously, ∑P=∑1∪∑2∪"∪∑l

max.

 MPM Architecture for Network Intrusion Detection and Prevention System 607

∑∑∑
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

max

max

2

1

21

11

21

22221

11211

max

2

1

max21

l

nlnn

jljj

l

l

n

j

nccc

ccc

ccc

ccc

p

p

p

p

l

"
"

$#%##
"""
%%%##

""
"

#

#

"""

Fig. 1. The construction of Alphabet of Ver-
tical left alignment

Fig. 2. Overview of multilevel pattern match-
ing architecture

4 Multilevel Pattern Matching Architecture

4.1 Our Ideas

For pattern matching architecture on FPGA, the most important issue is to minimize
the chip area and to maximize the matching speed. In this paper, a parameterized mul-
tilevel pattern match architecture (MPM) is proposed. The methods of MPM are to
reduce the chip area by partitioning the whole architecture to several parts and reusing
the resources within each part. Our idea is a kind of pattern set based implementation
that exploits common resources within the whole pattern set.

To achieve better performance for hardware implementation, we choose an easy al-
gorithm for MPM, named brute force. There are several algorithms for pattern match-
ing or string matching, such as Boyer-Moore [18], Knuth-Morris-Pratt (KMP) [19],
Aho-Corasick [20], et al. Some are very efficient in the view of mathematics. How-
ever, for hardware implementation, the easy and elegant algorithm is preferred.

MPM consists of five levels: shift level (SL), comparison level (CL), temporary re-
sult level (TL), pattern level (PL) and matching level (ML), as figure 2 shows. The
detail structures of these five levels are mentioned in the next section. It should note
that the partition of different levels is not original used for more pipelines, though it
can assist the construction of pipelining for higher frequency.

4.2 The Five Levels

Shift level (SL) is the first level of MPM. This level fetches the payload from the pre-
vious component into shift registers and shifts left sh bytes every cycle. To transfer
characters to the next level (comparison level), shift registers have a comparison win-
dow with w bytes, as figure 3 shows. The two parameters of sh and w are used to de-
fine the structure of this level.

Comparison level (CL) receives inputs from SL by using comparison window. For
each byte in the comparison window, there is a suit of comparison logic in CL corre-
spondingly. These logics will determine (decode) what the characters in comparison
window are and output spatial arranged physical signals to identify characters in each
place of comparison window.

608 T. Song, Z. Tang, and D. Wang

Fig. 3. Details of shift level in MPM Fig. 4. CL based on fA in MPM

Figure 4 shows the details of comparison level based on full alphabet. Full alphabet
(fA) logic has WoC bit input and 2WoC bit output.

The fA Logic is implemented with 256 comparison units. Each comparison unit can
match one definite character. The fA logic is the same as a 8 bit width decoder, which
is widely used in pattern match architectures [6-10,15].

With full alphabet logic, CL can implement comparison for any pattern set. How-
ever, this kind of architecture consumes much more comparison units and increases
chip area and energy, because some of the characters may be never uses in Pn. If re-
configurable hardware is considered, we can relate CL with pattern set and condense
the architecture by using alphabet of pattern set (Aps) for saving chip area and energy,
as figure 5 shows. The dark areas stand for the cancellation from full alphabet logic.

The chip area of CL based on Aps can represent as follows:

PAps CmpUnitAreaCL w Area= × ∑ × (1)

Aps based CL can result less chip area than the fA based one. However, it is not the
best one since there are still some redundant comparison units. The redundancy comes
from the sameness of all the w suits of comparison units corresponding to the compari-
son window. For example, suppose that MPM shifts left one byte each cycle and the
first character of all the patterns will never be “A” but the other characters may be “A”.
That means, “A” is in the alphabet of pattern set (Aps), while there will be never used
for the comparison unit of “A” in the first suit of comparison units.

Fig. 5. Comparison level based on alphabet of
pattern set in MPM

Fig. 6. Comparison level based on alphabet of
vertical left alignment

To further condense the chip area of MPM, the sameness of all suits of comparison
units should be modified first. We relate each character in comparison window with a
separate suit of comparison units, signed as ()(1,2, ,)j j w∑ = " . That is, the jth
character in comparison window is related with the suits of comparison units based
on ()j∑ , as figure 6.

In figure 6, we face the problem how to calculate the alphabets of ∑(j). In this paper,
we use the method of selected character decoding based on definition 7, named SCD,

 MPM Architecture for Network Intrusion Detection and Prevention System 609

to do the calculation. The details of SCD are discussed in [15]. In this paper, only con-
clusions are given. The alphabets of ∑(j) is as equation 2.

1 2

1 1

1 2 1

1

() 1

1

j

j j j sh

j sh j sh w sh

j sh

j sh j w sh

w sh j w
− − +

− + − + − +

⎧ ∑ ∑ ∑ ≤ ≤
⎪∑ = ∑ ∑ ∑ < ≤ − +⎨
⎪∑ ∑ ∑ − + < ≤⎩

∪ ∪"∪
∪ ∪"∪
∪ ∪"∪

 (2)

Based on the figure 6 and equation 2, the chip area of CL based on Avla can repre-
sent as follows:

1

()
w

Avla CmpUnit
j

AreaCL j Area
=

= ∑ ×∑ (3)

Temporary result level is used for storing comparison results of comparison level.
It can save the results of current leftmost sh characters in comparison window and the
results of previous dpTL×sh characters. At the same time other comparison results from
the comparison level are directly sent to next level, as figure 7 shows.

dpTL is the depth of the registers, and the value of upper stage registers can be
passed to the near lower stage each cycle. As a whole, the registers of these dpTL stages
can save the results of dpTL×sh characters.

Fig. 7. Details of temporary result level in MPM

The output interface is composed by the outputs of registers and outputs of compari-
son level in this current cycle. The interface is spatial ordered, so more information can
be represented rather than implicit express. Actually, this level is not the necessary one
in MPM.

Pattern level (PL) is the level that patterns are really matched with the input. PL
consists of all pattern logics in Pn. For each pattern, there are sh AND logics that match
the selected l inputs from the above level. Each AND logic matches one alignment
from 0 to sh-1, as figure 8 shows. The l inputs to each AND logic are correspondingly
the ones that this pattern stands for with a certain alignment.

For example, if there is a pattern with content “ABCDE”, the first AND logic se-
lects the wire of “A” from the first group of wires in the interface, the wire “B” from
the second group, …, the wire “E” from the fifth group. The AND of the five results
can match pattern “ABCDE” with alignment of zero.

610 T. Song, Z. Tang, and D. Wang

Fig. 8. Details of pattern level in MPM Fig. 9. Details of matching level in MPM

Matching level is the last one in MPM which outputs matching signals. Matching
signals are the result of OR logic with n bit input, as figure 9 shows.

In fact, the size of pattern set is several thousand, relatively large, that is, n is big.
The OR logic may result in

klog n⎡ ⎤⎢ ⎥ stage. Here k is the input of each basic OR logic

and ⎡ ⎤⎢ ⎥＃ means the ceiling of the number.

4.3 Basic Theory About MPM

From the description of previous parts, we know that MPM can be parameterized by
some parameters, as table 1 shows. The different combination of values can result in
different MPM architectures with various performances.

Table 1. Parameters in MPM

Parameters Belongings Comments
WoC ALL Levels The width of character
sh Shift Level The bytes shifting left in one cycle
 w Shift Level Width of comparison window

Type of Alphabet Comp Level fA, Aps or Avla
dpTL Temp Result The depth of registers; value 0

means no temporary result level.
n Pattern Level The size of pattern set
h Pattern Level The input of basic AND and OR

LOGIC using in this Level
k Matching Level The input of basic OR LOGIC

using in this level

The maximal payload speed of network can be determined by MPM. Here we sup-
pose that FrequencyMPM is the typical frequency of MPM and Speedpayload is the maxi-
mum speed for payload matching in network intrusion detection system. Then the
following equation is obvious.

payload MPMSpeed sh WoC Frequency= × × (4)

 MPM Architecture for Network Intrusion Detection and Prevention System 611

Equation 4 comes from shift level of MPM. In this level, sh characters are shifting
left every cycle, and each character is with the width of WoC. The cycle time is deter-
mined by frequency of MPM, FrequencyMPM.

From the figure 7, we know that only w-sh+1 alphabets can be placed in w width of
comparison window. That is, the maximum length of pattern can be matched in MPM
is w-sh+1 characters in the view of comparison level. Temporary result level is the
level for temporarily storing the results of comparison level. Each stage of registers can
save the results of sh characters and the dpTL stages can save the results of dpTL×sh.
This level is the important reinforce for characters’ comparison. Based on these two
levels, to Pn in MPM, the following should be satisfied.

 (1) max
TLw sh dp sh l− + + × ≥ (5)

Equation 5 gives the restriction of MPM that implements a given pattern set. It
means that the maximal width of comparison characters should be no less than the
length of pattern set. Otherwise, some longer pattern cannot be matched.

5 Pattern Set Compiler

Pattern set compiler is a software that can convert a given pattern set to a proper format
of codes which is later used in MPM architecture.

In this paper, pattern set compiler generates RTL (register transfer level) codes from
a given pattern set and predefined parameters. The output codes are formatted in ver-
ilog language and are later synthesized by Xilinx ISE or other EDA tools. Figure 10
shows the procedure from given pattern set to MPM implementation. Together with
Xilinx ISE, the routes can be regarded as a MPM generator.

Pattern set compiler also supports the updating of patterns. The output updated
codes are also RTL ones with some instructions for reconfiguration.

6 Analyses and Results

Previous sections address many details about our MPM architecture and related theory.
In this section, some analyses about MPM and results for real patterns of Snort are
given to evaluate our design.

Snort[1,2] is a widely used open source NIDS system, and its patterns are very
valuable for the research of pattern match architecture. Here, we choose the one release
of Snort rules with version 2.3.3. After eliminating the redundant ones, we get a pattern
set with 1785 different patterns, signed as pattern set P1785.

For P1785, there are 107(lmax) alphabets of vertical left alignment (Avla). Figure 11
shows the relationship between the size of each Avla and the length of pattern. We can
find that the size of Avla is decreasing rapidly with the increasing of the length of
patterns. The reason is that they are fewer patterns with longer length.

Three types of alphabets (fA, Aps and Avla) are used for the construction of com-
parison levels. They may result in different chip areas.

Here suppose that dpTL=0, w-sh+1=lmax and WoC = 8, that is, there is no temporary
result level and the patterns in P1785 can be compared in one cycle.

612 T. Song, Z. Tang, and D. Wang

Fig. 10. MPM generator and pattern set
compiler

Fig. 11. Size of Avla and length of pattern

Fig. 12. Area of comparison level with dif-
ferent sh

Fig. 13. The size distribution with different sh

According to the figure 4 and 5, the areas based on fA and Aps are as follows:

(107 1) 256fA CmpUnitAreaCL sh Area= + − × × (6)

 (107 1) 222Aps CmpUnitAreaCL sh Area= + − × × (7)

Because equation 2 is heavily related with sh, the result of AreaCLAvla is hardly to be
represented as a formula. However AreaCLAvla can be calculated by equation 2&3.

Figure 12 shows the areas of comparison level based on fA, Aps and Avla with dif-
ferent value of sh from 1 to 32. The area of comparison level is calculated as the num-
ber of basic comparison units. The upper line is the AreaCLfA with different sh. The
middle line is AreaCLAps and the bottom one is the AreaCLAvla with different sh.

The distribution of Avlas’ size is the key for the insight analysis of the reason why
area using Avla is efficient. Figure 13 shows this distribution with different value of sh.
In this figure, the curves of upper and left are with the bigger value of sh.

Taking consideration of speed and chip area, results of our MPM architecture are
drawn from the synthesis tools, as table 2 shows.

Table 2 shows the comparison with other architectures on FPGA, which use logics
of FPGA to do the matching other than the DFA based architectures. We can find that
MPM uses about one half chip area than the most area efficient architecture. At the
same time, its performance with 5 pipelines is the highest among all the architectures.
More pipelines do not increase the chip area of MPM architecture.

 MPM Architecture for Network Intrusion Detection and Prevention System 613

Table 2. Comparisons with other architectures on FPGA

Architectures slice/char speed(Gbps) Notes

MPM in this paper 0.22 4.3 or more Virtex-2

Cho-MSmith [9] 5.2 2.8 Virtex-E
Pre-decoded CAMs [10] 0.64 2.68 Virtex-2
Bloom Filter [14] 8.9 0.5 Virtex-E
Decoder NFA [8] ~0.55 2.0 Virtex-2
USC Unary [22] 0.46 2.1 Virtex-2

7 Conclusions

This paper has presented a highly parameterized multilevel pattern matching architec-
ture on FPGA, named MPM, for less chip area and higher performance. MPM can be
embedded into network intrusion detection or prevention systems to achieve higher
performance. The parameterized MPM can fit for many circumstances, such as UTM,
spam filter, and et al.

In this paper, MPM is in-depth analyzed and designed. Then a pattern set compiler
is presented that can convert pattern set to RTL code of MPM architecture. That is, for
a given pattern set, a pattern matching architecture can be generated by some defini-
tions of parameters.

For Snort patterns, a prototype system is generated. The experimental results show
that the example MPM can achieve 4.3Gbps matching speed with 5 stages of pipelines.
The chip area is about half of the best one that is known in literature. With the different
parameters, the performance of MPM can be scalable near linearly, potential for more
than 100Gbps throughput if chip area is not concerned.

References

1. M. Roesch, “Snort - Lightweight Intrusion Detection for Networks,” USENIX LISA Con-
ference, 1999

2. Xilinx : www.xilinx.com
3. M. Fisk and G. Varghese. An analysis of fast string matching applied to content-based

forwarding and intrusion detection. In Techical Report CS2001- 0670, University of Cali-
fornia -San Diego, 2002.

4. S. Dharmapurikar, et al.: Implementation of a Deep Packet Inspection Circuit using Paral-
lel Bloom Filters in Reconfigurable Hardware; In Hot Interconnects, 2003.

5. R. Sidhu, V. K. Prasanna: Fast Regular Expression Matching using FPGAs. In Proceed-
ings of 9th IEEE Symposium on Field-Programmable Custom Computing Machines, April
2001

6. I. Sourdis, D. Pnevmatikatos: Pre-decoded CAMs for Efficient and High-Speed NIDS Pat-
tern Matching. In IEEE Symposium on Field- Programmable Custom Computing Ma-
chines, 2004

7. I. Sourdis, D. Pnevmatikatos: Fast, Large-Scale string matching for a 10Gbps FPGA-based
network intrusion detection system. In Proceedings of 13th International Conference on
Field Programmable Logic and Applications, Lisbon, Portugal, 2003.

614 T. Song, Z. Tang, and D. Wang

8. C. R. Clark, D. E. Schimmel: Scalable Pattern Matching for High Speed Networks; In
IEEE Symposium on Field-Programmable Custom Computing Machines, April 2004.
Napa, CA, USA.

9. Young H. Cho, William H. Mangione-Smith: Deep packet filter with dedicated logic and
read only memories. In IEEE Symposium on Field-Programmable Custom Computing
Machines, 2004 USA.

10. Peter Sutton: Partial Character Decoding for Improved Regular Expression Matching in
FPGAs; In Proceedings of International Conference on Field-Programmable Technology,
2004

11. Chris Clark, Wenke Lee, et al: A Hardware Platform for Network Intrusion Detection and
Prevention. In Proceedings of 3rd Workshop on Network Processors and Applications,
Spain, February 2004.

12. S. Dharmapurikar, P. Krishnamurthy, et al: Deep packet inspection using bloom filters. In
Hot Interconnects, August 2003. Stanford.

13. R. Sidhu and V. K. Prasanna. Fast Regular Expression Matching using FPGAs. In IEEE
Symposium on Field-Programmable Custom Computing Machines, Napa Valley, CA,
April 2001. IEEE.

14. James Moscola, John Lockwood, Ronald P. Loui, and Michael Pachos. Implementation of
a content-scanning module for an internet firewall. In IEEE Symposium on Field- Pro-
grammable Custom Computing Machines, April 2003. Napa, CA, USA

15. Tian Song, Wei Zhang, Zhizhong Tang, Dongsheng Wang: “Alphabet Based Selected
Character Decoding for Area Efficient Pattern Matching Architecture on FPGAs”; the 2nd
International Conference on Embedded Software and Systems (ICESS-05), Xian,
P.R.China

16. Jan van Lunteren. High-Performance Pattern-Matching for Intrusion Detection. In 25th
Conference of IEEE INFOCOM, Apr. 2006

17. Lin Tan, T. Sherwood. A High Throughput String Matching Architecture for Intrusion De-
tection and Prevention. In 32nd Annual ISCA, June, 2005

18. R.S. Boyer, J.S. Moore: A Fast String Searching Algorithm; Communications of the ACM
20, 10, 762-772 (1977).

19. Knuth D.E., Morris J.H., Pratt V.R.: Fast pattern matching in strings; SIAM Journal on
Computing. 1977,6(1): 323-350

20. A. Aho and M. Corasick: Efficient string matching: An aid to bibliographic search; Com-
munications of the ACM, vol. 18, no. 6, June 1975, pp. 333-343.

21. Sun Wu and Udi Manber: A fast algorithm for multi-pattern searching; Tech. Rep. TR94-
17, Department of Computer Science, University of Arizona, May 1994

22. Z. K. Baker, V. K. Prasanna. High-throughput linked-pattern matching for intrusion detec-
tion systems. In symposium on Architecture for Networking and Communications Systems
(ANCS), Oct. 2005

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 615–626, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Smart Actuator-Based Fault-Tolerant Control for
Networked Safety-Critical Embedded Systems

Inseok Yang1, Donggil Kim2, Kyungmin Kang2, Dongik Lee2,
 and Kyungsik Yoon3

1 Dept. Industrial Applied Mathematics, Kyungpook National University,
1370, Sankyug-dong, Buk-gu, Daegu, 702-701, Korea

jewill@hanmail.net
2 School of Electrical Engineering & Computer Science, Kyungpook National University,

1370, Sankyug-dong, Buk-gu, Daegu, 702-701, Korea
{eastroad,rapdk,dilee}@ee.knu.ac.kr
3 Dept. Digital Information Media, Gimcheon College,

754, Samrak-dong, Gimcheon, 740-704, Korea
kyungsy@gimcheon.ac.kr

Abstract. In this paper, a fault-tolerant control method is presented with an ap-
plication to steer-by-wire (SBW) system. SBW is a network-based vehicle
steering system in which the mechanical linkage and hydraulics are replaced by
electrical motors and fieldbus networks. Since failure of a steering system may
result in a catastrophic accident, SBW can be considered as a safety-critical
embedded system for which very high level of dependability must be satisfied.
This paper proposes an effective control strategy to tolerate faulty actuators.
The proposed method has a simple structure to be implemented on low cost
embedded processors. The reconfiguration strategy consists of two fold: i) a
smart actuator of which embedded microprocessor provides the fast and accu-
rate diagnostic information through a time-triggered fieldbus, and ii) an IMC-
PID controller which is capable of tolerating the effect of faults based on the di-
agnostic information being sent from the smart actuator. Simulation results with
a SBW model show that the proposed method can enhance the system depend-
ability in the presence of faults without using any redundant actuators.

1 Introduction

Recent advances in microelectronics have made the application of networked archi-
tectures, based on smart components and fieldbuses, to safety-critical embedded sys-
tems, such as “steer-by-wire (SBW)” system for automobiles. SBW is a networked
steering system for next-generation vehicles, in which the mechanical linkage and
hydraulics are replaced by electric motors and fieldbus networks. Since failure of a
steering system may result in a catastrophic accident, SBW has to meet the strict re-
quirements on system dependability. That is, a SBW system must be able to continue
its function even in the presence of fault with subcomponents, such as fieldbuses,
sensors and actuators.

616 I. Yang et al.

To satisfy the required level of dependability for a networked safety-critical em-
bedded system at a reasonable cost, Lee highlighted that the system should be in a
time-triggered architecture with a fault-tolerant controller and smart devices that are
interconnected through a deterministic fieldbus in [9]. The importance of fieldbus is
of paramount as a SBW system is built on the basis of communication networks. Over
the last two decades automotive industry has paid significant effort to develop highly
reliable and deterministic fieldbus technologies, so called time-triggered protocols,
such as TTP/C [17] and FlexRay [3]. TTP/C or FlexRay offers many advantages that
can enhance the network performance in terms of fault-tolerance and deterministic
temporal behaviour.

Apart from the fieldbus protocols, a survey reveals that actuator problems are the
most common cause for the deterioration of a controlled system [7]. In response to
this concern, control engineers have paid a great deal of attention to fault-tolerant
control techniques. Fault-tolerant control is a set of techniques to provide the system
with the ability of graceful degradation; that is, to maintain the desired performance
of the system in case of faults with sensors or actuators [1], [14]. While sensor faults
can be tolerated by applying a model-based estimation technique, compensating ac-
tuator faults requires controller reconfiguration and/or redundant actuators. However,
employing redundant actuators often leads to extra costs, more power consumptions
and complexity in the resulting system. Therefore, reconfigurable control techniques
have been exploited as an effective solution to deal with actuator faults. A reconfigur-
able controller can change its parameters and/or structure to maintain the desired
performance when a fault occurs. See [1] and [14] for a survey on the previous work.

In general a reconfigurable controller consists of a Fault Detection and Isolation
(FDI) module and a reconfiguration mechanism. When a fault occurs the reconfigura-
tion mechanism redesigns the control system on-line based on the diagnostic informa-
tion provided by the FDI module. However, most of the previous work has only fo-
cused on the systems with a centralized architecture for which the design of an FDI
module is very difficult and limited. FDI with a centralized system can be inaccurate
and slow due to the limitations with measured data and the accuracy of mathematical
model used. Consequently, the reconfigured system often leads to an unsatisfactory or
even an unstable system.

This paper presents a reconfigurable control method for safety-critical embedded
systems with a networked architecture in which smart actuators are interconnected
through a time-triggered fieldbus. The proposed method utilizes the benefits of de-
terministic fieldbus and local diagnosis being performed by the smart actuator. The
reconfiguration mechanism consists of two fold:

 An accurate and fast FDI module, which is independent of actuator types and
calculated by the local processor of smart actuator; and

 An IMC-PID controller, of which parameter can be readjusted based on the
diagnostic information being sent from the smart actuator through a fieldbus.

The IMC (Internal Model Control) technique is adopted for the online tuning of PID
parameters in the event of fault with actuators. The proposed method is applied to a
SBW system, and its effectiveness is analysed using computer simulations.

 Smart Actuator-Based Fault-Tolerant Control 617

2 Networked System Architectures

Networked embedded systems, as shown in Fig. 1, can be found across wide range of
industry, including process automation and automobiles. Not only does a networked
control system offer reduced wiring and simplified maintenance, it also provides the
opportunity to implement more sophisticated control laws. However, incorporating a
real-time communication network presents significant challenges to the system de-
signers. Design requirements are no longer justified simply by ‘system and control’,
but the networked nature of systems are drawing greater attention. One of the most
significant difficulties induced by a communication network is the randomly varying
delays in delivering messages. These delays can cause the system performance de-
graded or even unstable [13]. In response to this concern, many researchers in the
control society have developed a number of techniques to overcome the problems. For
examples, Luck & Ray [11] applied an observer based compensator, while Chan &
Ozguner [2] proposed a solution based on the queues. For latest outcomes, refer to
[16] and [19]. However, many of these approaches only try to solve the problem with-
out using a deterministic communication protocol. Consequently, the resulting
approaches are often too complicated or non-deterministic to be used in embedded
systems such as SBW.

Fig. 1. A networked control system

Meanwhile, automotive industry has focused on the development of deterministic
communication protocols to overcome the network related problems. Time-triggered
protocols, such as TTP/C and FlexRay, are the outcome from such effort by automo-
tive industry. By adopting a time-triggered protocol based on a precise and accurate
global time reference, it is possible to achieve deterministic temporal behaviour of a
networked system. In addition, such deterministic behaviour helps to enhance the
system dependability in a great deal, while minimizing the system complexity.

In this paper, it is assumed that the controlled system is implemented on the basis
of a time-triggered protocol. This assumption leads to the development of a fault-
tolerant control method which is efficient, simple, and reliable. Further discussions
about the needs for the integration of time-triggered approaches with fault-tolerant
control techniques in safety-critical applications can be found in [9].

618 I. Yang et al.

3 Smart Actuator

3.1 Fault Accommodation Using Smart Actuator

A smart actuator is an actuator system that can offer additional functionality achieved
by the built-in processor and fieldbus network. By utilizing a built- in processor it is
possible to implement advanced control techniques, such as fault diagnosis and
nonlinearity compensation. Key features of the smart actuators are classified into four
categories:

 Self diagnosis;
 Self compensation;
 Validation data; and
 Fieldbus interfaces.

In addition to the capability of self diagnosis, the smart actuator can also offer the
opportunity for self compensation of the fault, for example, using a nonlinearity in-
verse method [10]. As shown in Fig. 2, the extra information or condition data is
transmitted to the higher level supervisor module by which the loop controller can be
reconfigured to accommodate the fault with an actuator. For this strategy to be realis-
tic, it is necessary to develop not only an accurate and fast FDI module, but also an
efficient and reliable reconfiguration mechanism. Since they must be implemented in
real-time on low-cost embedded microprocessors, it is crucial to design both modules
using simple techniques.

Fig. 2. Reconfiguration structure with smart actuator

To comply with the above requirements, this paper aims to develop:

 An FDI module requiring no sophisticated mathematical models;
 A PID type reconfigurable control method requiring no hardware redun-

dancy.

In general the embedded processors for smart actuators have very limited comput-
ing resources. Therefore, any fault diagnosis algorithms requiring a sophisticated
mathematical model are unrealistic. Meanwhile, PID type controllers are chosen be-
cause of the fact that they are most commonly used in industry, and have the simplest
structure to be implemented on a low cost processor. The constraint with the use of
redundant actuators is introduced by the fact that redundant actuators are often not
available due to the limitation of cost, space, power consumptions, etc.

 Smart Actuator-Based Fault-Tolerant Control 619

3.2 Modeling of Smart Actuator

By assuming that the actuator is only operating within the attainable range, the dy-
namics of smart actuators can be represented by a first order model [8]:

1+
=

s

K
G

τ
 (1)

Note that the structure of the model is virtually independent of the type of actuators
because it only represents the relationship between the input and the output of actuator.

Any faults with the actuator may result in a change of actuator dynamics. For ex-
ample, increased friction caused by a faulty bearing of electric motor can lead to a
sluggish angular velocity. Degraded actuator dynamics degraded affect the perform-
ance of the controlled system. For compensating the actuator fault, therefore, it is very
useful to estimate the parameters τ and K from Eq (1) in the event of fault. The esti-
mates of these parameters can be transmitted through a fieldbus network to the super-
visor module by which the loop controller can be reconfigured so as to compensate
for the loss of actuation force due to the fault.

3.3 Estimation Method

In this paper, an analytical estimation algorithm proposed by Yang et al. [18] is em-
ployed to determine the new parameters of τ and K when a fault occurs. The estima-
tion is performed locally inside the smart actuator. Details of the algorithm are pre-
sented in [18], and this paper only gives a brief summary.

The estimation method requires no recursive calculations, but the parameters are
calculated based on the performance index γ(t) which is defined by the ratio between
the actual and desired performance of the actuator as follow:

0

0

()actual performance
()

desired performance ()

t

a

t

d

u d
t

u d

σ σ
γ

σ σ
= = ∫

∫
 (2)

where, ua is the actual output of the actuator and ud is the desired input. Using this
index the actuator performance can be uniquely represented. Based on the performance
index, the rate factor α(t) for the demand input n

d ttu =)(can be written as follow:

1
1

0

1
1

0

()
()

()

1 () ()
!

1 !

()
! () 1

(1)!

a

t
n p p nn

n

p

tn p pn
n

p

u t
t

t

t e
t kn

n p

t
kn e

p

τ

τ

α
γ

τ τ
τ

τ τ

−− +
+

=

− + −+

=

=

⎧ ⎫
− −⎪ ⎪+⎨ ⎬+ ⎪ ⎪⎩ ⎭=

⎧ ⎫⎛ ⎞−⎪ ⎪− − −⎜ ⎟⎨ ⎬+⎪ ⎪⎝ ⎠⎩ ⎭

∑

∑

 (3)

620 I. Yang et al.

For a step input, Eq (3) can be reduced to:

1

()

t

t

t e

t

t e

τ

τ

α
τ τ

−

−

⎧ ⎫
−⎨ ⎬

⎩ ⎭=
+ −

 (4)

It is clear that α(t) is a continuous decreasing function which satisfies 2)(lim
0

=
→

t
t

α

and 1)(lim =
→∞

t
t

α . And, when τ=t , it holds that 1)(−= eτα . Thus, by the theorem

of intermediate value, τ is the unique value which satisfies 1)(−= eτα . Since)(tua

and)(tγ are known, it is possible to calculate α(t) and determine whether α(t) is

equal to (1−e) or not for every time t . Conversely, for an arbitrary point of time t ,
if 1)(−= etα , then it is true that τ=t . Once the parameter τ is determined, the

parameter K is calculated as follow:

)(τγ
e

K = (5)

For the calculation of the parameters in a discrete system, refer to [18].

4 Design of Reconfigurable IMC-PID Controller

4.1 Basic Concept of IMC

The Internal Model Control (IMC) structure in Fig. 3 is a well-known technique
mainly developed by Morari and his co-workers [4], [5], [6], [12], [15].

The estimation method requires no recursive calculations, but the parameters are
calculated based on the performance index γ(t) which is defined by the ratio between
the actual and desired performance of the actuator as follow:

g~

d
~

Fig. 3. The IMC structure. G and g~ denote the transfer functions of actual plant and model.

Some important properties of the IMC structure are as follow:

Property 1 - Dual Stability. Assume perfect match (Gg =~). Then the system is

effectively open-loop, and closed-loop stability is implied by the stability of G and

 Smart Actuator-Based Fault-Tolerant Control 621

CG . The IMC structure guarantees the closed-loop stability for all stable controller

CG and G .

Property 2 - Perfect Control. Assume IMC controller
CG is given by reciprocal of

the model g~ , i.e., 1~−= gGC
, and the system is stable. Then perfect control is

archived for all t and disturbance d , i.e., 0>∀= tYY S
.

Note that Property 2 cannot be realized for a system with right-half plane zeros and
time delay. However, despite these limitations, the IMC structure can be realized
through the following steps.

Firstly, factorizing the process model yields to

−+ ⋅= ggg ~~~ (6)

Note that, in Eq. (6), all the time delays and right-half plane zeros are included in the
term +g~ , and thus −g~ is always stable. Now +g~ is factorized such that the integrated

absolute error (IAE) can be minimized:

0)Re(where),1(~ >+−∏= −
+ ii

i

s seg ββθ (7)

The second step is to define the IMC controller as the form of:

fgGC ⋅= −
−

1~ (8)

where, f is a low pass filter with a unit steady state gain. It is straightforward that

the simplest form for f can be given as below:

rs
f

)1(
1
+

=
ε

 (9)

where, r denotes the order of filter, which should be sufficiently large to guarantee
that the resulting IMC controller CG is proper. By defining CG it is possible to de-

termine a PID controller c that can be applied to virtually all types of processes in
industry. The resulting PID controller is given in the form of:

+
−

−
−

−
=

⋅−
=

gf

g

Gg

G
c

c

c
~

~
~1 1

1

 (10)

4.2 Reconfiguration in Case of Actuator Fault

The closed-loop dynamics of an actuator, represented by Eq (1), may change in the
event of fault with any components of the actuator. Since the parameters for modified
actuator dynamics are estimated and provided by the smart actuator, the reconfigura-
tion mechanism can determine −g~ which is then applied to the calculation of a new

622 I. Yang et al.

control parameter. If a minimum phase model (1~ =+g) and a first-order filter are

used, then the closed-loop transfer function with a feedback controller c can be
given:

s

g
c

1~1 −
−⋅=

ε
 (11)

1
1
+

=
sY

Y

S ε
 (12)

Note that there is only one adjustable design parameter,ε , which could be chosen by
the designer. This fact is a significant benefit in terms of designing a controller. For
designing a reconfigurable IMC-PID controller, the actuator can be considered as a
minimum phase model. Once −g~ is obtained from the local diagnostic module of the

smart actuator, ε can be then determined to place the pole at the desired location
which is chosen by the designer.

5 Simulation Results and Discussion

5.1 Modeling of SBW System

The effectiveness of the proposed control method is analysed with a rack-pinion type
SBW system shown in Fig. 4. The measured angular position of the steering wheel is
converted to the corresponding displacement of the pinion, which is then transmitted
to the SBW controller via a FlexRay network. The SBW controller then determines
the required control signal for driving the BLDC motor so that the desired direction of
each road wheel can be achieved. The proposed IMC-PID method is applied to the
design of a reconfigurable controller for the given SBW system.

Fig. 4. Block diagram for the SBW control system

The mathematical model of the BLDC motor used in the design of IMC-PID is rep-
resented by a first-order model:

1)(
)(

+
=

s

K

sV

s

τ
ω (13)

 Smart Actuator-Based Fault-Tolerant Control 623

where, V and w represent the input voltage and angular velocity, respectively, and K
and τ are given as follows:

Ek
K

1= (14)

TE kk

JR

⋅
⋅=τ (15)

Details of the parameters used in the simulation are summarized in table 1.

Table 1. BLDC motor specifications used for the computer simulations

Parameter Definition Value
R Stator resistance][2.21 Ω

Ek Back emf constant]/[1433.0 radsV ⋅

Tk Torque constant]/[1433.0 AmKg ⋅

J Inertia of rotor]/[101 25 radsmKg ⋅⋅⋅ −

Using the specifications shown in table 1, the transfer function, Eq (13), of the BLDC
motor during normal operation is represented by:

101.0

978.6
)(

+
=

s
sG (16)

The filter coefficient of the IMC controller is set to 0.5, and the PD controller is given
by:

009.00001.0)(+= ssC (17)

The sampling period is chosen as T=0.001sec.

5.2 Simulation Results

Estimating the actuator parameters: In order to verify the effectiveness of the pro-
posed method, a fault with the BLDC motor is injected. It is assumed that the stator
resistance R is changed abruptly at t=30sec, resulting in the change of the actuator
time constant from τ=0.01sec to τ=0.4sec, or the actuator dynamics with fault is
modified to: The filter coefficient of the IMC controller is set to 0.5, and the PD con-
troller is given by:

14.0

978.6
)(

+
=

s
sG (18)

Fig. 5 shows the trajectory of the rate factor α(t) which will be used for estimating
the actuator parameters τ and K. From Fig. 6 it is clear that the time at which α(t) is
equal to (e-1) is around t=0.4sec. Accurate calculations identify that α(0.401)

624 I. Yang et al.

<e-1<α(0.402), indicating that T1 is given by 0.402sec. Applying T1=0.402sec to the
estimation method by [18] yields to 4012.0ˆ =τ and 9881.6ˆ =K , which are very
close to the true values.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
1.8

1.9

2

time [sec]

α
(t

)

Fig. 5. Trajectory of the rate factor α(t) used for diagnosing the actuator fault

Controller reconfiguration: Fig. 6 shows the response of the SBW system in the
event of fault after t=30sec. Since the BLDC motor has become sluggish due to the
fault, the SBW system output shows a large overshoot which may result in a danger-
ous driving situation.

On the other hand, by reconfiguring the controller based on the diagnostic informa-
tion on the modified actuator dynamics, the control system can tolerate the fault with-
out using a redundant actuator, as shown in Fig. 7. It is seen that about 0.5sec was
taken to diagnose and compensate for the fault. Note that the reconfigured system has
a larger settling time compared as the normal condition. However, by giving a warn-
ing signal to the driver about the fault it may still be possible to control the vehicle
with care.

0 20 40 60 80 100 120 140 160
-80

-60

-40

-20

0

20

40

60

80

time [sec]

w
he

el
 a

ng
le

 [d
eg

]

Fig. 6. Output trajectory of SBW system without reconfiguration

 Smart Actuator-Based Fault-Tolerant Control 625

0 20 40 60 80 100 120 140 160
-80

-60

-40

-20

0

20

40

60

80

time [sec]

w
he

e
l a

ng
le

 [d
eg

]

Fig. 7. Output trajectory of SBW system with reconfiguration using the estimated parameters

6 Concluding Remarks

In this paper a reconfigurable control method for safety-critical embedded systems
with a time-triggered network has been presented. The proposed method utilizes the
benefits of deterministic fieldbus and local diagnosis carried out inside the smart
actuator. The reconfiguration mechanism consists of a fault diagnosis module and an
IMC-PID controller. By assuming that the actuator dynamics can be represented by a
first order model independent of the actuator types, it is possible to obtain fast and
accurate diagnostic information on the actuator characteristics with fault. This infor-
mation is now exploited by the IMC-PID controller so as to compensate for the effect
of fault. The proposed IMC-PID control technique is applied to a SBW system. Simu-
lation results with the SBW system indicate that the proposed method can tolerate the
fault without using any redundant actuators. For the future work, it is planned to im-
plement the proposed method in real-time with a real SBW system incorporating a
FlexRay network.

References

1. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Con-
trol. Springer (2003)

2. Chan, H., Ozguner, U.: Closed-loop Control of Systems over a Communication Network
with Queues. International J. Control. Vol. 62, No. 3 (1995) 493-510

3. FlexRay Consortium.: FlexRay Communications System Specifications (ver 2.1). Avail-
able http://www.flexray.com (2005)

4. Garcia, C.E., Morari, M.: Internal Model Control 1. A Unifying Review and Some New
Results. Ind. Eng. Process Des. Dev. Vol. 21 (1982) 308-323

5. Garcia, C.E., Morari, M.: Internal Model Control 2. Design Procedure for Multivariable
Systems. Ind. Eng. Process Des. Dev. Vol. 24 (1985) 472-484

6. Garcia, C.E., Morari, M.: Internal Model Control 3. Multivariable Control Law Computa-
tion and Tuning Guidelines. Ind. Eng. Process Des. Dev. Vol. 24 (1985) 484-494

7. Harrold, D.: Select and Size Control Valves Properly to Save Money. Control Engineer-
ing. October (1999) 55-60

626 I. Yang et al.

8. Isermann, R., Raab, U.: Intelligent Actuators-ways to Autonomous Actuating Systems.
Automatica. Vol. 19, No. 5 (1993) 1315–1331

9. Lee, D.: Distributed Real-Time Fault-Tolerant Control Using Smart Actuators and Time-
Triggered Communication. PhD Thesis, Dept. Auto. Contr. & Syst. Eng., Sheffield Uni-
versity, U.K

10. Lee, D., Allan, J., Thompson, H.A., Bennett, S.: PID Control for a Distributed System
with a Smart Actuator. Cont. Eng. Prac. Vol. 9 (2001) 1235–1244

11. Luck, R., Ray, A.: An Observer-based Compensator for Distributed Delays. Automatica.
Vol. 26, No. 5 (1990) 903-908

12. Morari, M., Zafiriou, E.: Robust Process Control. Prentice-Hall (1989)
13. Nilsson, J.: Real-time Control Systems with Delays. PhD Thesis, Lund Institute of Tech-

nology, Sweden (1998)
14. Patton, R.J.: Fault-tolerant control: the 1997 situation (survey). Proceedings of the IFAC

SAFEPROCESS, U.K. (1997) 1033-1055
15. Rivera, D.E., Morari, M., Skogestad, S.: Internal Model Control 4. PID Controller Design.

Ind. Eng. Process Des. Dev. Vol. 25 (1986) 252-265
16. Tipsuwan, Y., Chow, M.Y.: Control methodologies in networked control systems. Cont.

Eng. Prac. Vol. 11 (2003) 1099-1111
17. TTP/C.: TTP/C Specifications. Available http://www.ttagroup.org (1993)
18. Yang, I., Kim, D., Kang, K., Lee, D., Yoon, K.: Estimating actuator characteristics with

faults. To be appeared on Proc. IFAC Workshop on Dependable Control of Discrete Sys-
tems (DCDS07), Paris, France, June (2007)

19. Yang, T.C.: Networked control system a brief survey. IEE Proc. Control Theory Appl.
Vol. 153, No. 4 (2006) 403-412

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 627–640, 2007.
© Springer-Verlag Berlin Heidelberg 2007

KCT-Based Group Key Management Scheme in
Clustered Wireless Sensor Networks

Huifang Chen1,2, Hiroshi Mineno2, Yoshitsugu Obashi3, Tomohiro Kokogawa3,
and Tadanori Mizuno2

1 Dept. of Information Science and Electronic Engineering, Zhejiang University
No. 38, Zheda Road, Hangzhou 310027, P.R. China

chenhf@zju.edu.cn
2 Dept. of Computer Science, Shizuoka University

3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011, Japan
{mineno,mizuno}@inf.shizuoka.ac.jp
3 NTT Service Integration Lab., NTT Corporation

3-9-11 Midori, Musashino, Tokyo 180-8585, Japan
{obashi.yoshitsugu,tomohiro.kokogawa}@lab.ntt.co.jp

Abstract. Confidentiality, integrity, and authentication services are critical to
preventing an adversary from compromising the security of a Wireless Sensor
Network (WSN). An essential component of any key-based security solution is
managing the encryption keys to providing this protection. Hence, we propose a
novel group key management scheme based on the key-chain tree mechanism
for the clustered WSNs in this paper. In this scheme, the functions of key
management are decoupled and distributed among multiple network elements of
the clustered WSNs for providing compromise/failure resistance. This scheme
also supports rekeying to enhance network security and survivability against the
node capture. Analysis results show that the scheme does provide a secure
encryption of the messages even if the revoked sensor nodes collude with each
other or the cluster head is compromised.

1 Introduction

Wireless Sensor Networks (WSNs), which consist of many inexpensive sensor nodes,
are stimulating toward diverse deployments for a wide range of applications [1].
Sensor nodes are significantly constrained in the amount of resources in term of
computing and communication capabilities, storage capacity, battery-powered energy.
Furthermore, WSNs may be deployed in the hostile and unattended environments
where communication is monitored and sensor nodes are subject to capture and
surreptitious use by an adversary. However, many applications are dependent on the
secure operation of WSNs, and have serious consequences if the network is
compromised. Therefore, WSNs require secure communications, sensor capture
detection, key revocation and sensor nodes disabling, etc.

Confidentiality, integrity, and authentication services are critical to preventing an
adversary from compromising the security of a WSN. Perrig et al. gave an overview

628 H. Chen et al.

of security related issues and services required for WSNs in [2]. Most prior work has
focused on the energy-efficient key management [3], authentication [4], routing [5]
and Denial-of-Service (DoS) resistance [6]. In WSN security, a very important
challenge is the design of key management schemes. The objective of key
management schemes is to establish and maintain secure channels among
communication parties. Typically, key management schemes use administrative keys
for the secure distribution, generation of the communication keys to the
communication parties. Communication keys may be pair-wise keys used to secure a
communication channel between two sensor nodes, or they may be group keys shared
by numerous sensor nodes.

Moreover, to ensure the scalability and increase the efficiency of network
operations, clustering approaches have become an emerging technology for building
scalable, robust, energy-efficient WSN applications. Operations in a WSN are
inherently collaborative, where sensor nodes forming the WSN collectively perform a
task. Thus, secure group communication should be utilized to support efficient
operations in the clustered WSNs. Secure group communication requires that each
authorized member of a secure network has knowledge of one or more
communication key(s) shared by a group(s) of sensor nodes. When a sensor node is
compromised and performs anomalous behaviors [7], it is necessary to exclude this
sensor node and revoke the communication key(s) known by it in order to guarantee
the security. Based on a key management scheme, the new communication keys are
generated and distributed to the remaining group members in the secure mode, and
these new keys should not be obtained by the excluded member. Therefore, group key
management scheme is a core component in any secure group communication.

In this paper, we present a new solution for the group key management problem in
clustered WSNs, which is based on a Dual Directional Key Chains (DDKC) structure
that two one-way key chains to facilitate node(s) revocation. This scheme decouples
the responsibilities of key management and distributes them among multiple network
components in clustered WSNs for providing attack/failure resistance. The scheme
also employs the Key-Chain Tree (KCT) mechanism to provide efficient rekeying in a
large cluster and simplify the addition and exclusion of sensor nodes. Analysis results
show that this scheme provides a secure encryption of the messages even if the
revoked sensor nodes collude with each other or the Cluster Head (CH) is
compromised. In addition, to update a secure group communication key in a cluster of
size N with R revoked sensor nodes, the scheme requires 2log2N keys storage, a single
decryption operation and at most (N-1) one-way function operation at each cluster
member, at most 2R encryption broadcasting from CH.

The remainder of this paper is organized as follows. Section 2 introduces the
system setting and threat model. Section 3 presents the details of our schemes. Section
4 analyzes the security and performance of the proposed scheme. The related work is
reviewed in section 5. Finally, section 6 concludes this paper.

2 Model Statement

2.1 System Model

We assume that there are three kinds of nodes in the deployed WSN, sink node, specific
sensor node acting as Cluster Head (CH) and general sensor node acting as Cluster

 KCT-Based Group Key Management Scheme in Clustered WSNs 629

Member (CM). The general sensor nodes are grouped into clusters, which can be
formed based on various criteria [8]. Each cluster is controlled by a CH, which can
broadcast messages to all sensor nodes (i.e. CMs) in its cluster. We assume that CMs
and CHs are stationary and their communication range is known. Each CH is assumed
to be reachable to CMs in its cluster, either directly (in one-hop) or indirectly (in multi-
hop). Each CM performs three main functions: sensing, computing and communicating.
The sensing component is responsible for detecting the environment to track a
target/event. The collected data is processed simply and transmitted to the CH. If a CM
is more than one hop away from the CH, its transmitted data is relayed by other CMs.
Hence, CMs communicate only using short-haul radio communication. The CH
aggregates data from different sensor nodes and transmits it to the sink node via long-
haul radio communication. The architecture of the clustered WSN is depicted in Fig. 1.

CH

Sink node

CM
Detected area Task manager

Internet

Fig. 1. The architecture of clustered WSN

The capability of each type of nodes is different. The sink node is resource-rich,
and is located at a considerable distance from the detected region. The CHs are
moderately powerful with sufficient energy to transmit with the sink node as well as
perform the required key management functions. The CMs are resource-constrained.

2.2 Threat Model

The objective of an adversary is that tries to manipulate the system through capturing
and compromising some network nodes. No trust assumptions are made on the CMs,
which means that the memory of the captured sensor nodes can be read, tampered or
erased. Hence, an adversary would know the keys of a compromised sensor node. The
CHs are also not assumed to be tamper-proof, and can be compromised by
an adversary. However, we assume that the compromise of a CH is more difficult
than that of a CM. The compromise of CH includes the uncovering of the keys,
the physical damaging of the computing and communication capabilities, and the
controlling of its operation after being compromised by an adversary. Thus, the
consequence caused by the compromise of a CH is more serious than that of a CM’s.

630 H. Chen et al.

3 Group Key Management Scheme

In this section, we develop a group key management scheme for clustered WSNs with
the objective of enhancing network survivability against node capture. We assume
that the sink node is secure while the CHs and the CMs can be compromised by an
adversary. All network nodes have unique identifiers.

3.1 Key-Chain Tree Scheme

Since our group key management scheme is based on the KCT mechanism proposed
in [9], we first introduce it in this section.

3.1.1 Dual Directional Key Chain (DDKC)
A DDKC is composed of two one-way key chains with equal length, a forward key
chain (KF) and a backward key chain (KB). Each one-way key chain is a chain of
cryptographic keys generated by repeatedly applying a one-way hash function H to a
random number (i.e. key seed). To construct a key chain of size N, the Key Generator
(KG) first randomly chooses a key seed S, and then computes K1=H(S), K2=H(K1), …,

KN=H(KN-1). Because of the one-way property of H, given Ki, it is computa-
tionally infeasible to compute Kj for j<i. However, a user can compute any Kj for j>i
(Kj= Hj-i(Ki)).

A DDKC with 8 keys in each key chain and 8 users is shown in Fig. 2, and each
user ui gets F

iK in the forward key chain and B
iK 18 +− in the backward key chain.

Obviously, ui can compute all the keys F
jK for j>i in the forward key chain and B

jK

for j>8-i+1 in the backward key chain, and this property can be used to revoke a user
or a set of users having consecutive IDs efficiently. For example, if the set of revoked
users is R={u3, u4, u5}, the non-revoked users can be departed into two subsets S1={

u1, u2} and S2={ u6, u7, u8}. According to the property of the DDKC, FK2 is only

known by the users in subset S1 and BK3 is only known by the users in subset S2.

These two keys are named as subset cover keys. Hence, if we use the subset cover
keys to encrypt the new group key separately and broadcast the encrypted information
to the group. All users except for users in R can derive at least one of the subset cover
keys and then decrypt the new group keys.

u1 u2 u3 u4 u5 u6 u7 u8

K1
F K2

F K3
F K4

F K5
F K6

F K7
F K8

F

K8
B K7

B K6
B K5

B K4
B K3

B K2
B K1

B

KF

KB

Fig. 2. An example of DDKC

 KCT-Based Group Key Management Scheme in Clustered WSNs 631

3.1.2 KCT Scheme
In order to revoke multiple users which may not be adjacent to each other, [9]
proposed the KCT scheme, which allows revoking any number of users regardless of
their positions and works very well even when the excluded users collude with each
other in an arbitrary way.

System Setup: Given a maximum group size N, the KCT schemes maps the users to
the leaves of a binary tree. Without loss of the generality, we assume N=2d, where d is
an integer. Fig. 3 shows an example of a KCT. A subgroup Gi is defined as the
collection of users in the subtree rooted at an internal node i. Each Gi is associated
with a DDKC. Thus, each user ui is associated with log2(N) DDKCs along the path
from the root to leaf i, and corresponding forward/backward keys are assigned to ui as
its personal secrets 1 . For example, the personal secrets of u4 is
{ FK 4,0 , BK 5,0 , FK 4,1 , BK 1,1 , FK 2,4 , BK 1,4 } in Fig. 3, where F

jiK , and B
jiK , denote the keys at

position j in the forward key chain and the backward key chain with Gi respectively.
User Revocation: Obviously, the R revoked users partition the remaining set of

users into at most (R+1) blocks, which are called as contiguous subsets. Formally,
there has a contiguous subset Sm-n={ui| m<i<n, m=0 or um∈R, n=N+1 or un∈R, ui∉R
for all i}. It is necessary to find the set of encryption keys to cover every ui∈N\R.

For example, the set of subset cover keys in Fig. 3 is { FK 3,0 , BK 2,0 , FK 1,2 } to revoke

R={u4, u6}.

u4

S6
FS5

F S5
BS4

F

0

64

K3
B K4

B K5
B K6

B

K6
FK5

FK4
F

K1
B

K2
F

K0
B

K0
F

K0,1
F K0,2

F K0,3
F K0,4

F K0,5
F K0,6

F K0,7
F K0,8

F

K0,8
B K0,7

B K0,6
B K0,5

B K0,4
B K0,3

B K0,2
B K0,1

B

K2
B

K1
F

K1,1
F K1,2

F K1,3
F K1,4

F K2,1
F K2,2

F K2,3
F K2,4

F

K1,4
B K1,3

B K1,2
B K1,1

B K2,4
B K2,3

B K2,2
B K2,1

B

K3
F

K3,1
F K3,2

F K4,1
F K4,2

F K5,1
F K5,2

F K6,1
F K6,2

F

K3,2
B K3,1

B K4,2
B K4,1

B K5,2
B K5,1

B K6,2
B K6,1

B

1 2

u1 u2 u3 u5 u6 u7 u8 u1 u2 u3 u4 u5 u6 u7 u8

S0
F S0

B

S3
F

S3
B

S2
F

S2
B

S4
B S6

B

53

S1
F

S1
B

key seeds:

Fig. 3. An example of KCT

1 The personal secrets are named as the administrative keys in the group key management

schemes.

632 H. Chen et al.

3.2 System Components and Capabilities

3.2.1 Sink Node
The sink node is assumed to be a trusted entity and resource-rich node, and it cannot
be compromised by an adversary. The responsibilities of the sink node are follows:

• It preloaded keys (Kd, KKG, Ki) of all sensor nodes in the detected region.
• It can detect the compromise/failure of any CH.
• It also triggers renewal of the communication keys and the administrative keys in

order to prevent potential on-going spoofing.

3.2.2 Cluster Head
Each CH can directly communicate with the sink node. The keys owned by each CH
are:

− KCH,SN: a preloaded key used for secure communication between CH and the sink
node.

− KCH,CH: the inter-CH key distributed by the sink node is used for secure inter-CH
communication.

− Kd: a CM discovery key distributed by the sink node.

Each CH controls a cluster consisting of a number of CMs. Each cluster will be
assigned a set of distinct communication keys for data encryption. The responsibilities
of each CH are follows:

• Assigning a logical identifier to each CM in its cluster.
• Generating the communication keys for its cluster.
• Forming KTC, generating and distributing administrative keys for other clusters in

which it acts as a KG.
• Refreshing communication keys of its cluster after secure network sets up.
• Detecting and excluding the compromised sensor nodes in its cluster.

3.2.3 Cluster Member
Each sensor node belongs to a cluster controlled by a CH. The keys and functions
preloaded are follows:

− Kd: a preloaded CM discovery key.
− KKG: a preloaded key for initial key distribution shared with the KG of its cluster.
− Ki: a preloaded individual key shared with the sink node for providing individual

secure communication.
− H1: a preloaded one-way hash function to recomputed Kd, and Ki.

− H2: a preloaded one-way hash function to computed administrative keys.

Furthermore, each CM should have enough memory for storing the administrative
keys and communication keys.

3.3 System Initialization and Normal Operation

In this section, we present the procedures for system initialization and normal
operation.

 KCT-Based Group Key Management Scheme in Clustered WSNs 633

3.3.1 Network Initialization
Network initialization involves the CH registration and cluster formation.

CH registration. After deployment, each CH, CH[i], establishes communication with
the sink node. CH[i] broadcasts a registration announcement with ID and position
information encrypted with KCH[i],SN. Upon receiving the announcements from all
CHs, the sink node establishes link-specific keys for inter-CH communication (i.e. for
each pair of CH[i] and CH[j], the sink node establishes KCH[i],CH[j]≠ KCH[j],CH[i]). The
sink node sends the inter-CH communication keys encrypted with KCH[i],SN to each
CH[i]. And then CHs use the inter-CH communication keys to establish secure
contact with each other. The sink node also distributes each CH the key Kd for
establishing the initial communication with sensor nodes.

Cluster formation. After setting up the sink node to CHs and inter-CH links, CM
discovery procedure starts. Each CH broadcasts a CM discovery request with its ID
and position information encrypted using Kd. In the detected area, the number of the
deployed CHs is large enough to guarantee the area coverage. Upon receiving one or
more CM discovery requests, a sensor node decrypts the messages and selects one of
CHs as its CH according to a criterion, and then it broadcasts a CM discovery
response containing its ID and the ID of the selected CH encrypted with Kd. Once
receiving the CM discovery responses from sensor nodes, every CH assigns a logical
ID to each sensor node in its cluster, tabulates the ID and logical ID of all CMs in its
cluster, and informs its CMs with their cluster association in encryption mode. The
logical ID of sensor node is unique in the cluster and is randomly selected from [1,
CMmax], where CMmax is the maximum number of the CMs in a cluster and it is a
system parameter whose value may depend on the network density, the number of
CHs, the hostility of the operating environment, etc. How to decide the value of
CMmax is beyond the scope of this paper and is a part of our future research plan.
CH[i] also forwards the table of its CMs to the sink node encrypted with KCH[i],SN.
When the cluster formation is finished, all CMs recompute Kd using H1 in order that
CHs do not know the Kd used next time.

3.3.2 Initial Key Distribution
KG assignment. For each cluster CHi, the sink node designates a CH other than CH[i]
as the KG, KG[i], whose responsibility is to generate the administrative keys for CHi.
And then the sink node informs CH[i] and KG[i] that KG[i] is the KG of CHi.
According to the table of CMs of CHi, the sink node forwards KG[i] the keys KKG of
all CMs of CHi, where each KKG corresponds with the CM’s logical ID. Subsequently,
CH[i] sends CMmax[i] to KG[i]. On receiving this information, KG[i] establishes the
KCT and generates the administrative keys for CMs in CHi, where the key seeds of
the administrative keys are also generated by KG[i]. Therefore, CH[i] would know
the ID and logical ID of each CM in CHi without generating the administrative keys
themselves. On the other hand, KG[i] would know the logical ID and KKG of each CM
in CHi, and generate the administrative keys for each CM in CHi.

Key distribution. For the administrative keys generated by KG[i] are distributed to the
CMs of CHi, the following steps are repeated for each cluster CHi.

634 H. Chen et al.

1. KG[i] constructs a message including individual administrative keys for each CM,
CMj∈CHi, which is supposed to know these keys. The message is first encrypted
with KKG[CMj], and then is encrypted using KKG[i],CH[i] before being transmitted to
CH[i].

2. CH[i] receives and decrypts the message. Since CH[i] does not know KKG[CMj], it
cannot reveal the administrative keys that KG[i] had included in the message. And
then CH[i] broadcasts the contents to its cluster.

3. CMj uses its preloaded key KKG[CMj] to uncover its administrative keys.
4. After KG[i] distributes the administrative keys to all CMs in CHi, CH[i] generates

a group communication key Kg[CHi] and informs KG[i] about it. Subsequently,
KG[i] generates a message which contains Kg[CHi] encrypted with the
administrative key known by all CMs of CHi directly or indirectly (by computing),
and then returns it to CH[i] encrypted with KKG[i],CH[i]. CH[i] decrypts and
broadcasts the contents to its cluster.

5. All CMs in CHi use the distributed administrative key to uncover the Kg[CHi].

Obviously, CH[i] can also generate a communication key which is only known by
a part of CMs of CHi. Under this condition, KG[i] will generates messages containing
the communication key encrypted separately with the administrative keys known by
the recipient CMs of the communication key. Without loss of the generality, we only
consider the communication key for the all CMs except for the revoked ones of each
cluster in this paper.

3.3.3 Normal Network Operation
During normal network operation, the group key management scheme will be
activated in case of rekeying or the addition of new sensor nodes.

Rekeying. The communication keys used in the network are periodically refreshed in
order to prevent on-going cryptanalytic attacks. To refresh the communication key,
CH[i] generates and sends the new communication key to KG[i] encrypted with
KCH[i],KG[i]. And then KG[i] separately encrypts it using the administrative key known
by the legitimate CMs of CHi and returns it/them to CH[i] encrypted with KKG[i],CH[i].
CH[i] decrypts and broadcasts the contents to its cluster, and then legitimate CMs
uncover the new communication key.

The administrative keys of the cluster can also be refreshed periodically. KG[i]
generates the new administrative keys and encrypts them with their respective older
ones. The messages are encrypted with KKG[i],CH[i] and sent to CH[i]. CH[i] decrypts
them and broadcasts the contents to its cluster, and CMs of CHi uncover the new
individual administrative keys using older counterpart. Obviously, CH[i] cannot
uncover the new administrative keys since it does not know the current ones.

Addition of new sensor nodes. New sensor nodes will be deployed in the detected area
for replacing the older ones or extending the sensing area. In order to include the new
sensor nodes, the sink node first notifies the CHs that new sensor nodes are being
deploying and informs the CHs of Kd to be used. Each CH broadcasts a CM discovery
request containing its ID and position information encrypted using Kd. Upon receiving
one or more requests, a new sensor node decrypts the message(s) and selects one of
CHs as its own CH, and then it broadcasts a CM discovery response including its ID

 KCT-Based Group Key Management Scheme in Clustered WSNs 635

and the selected CH’s ID in encryption mode. Once receiving the CM discovery
responses from new sensor nodes, CH assigns an unused logical ID to each new CM,
tabulates ID and logical ID of the new CMs, and informs its new CMs with their
cluster association encrypted using Kd. And CH[i] also forwards the table of its new
added CMs to the sink node encrypted with KCH[i],SN. The sink node informs KG[i]
about KKG of new added CMs in every cluster which has new sensor nodes. CH[i] and
KG[i] then performs the key distribution steps in Section 3.3.2 for the new added
sensor nodes.

3.4 Node Revocation

Node revocation procedures are invoked in case of detecting compromised or faulty
sensor nodes. We assume that the sink node and CHs are responsible to monitoring
the CHs’ and sensor nodes’ behavior/health and detecting their compromise/failure,
respectively. As a key management scheme, it is needless to distinguish the
compromise and failure and can deal with them in the same way.

3.4.1 CM Compromise/Failure
On identifying a compromised/faulty CM in CHi, CH[i] generates a new
communication key Kg[CHi] and informs Kg[CHi] and the logical ID of the
compromised/faulty CM to the KG[i] encrypted using KCH[i],KG[i]. Based on the informed
logical ID, KG[i] decides the subset cover keys for revoking the compromised/faulty
CM, and then separately encrypts Kg[CHi] with the subset cover keys and sends them to
CH[i] encrypted with KKG[i],CH[i]. CH[i] decrypts and broadcasts the contents to its
cluster. All CMs except for the compromised/faulty CM can uncover the Kg[CHi] using
one of their administrative keys. Therefore, the compromised/faulty CM cannot decrypt
future data encrypted with Kg[CHi].

As two or more CMs are compromised/faulty at the same time, the node revocation
method is same as mentioned above but the subset cover keys may be different.

During the period between two administrative keys rekeying process, the number
of the compromised/faulty CMs in CHi is incremental. Thus, the KG[i] needs to store
the logical IDs of the compromised/faulty CMs until the administrative keys of CHi
are refreshed.

3.4.2 CH Compromise/Failure
Upon identifying a compromised/faulty CH, the sink node notifies other CHs to delete
the inter-CH keys shared with the compromised/faulty CH. Recovery from a
compromised/faulty CH can be handled by either deploying a new CH or re-
clustering the CMs controlled by the compromised/faulty CH among the
uncompromised/ healthy CHs.

New CH replacing. If it is possible to replace the compromised/faulty CH,
CH[i]revoked, with a new CH, CH[i]new, which has compatible capabilities, the existing
CMs-to-clusters association is not impacted, and the recovery operation would be a
regeneration and redistribution of the group communication keys of CHi.

Once the new CH is deployed, the sink node sets up keys for communication
between existing uncompromised/ healthy CHs and CH[i]new. And then the sink node
informs CH[i]new the table with IDs and logical IDs of the CMs in CHi, and the logical

636 H. Chen et al.

ID and the keys KKG of CMs of each CHj in which CH[i]new acts as a KG, where j≠i.
And then the group communication key of CHi is regenerated and redistributed.
CH[i]new also generates and distributes the set of administrative keys for other clusters
in which it acts as a KG.

CMs re-clustering. When replacing a new CH for the compromised/faulty one is
infeasible, the CMs of CHi need to be re-clustered to other uncompromised/healthy
CHs. The sink node generates and informs the uncompromised/healthy CHs about the
new Kd Since CH[i]revoked does not know the new Kd, it cannot interference with the
re-clustering process. The uncompromised/healthy CHs starts up a CM discovery
process and each CM of the CHi will be associated to a new CH. The CHs with
newly added CMs perform the procedure of the addition of new sensor nodes in
Section 3.3.3.

Although the compromised/faulty CH knows the ID and the logical ID of CMs of
its cluster, it cannot manipulate them since it does not know the set of administrative
keys. Similarly, while CH[i]revoked knows the logical ID and the keys KKG of the CMs
of other clusters in which it acts as the KG, it cannot manipulate these CMs because it
does not know the ID and the group communication key of the CMs. Furthermore,
because the inter-CH keys are changed to exclude the compromised/faulty CH,
CH[i]revoked cannot interference with the recovery process. Kg[CHi] and Kd known by
CH[i]revoked are made obsolete by the recovery process.

4 Security and Performance Analysis

4.1 Security Analysis

According to the LEMMA 1 in [9], the encryption keys for the contiguous subset in
KCT is key indistinguishable for users are not in this subset if assume H2 is a perfect
cryptographic hash function.

Theorem 1. The KCT-based group key management scheme does provide a secure
encryption of the messages even if the revoked sensor nodes collude with each other
or the CH is compromised.

Proof: The goal of the scheme is secure against the collusion of the revoked sensor
nodes and the compromise of CH, we give a proof as follow:

Group key distribution: For a cluster, when multiple CMs of a cluster are
compromised by an adversary, the KG searches the subset cover keys of the
remaining uncompromised CMs, and the group communication key is regenerated by
CH and distributed to the remaining uncompromised CMs encrypted with the subset
cover keys separately. Since the remaining uncompromised CMs know one of the
subset cover keys, they can uncover the new group communication key. On the other
hand, the subset cover keys is indistinguishable for the compromised CMs, the new
communication key encrypted with one of the subset cover keys cannot be decrypted
by the compromised CMs. Therefore, the proposed scheme provides a secure
encryption of the messages even if there are multiple compromised sensor nodes that
can collude with each other.

 KCT-Based Group Key Management Scheme in Clustered WSNs 637

CH revocation: When a CH is compromised by an adversary, attacker cannot pretend
as a CH to distribute the faked group communication key since it does not know the
administrative keys used for the communication key distribution. In proposed scheme,
the functions of key management are decoupled and distributed them among multiple
CHs. Therefore, although the compromised CH knows some secret information, such
as the ID or the key KKG, it cannot manipulate the CMs of its cluster or the CMs of the
other cluster(s) in which it acts as the KG.

4.2 Performance Analysis

The storage requirement for the proposed scheme is coming from three parts. First,
each CM is required to store two preloaded keys (Kd and KKG), 2log2(CMmax)
administrative keys, a group communication key (Kg) and an individual key (Ki).
Second, each CH is required to store a table with ID and logical ID of all CMs in its
cluster, a preloaded CH-to-sink node key (KCH-SN), several inter-CH keys (KCH,CH), a
discovery key (Kd) and a group communication key (Kg). Third, the KG of a cluster is
required to store the KG-to-CM keys (KKG) and logical ID of all CMs, the logical ID of
the revoked CMs, 2CMmaxlog2(CMmax) administrative keys or (2CMmax-2) key seeds.

The computational overhead of the scheme for a group communication key update
can be divided into three parts. First, each CH performs a new group communication
key generation operation, an encryption operation and a decryption operation. Second,
each KG performs a decryption operation, two encryption operations for each update
message. Third, each CM needs a single decryption operation and at most (CMmax-1)
one-way function operations. The number of the update message is decided by the set
of the revoked CMs.

The communication cost of the scheme for a group communication key update
includes an encryption message containing new group communication key from CH
to KG, at most 2R encryption message from KG and CH, and at most 2R encryption
broadcasting from CH to its cluster, where R is the number of revoked CMs in the
corresponding cluster.

5 Related Work

There are many group key management schemes for wire and wireless networks
presented in the literature, which can be classified as centralized, decentralized, or
distributed. In [10], a survey on the secure group communication is given. Group Key
Management Protocol (GKMP) [11], Logical Key Hierarchy (LKH) [12], One-way
Function Chain Tree (OFCT) [13], and Efficient Large-group Key distribution (ELK)
[14] are the typical examples of the centralized schemes. Examples of the
decentralized schemes are MARKS [15] and Kronos [16], and examples of the
distributed schemes are Conference Key Agreement (CKA) [17] and Distributed LKH
[18]. The objective of most of these schemes is to balance communication cost with
memory cost. The main drawback of using most of these group key management
schemes for WSNs is the lack of support for faulty and misbehaving sensor nodes,
and the overhead incurred to support key management activities including setup and
rekeying.

638 H. Chen et al.

Among existing group key distribution techniques, three approaches are potential
candidates for large wireless networks: self-healing key distribution [19], stateless key
distribution [20] and EBS-based key distribution [21]. Recently, the Hybrid Key Tree
(HKT) scheme is proposed in [22] to balance security and efficiency using a two level
hybrid key tree. HKT has a sublinear storage complexity at the controller with cluster
architecture. These schemes are also presented for the traditional wireless networks,
and cannot use for WSNs directly. Our scheme is based on the KCT mechanism that
is one of the stateless key distribution techniques. KCT-based group key management
scheme splits the functions of group communication key’s generation, administrative
keys’ generation and distribution into different CHs, which provides scalability and
prevents the manipulation of the whole cluster due to the CH’s compromise.

In the last few years, a lot of key predistribution management schemes have been
proposed for WSNs. Eschenauer and Gligor proposed a probabilistic key
predistribution scheme for pair-wise key establishment [3]. Chan et al. extended the
idea in [3] and developed three key predistribution schemes, the q-composite key
predistribution scheme, the multi-path key reinforcement scheme and the random
pair-wise keys scheme [23]. In [24], Liu and Ning proposed two pair-wise key
predistribution schemes, a random subset assignment scheme and a hypercube-based
scheme. A low energy key management scheme based on key clusters for WSNs is
proposed in [25]. And in [26], we proposed an energy-aware key predistribution
management scheme for WSNs. However, key predistibution management schemes
do not provide rekeying capability, and they may impede in-network processing,
which is widely accepted as an essential paradigm for enhancing the energy-
efficiency in WSNs. Our proposed scheme provides rekeying and supports the secure
data aggregation protocol.

An EBS-based group key management scheme for WSNs is proposed in [27]. In
order to address the collusion problem in EBS, Younis et al. proposed the SHELL, an
EBS-based scheme that performs location-aware key assignment to minimize the
number of keys revealed by capturing collocated sensor nodes, in [29]. However, the
collusion attack still exists in EBS-based key management schemes. Our proposed
scheme provides a secure encryption of the messages even if the revoked sensor
nodes collude with each other or the CH is compromised.

6 Conclusions

Since many applications are dependent on the secure operations, and network
compromise may be induce the serious consequences, security is not a trivial issue for
these WSN scenarios. An essential component of any key-based security solution is
managing the encryption keys in the system. Hence, we propose a KCT-based group
key management scheme for the clustered WSNs in this paper. This scheme
decouples the functions of key management and distributes them to different CHs in
order to provide attack/failure resilient solutions. And it also provides rekeying
process to enhance network security and survivability against node capture, simplify
the addition and exclusion of sensor nodes. Security analysis results show that the
scheme provides a secure encryption of the messages even if the revoked sensor
nodes collude with each other or the CH is compromised. Moreover, for a secure

 KCT-Based Group Key Management Scheme in Clustered WSNs 639

group communication key update, the scheme requires 2log2CMmax keys storage, a
single decryption operation and at most (CMmax-1) one-way function operation at each
CM, at most 2R encryption broadcasting at CH.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks: A
Survey, Computer Networks, Vol. 38, No. 4, (2002) 393-422

2. Perrig, A., Stankovic, J.A., Wagner, D.: Security in Wireless Sensor Networks,
Communications of the ACM, Vol. 47, (2004) 53-57

3. Eschenauer, L., Gligor, V.D.: A Key Management Scheme for Distributed Sensor
Networks, Proc. of CCS’02, (2000) 41-47

4. Zhu, S., Setia, S., Jajodia, S., Ning, P.: An Interleaved Hop-by-Hop Authentication
Scheme for Filtering False Data in Sensor Networks, Security and Privacy, (2004)

5. Karlof, C., Wagner, D.: Secure Routing in Wireless Sensor Networks: Attacks and
Countermeasures, Proc. of SNPA’03, (2003) 113-127

6. Wood, A.D., Stankovic, J.A.: Denial of Service in Sensor Networks, IEEE Computer, Vol.
35, (2002) 54-62

7. Rafaeli, S., Hutchison, D.: A Survey of Key Management for Secure Group
Communication, ACM Computing Surveys, Vol. 35, No. 3, (2003) 309-329

8. Gober, P., Ziviani, A., Todorova, P., Amorim, M.D., Hunerberg, P., Fdida, S.: Topology
Control and Localization in Wireless Ad Hoc and Sensor Networks, Ad Hoc & Sensor
Networks, Vol.1, (2005) 301-322

9. Wang, P., Ning, P., Reeves, D.S.: Storage-Efficient Stateless Group Key Revocation,
LNCS, Vol. 3225, (2004) 25-38

10. Harney, H., Muckenhirn, C.: Group Key Management Protocol (GKMP) Specification,
RFC 2093, Internet Soc., (1997)

11. Wallner, D., Harder, E, Agee, R.: Key Management for Multicast: Issues and
Architectures, RFC 2627, Internet Soc., (1999)

12. Wong, K., Gouda, M., Lam, S.: Secure Group Communications Using Key Graphs,
IEEE/ACM Trans. Networking, Vol. 8, No. 1, (2000) 16-30

13. Canetti, R., Malkin, T., Nissim, K.: Efficient Communication-Storage Tradeoffs for
Multicast Encryption, Proc. of EUROCRYPT’99, (1999) 459-474

14. Perrig, A., Song, D., Tygar, J.: ELK, A New Protocol for Efficient Large-Group Key
Distribution, Proc. of Security and Privacy, (2001)

15. Brisco, B.: MARKS: Multicast Key Management Using Arbitrarily Revealed Key
Sequences, Proc. of WNGC’99, (1999)

16. Setia, S., Koussih, S., Jajodia, S.: Kronos: A Scalable Group Rekeying Approach for
Secure Multicast, Proc. of Security and Privacy, (2001)

17. Boyd, C.: On Key Agreement and Conference Key Agreement, Proc. of Information
Security and Privacy, (1997)

18. Rodeh, O., Birman, K., Dolev, D.: Optimized Group Rekey for Group Communication
Systems, Proc. of NDSS’00, (2000)

19. Staddon, J., Miner, S., Franklin, M., Balfanz, D., Malkin, M., Dean, D.: Self-healing Key
Distribution with Revocation, Proc. of ISSP’02, (2002) 224-240

20. Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless
Receivers, LNCS, Vol. 2139, (2001) 41-62

640 H. Chen et al.

21. Eltoweissy, M., Heydari, H., Morales, L., Sadborough, H.: Combinatorial Optimization of
Key Management in Group Communications, J. Network and Systems Management, Vol.
12, No. 1, (2004) 33-50

22. Duma, D., Shahmehri, N., Lambrix, P.: A Hybrid Key Tree Scheme for Multicast to
Balance Security and Efficiency Requirements, Proc. of WETICE’03, (2003)

23. Chan, H., Perrig, A., Song, D.: Random Key Pre-distribution Schemes for Sensor
Networks, Proc. of ISRSP’03, (2003) 197-213

24. Liu, D., Ning, P., Li, R.: Establishing Pairwise Keys in Distributed Sensor Networks,
ACM Trans. on Information and System Security, Vol.8, No.1, (2005) 41-77

25. Chen, H., Ying, B., Chen, B., Mineno, H., Mizuno, T.: A Low Energy Key Management
Scheme in Wireless Sensor Networks, Proc. of CHINACOM2006, (2006)

26. Ying, B., Chen, H., Zhao, W., Qiu, P.: An Energy-Aware Key Management Scheme in
Wireless Sensor Networks, Proc. of ICICIC2006, (2006)

27. Eltoweissy, M., Younis. M.F., Ghumman. K.: Group Key Management Scheme for Large-
Scale Wireless Sensor Network, Ad Hoc Networks, (2005) 796-802

28. Younis, M.F., Ghumman, K., Eltoweissy, M.: Location-Aware Combinatorial Key
Management Scheme for Clustered Sensor Networks, IEEE Trans. On Parallel and
Distributed Systems, Vol. 17, No. 8, (2006) 865-882

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 641–652, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Secure Packet Filtering Mechanism for Tunneling
over Internet

Wan-Jik Lee1, Seok-Yeol Heo2, Tae-Young Byun3,*, Young-Ho Sohn4,
and Ki-Jun Han5

1,2 Department of Bio-Electronics
Pusan National University of Pusan, Korea

3 School of Computer and Information Communications Engineering
Catholic University of Daegu, Gyeongsan, Gyeongbuk, Korea

4 School of Electrical Engineering and Computer Science
Yeungnam University of Daegu, Korea
5 Department of Computer Engineering

Kyungpook National University of Daegu, Korea
{wjlee,syheo}@pusan.ac.kr, tybyun@cu.ac.kr, ysohn@yu.ac.kr,

kjhan@bh.knu.ac.kr

Abstract. Unlike Internet design policies of early stage, various types of
tunneling are currently used in Internet for IPv4/IPv6 transition, IP multicasting
and IP mobility. As tunneled packets have dual IP headers, general firewall
systems apply the filtering rules only to the outer header but not to the inner
header when these packets pass the firewall. Thus, many present firewall
systems may have serious security problems to packet filtering for tunneled
packets. To resolve this issue, a new packet filtering mechanism to filter
tunneled packets is proposed in this paper. We design and implement the packet
filtering mechanism by using Linux Netfilter. Through this study, the packet
filtering system was also found operating correctly in the IPv6-in-IPv4/IP-in-IP
tunneling.

Keywords: Packet Filtering, Tunneling, Firewall, Netfilter, Security.

1 Introduction

Still these days, various protocols coexisting in the Internet environment are not
compatible with each other. For example, IPv6, the next generation Internet protocol,
is not compatible with IPv4. Thus, various types of IP-based tunneling are used for
interworking those incompatible protocols, and more employments of tunneling in the
Internet are expected due to IPv6 deployment and extension of MBONE etc. These
tunneled packets can be generated in various forms such as IPv4-in-IPv4, IPv6-in-
IPv4, IPv4-in-IPv6, IPv6-in-IPv6 depending upon supporting protocols and network
environments.

* Correspondent Author.

642 W.-J. Lee et al.

In case of inflow of these tunneled packets into firewalls, the possibility that a
firewall may recognize only the outer header and process it is fairly high. A Filtering
system hooks the packet and filters it, it is impossible to recognize the inner header
and filter this packet in case of a software based firewall.

In this paper, we propose a new packet filtering mechanism to solve the security
problem, and also design and implement the packet filtering mechanism based on
Linux Netfilter. Our proposed packet filtering mechanism recognizes dual headers of
incoming packets and filters the outer headers and inner header properly. We also see
if the packet filtering mechanism operates correctly in the IPv4/IPv6 transition and
IPv4-in-IPv4 encapsulation environments.

The rest of the paper is consists of followings. Section 2 discusses the security
issues of current packet filtering mechanism for tunneled packets. In Section 3, the
proposed mechanism and implementation are described. The correct operation of
implementation is described in section 4. Finally, we explain our conclusions in
section 5.

2 Security Issues Due to Tunneled Packets

Tunneling over Internet is used for supporting IPv4/IPv6 transition, multicasting,
VPN(Virtual Private Network) and mobile IP. Among these, a VPN fundamentally
uses tunneling for security, and a mobile IP mandatorily employs IPsec, so security
problems by these tunneling are hardly occurred. However, tunneling for IPv4/IPv6
transition and IP multicasting may bring about security problems such as packet
filtering avoidance at a firewall.

Figure 1 shows a procedure of tunneling, where an IPv6 packet runs through non-
IPv6 networks, and a structure of tunneled packet that is encapsulated as a form of
IPv6-in-IPv4.

IPv6 Network

Firewall

TEP A TEP B

IPv6 Host

IPv6 Network

IPv6 Host

IPv4 Network

TEP: Tunnel End Point

IPv6
header

IPv6-In-IPv4 tunneled packet

IPv6
header

IPv6
header

IPv4
header

Fig. 1. An example of tunneling using IPv6-in-IPv4 encapsulation

Outer IPv4 header has the IPv4 address of TEP A as a source address, also the
IPv4 address of TEP B as a destination address and it is generated while a packet goes
through an IPv4 area. A firewall in figure 1 recognizes only outer IPv4 header, thus,
though filtering rules for IPv6 packet are set, a firewall can not apply filtering rules to
inner IPv6 header. Due to these problems, if tunneling is intentionally used to detour
filtering function of firewall, it can be a severe threat to network. Also, IP multicast
packet has the same problem as above except for using IPv4-in-IPv4 encapsulation.

 A Secure Packet Filtering Mechanism for Tunneling over Internet 643

Tunneling for IPv4/IPv6 transition roughly can be categorized as configured
tunneling and automatic tunneling[4]. In a configured tunneling, a network
administrator statically sets both of TEP addresses for tunnel. So, we can use IPsec in
this case, and the use of IPsec is recommended in standard documents. However,
some standardized automatic tunneling mechanisms are devised for user convenience.
Because these automatic tunnels are dynamically created and removed and also both
of end addresses are changed, we can not adopt IPsec to automatic tunnel. Currently,
standardization for some automatic tunneling including 6to4[5], ISATAP[6],
Teredo[7], DSTM[8] are finished or work in progress in IETF. Among them, 6to4 and
Teredo are already standardized, and implemented in general operating system
including Microsoft Windows and Linux. In addition, IPv6 related organizations
provide tunneling services such as 6to4 and TEREDO to not only authorized
organizations, but also client hosts of normal users to promote IPv6 deployment.
Figure 2 shows an example of threat on the tunneling environment.

SITE A

FireWall

VictimVictim

AttckerAttcker

6TO4 Service

Router
Host AHost A

Fig. 2. An example of malicious use of tunneling

In figure 2, an attacker can generate a malicious IPv6-in-IPv4 packet, which
disguises 6to4 packet from a fair 6to4 router, encapsulates the source address of IPv4,
then may attack a victim host in site A. In this case, because a firewall in site A can
not recognize inner malicious IPv6 packet within tunneled packet, a firewall can not
distinguish fabricated packets attacking a victim host from normal packets to host A.

What firewall does know is only an information that IPv6 packet is within IPv4
payload, therefore, a firewall can not apply IPv6 packet filtering rules to inner IPv6
packet. That is, firewall in figure 2 performs packet filtering after routing ingress
packets. While a procedure of routing is going on, IPv4 packets and IPv6 packets are
separately proceeded along to different routines. Therefore, packets in an IPv4 routing
procedure can not be delivered to an IPv6 routing procedure. A conceptual processing
procedure of a packet is illustrated in figure 3.

IPv4

Routing

PACKET

IPv6

Routing

Input

Interface

IPv4 Packet Filtering
- Src/Dst Address Matching
- Src/Dst Port Matching

- Stateful Packet Inspection
- …

IPv4 Packet Filtering
- Src/Dst Address Matching
- Src/Dst Port Matching

- Stateful Packet Inspection
- …

IPv6 Packet Filtering

- Src/Dst Address Matching

- Src/Dst Port Matching
- Stateful Packet Inspection
- …

IPv6 Packet Filtering

- Src/Dst Address Matching

- Src/Dst Port Matching
- Stateful Packet Inspection
- …

Output

Interface

DROP

DROP

Fig. 3. A packet processing procedure in firewall

644 W.-J. Lee et al.

The security problem like this is due to tunneling itself. Because a packet of layer 3
is embedded in a packet payload of layer 3, tunneling disobeys protocol layering
concept. Accordingly, it is necessary to apply filtering rules to inner header of
tunneled packet.

Currently, security problems related to IPv6 have been studied in several research
organizations, and some network manufacturers and security providers already
released common firewall products that deal with IPv6 packets. Additionally, firewall
framework such like Netfilter provides filtering capability to IPv6 basic header and
extension header. Nevertheless, the studies for security problems due to tunneling for
IPv4/IPv6 transition are comparably poor.

The v6ops working group of the IETF classifies these security problems into
security threat caused to IPv4/IPv6 transition and recommends countermeasures to
these [10, 11]. Also, [12] has proposed a packet filtering mechanism to a variety of
IPv4/IPv6 transitions. This paper proposed only a filtering scheme using relationship
between outer IPv4 address and inner IPv6 packet, provided a simple filtering
function to only inner IPv6 address. Nevertheless, this scheme has a limitation that
IPv6 filtering rules already set in a firewall can not be applied into inner IPv6 packet.

Tunneling for IP multicasting is similar to previous IPv4/IPv6 tunneling except for
using IPv4-in-IPv4 encapsulation instead of IPv6-in-IPv4 encapsulation, so the same
security problems as tunneling for IPv4/IPv6 transition can occur in tunneling for IP
multicasting. The multicast security working group of the IETF also deals with
security issues of IP multicasting, but intensively studies authentication methods for
group membership of IP multicast[14]. They only recommend the use of IPsec in
establishing tunnel for multicasting.

3 Design and Implementation of Netfilter-Based Packet Filtering
for Tunneling

3.1 Packet Filtering Based on Netfilter

Netfilter is a kind of framework of Linux kernel that supports packet filtering, NAT
(Network Address Translation) and a packet mangling function with user interface
tool of iptables. Netfilter provides a development environment for filtering and

Routing

Routing[1] [3] [4]

[2] [5]

PRE_ROUTING FORWARD POST_ROUTING

LOCAL_IN
LOCAL_OUT

Fig. 4. Hooking points of Netfilter

 A Secure Packet Filtering Mechanism for Tunneling over Internet 645

address translation where it hooks the traversing packet on a specific point of internal
system. Figure 4 shows hooking points of Netfilter.

In figure 4, three hooking points such as LOCAL_IN, FORWARD, and
LOCAL_OUT are available for packet filtering. Hooking points of PRE_ROUTING
and POST_ROUTING are used in NAT and packet mangling. Packet filtering rules
are applied to a point of receiving the packet (LOCAL_IN), forwarding the packet
(FORWARDING) and sending the packet (LOCAL_OUT) respectively by hooking
the traversing packet. At this time, the rules applied to each hooking point are
assigned independently and a network firewall(not a personal firewall) applies this
packet filtering rules to a forwarding hooking point.

The filtering rules applied to the hooking point are set by iptables or ip6tables
command and commands are divided into two parts of Match and Target. Match
commands set the conditions, then decide if each packet satisfies this rule and Target
commands direct processing of the matched packet. For example, when an user
applies the rule ‘iptables –A FORWARD –s 200.1.1.0/24 –j DROP’, this command
indicates several means of followings.

• This command should be applied to FORWARD hooking point.
• Source address of packet is in ‘200.1.1.0/255.255.255.0’.
• Option DROP, which follows option –j(JUMP) means that matched packet should

be discarded.

Netfilter stores this rules in filtering table of internal kernel. When a packet flows
into the kernel, Netfilter filters this packet by using the filtering table. Figure 5
illustrates the procedure as follows in detail.

• NF_HOOK in IPv4 packet processing code delivers the packet to forward hooking
point in figure 5.

• Packet handling routine in hooking point processes the packet according to
predefined rules in packet filtering table, ip_tables.

IPv4 Packet Processing Code
……

return NF_HOOK(PF_INET, FORWARD,
skb, ..., ip_forward_fininsh());

……

static ip_forward_finish(skb)
{

……

}

LOCAL_OUT

LOCAL_IN

FORWARD

Packet Handling
routine

IPv6

IPv4

ip_tables

Packet
Filtering
Rules1)

2)

3)

4)

Fig. 5. Existing Netfilter packet filtering procedure

646 W.-J. Lee et al.

3.2 Design and Implementation of Filtering Mechanism for Tunneling

It is necessary to augment the following functions of processing to apply packet
filtering rules to tunneled packets properly.

• To recognize tunneled packet
• To deliver the packet to proper filtering table for inner IP header

In this paper, we modified packet-processing code in figure 5 and designed a new
filtering mechanism for tunneled packet as shown in figure 6.

LOCAL_OUT

LOCAL_IN

FORWARD
Packet Handling

routine

IPv6

IPv4

ip_tables

IPv4 Packet Processing Code
……
#ifdef TUNNEL_FILTERING

return NF_HOOK(PF_INET, FORWARD,
skb, ..., ip_tnl());

#else
return NF_HOOK(PF_INET, FORWARD,

skb, ..., ip_forward_fininsh());
#endif

……

ip6_tables

ip_tnl()
{

……
if (tunneling pkt) {

if (inner pkt == IPv6) {
……

return NF_HOOK(PF_INET6, ... ip_tnl_finish());
}
else if (inner pkt == IPv4) {

……
return NF_HOOK(PF_INET, ... ip_tnl_finish());

}
}
else {

ip_forward_finish(skb);
}

}

Packet Handling
routine

ip_tnl_finish()
{

// restore to original tnl pkt.
……

}

1)

2)

3)

4)
5)

6)

7)

8)

Fig. 6. Our proposed tunneled packet filtering procedure

Check the packet is a tunneled packet.

if not a tunneling packet, return to ip_forward_finish().

if the packet is a IPv6-in-IPv4 tunneling packet

skb->prehdr_offset = iph->ihl*4;

skb->nh. ipv6h = (skb->data + iph->ihl*4);

skb->data += iph->ihl*4;

skb->len -= iph->ihl*4;

return NF_HOOK(PF_INET6, FORWARD, …, ip_tnl_filter());

else if the packet is a IPv4-in-IPv4 tunneling packet

skb->prehdr_offset = iph->ihl*4;

skb->nh. iph = (skb->data + iph->ihl*4);

skb->data += iph->ihl*4;

skb->len -= iph->ihl*4;

return NF_HOOK(PF_INET6, FORWARD, …, ip_tnl_filter());

ip_tnl() function
Restore the packet to original tunneled packet

skb->len += skb->prehdr_offset;

skb->data -= skb->prehdr_offset;

skb->nh.iph = skb->data;

return to ip_forward_finish()

ip_tnl_finish() function

Fig. 7. Function ip_tnl() and ip_tnl_finish()

IPv4 packet processing code in figure 6 was modified so that the packet which
passed outer IPv4 packet filtering table executes ip_tnl() function if kernel compile
option TUNNEL_FILTERING is set. Function ip_tnl() investigate packets whether it
is tunneled or not. If it is tunneled packet, function ip_tnl() reenter this packet to

 A Secure Packet Filtering Mechanism for Tunneling over Internet 647

ip6_tables or ip_tables filtering tables. Figure 7 shows function ip_tnl() and function
ip_tnl_finish() which process the packet passed second filtering table.

To reenter tunneled packet to the second filtering table as explained above, it is
necessary to modify some fields of skb which is data structure of packet in Linux
kernel. By performing packet modification, the tunneled packet can be processed as
the independent packet by the second filtering table. After the packet passed the
second filtering table, the additional procedure, which restores the packet to original
tunneled packet format, is required. This skb change and restoration are accomplished
in function ip_tnl() and ip_tnl_finish() as shown in figure 7.

An IPv6 packet filtering procedure can be applied the same as an IPv4 packet
processing procedure. That is, in case of processing IPv6 packet the recognition of
tunneled packet and reentering the packet to filtering table according to inner packet
can be performed.

We implemented our packet filtering processing mechanism for tunneling on Linux
kernel 2.6.10 with iptables-1.3.5. The details of operation are explained in section 4.

4 Behavior Test and Experimental Evaluation

To show the correct operation of our implementation, we performed the behavior test
on cases of two network configurations, an IPv6-in-IPv4 network configuration and
an IPv4-in-IPv4 network configuration.

4.1 Behavior Test of Our Implementation

4.1.1 IPv6-in-IPv4 Network Configuration
Figure 8 illustrates our simple IPv6-in-IPv4 network environment. Here, we use three
linux systems, a net-fw that serves as a firewall, an in-host plays a role of host in the
network which the firewall protects and an out-host plays a role of host outside the
network respectively.

eth0

v4: .2

v6: ::1
3ffe:100::/64

out-host

net-fw

in-host

IPv6

203.232.100.0 203.232.200.0

eth0

v4: .2

v6: ::2

ip route add 203.232.100.0/24 via 203.232.200.1

iptunnel add sit2 mode sit remote 203.232.100.2 local 203.232.200.2

ip l s sit2 up

ifconfig sit2 inet6 add 3ffe:100::2/64

eth0:

v4: .1

eth1:

v4: .1

ip route add 203.232.200.0/24 via 203.232.100.1

iptunnel add sit1 mode sit remote 203.232.200.2 local 203.232.100.2

ip l s sit1 up

ifconfig sit1 inet6 add 3ffe:100::1/64

echo “1”> proc/sys/net/ipv4/ip_forward
IPv6

�

Fig. 8. IPv6-in-IPv4 tunneling testbed

648 W.-J. Lee et al.

Figure 8 also shows IPv6-in-IPv4 tunnel configuration, both out-host and in-host
have IPv4/IPv6 dual protocol stacks and we assume that the network between two
systems supports only IPv4. The details of commands for tunnel configuration are
shown in square boxes of figure 8 respectively. We make TEP interface called sit1 in
the out-host and assign it with 3ffe:100::1/64 address. Also, we set TEP interface
called sits2 in the in-host with 3ffe:100::2/64 address.

To emphasize the advantages of our implementation, we performed behavior test
on two cases.

(1) Behavior test of packet filtering without our proposed filtering mechanism
We test existing filtering functions for tunneled packets of firewall without our
filtering mechanism in figure 8(IPv6-in-IPv4 tunneling environments) and figure 9
presents the result of filtering test. Although we command “drop all icmpv6 packets
and drop all packets sent from 3ffe:100::1” in a terminal window of the firewall(net-
fw) in figure 9, ping6 packets that travels from out-host(3ffe:100::1) to in-
host(3ffe:100::2) can not be dropped, thus, ping6 commands in a terminal window of
out-host works well. This indicates that the filtering functions of firewall(net-fw) for
inner header of tunneled packets not works at all.

a) terminal window of out-host b) terminal window of net-fw

Fig. 9. Filtering test for IPv6-in-IPv4 tunneled packets without our filtering mechanism

(2) Behavior test of packet filtering with our proposed filtering mechanism
Next, we performed the same tests after enabling our mechanism on the firewall.
Figure 10 shows the test results of filtering for tunneled packets on the same IPv6-in-
IPv4 environments in figure 8.

b) terminal window of net-fwa) terminal window of out-host

Fig. 10. Filtering test for IPv6-in-IPv4 tunneled packets with our filtering mechanism

 A Secure Packet Filtering Mechanism for Tunneling over Internet 649

In figure 10, the first ping6 command works well as shown in a terminal window
of the out-host, but the second ping6 command does not work after setting a packet
filtering command(Drop all icmpv6 packets) in a terminal window of net-fw. These
behavior test results verify that filtering functions of our implementation are applied
to inner header of tunneled packets, drop packets that match to filtering rules.

4.1.2 IPv4-in-IPv4 Network Configuration
Figure 11 shows an IPv4-in-IPv4 tunnel configuration. Systems in testbed are the same
as the figure 8, but tunnel and network configurations are changed to establish IPv4-in-
IPv4 tunnel from out-host to in-host. We assign IP address 100.1.1.1 to TEP
interface(tnl1) of the out-host, IP address 100.1.1.2 to TEP interface(tnl1) of the in-host.

eth0: .2out-host

net-fw

in-host

IPv4

203.232.100.0 203.232.200.0

eth0: .2

ip route add 203.232.100.0/24 via 203.232.200.1

iptunnel add tnl1 mode ipip remote 203.232.100.2 local 203.232.200.2

ip l s tnl1 up

ifconfig tnl1 inet add 100.1.1.2

route add –host 100.1.1.1 dev tnl1

eth0:

.1

eth1:

.1

ip route add 203.232.200.0/24 via 203.232.100.1

iptunnel add tnl1 mode ipip remote 203.232.200.2 local 203.232.100.2

ip l s tnl1 up

ifconfig tnl1 inet add 100.1.1.1

route add –host 100.1.1.2 dev tnl1

echo “1”> proc/sys/net/ipv4/ip_forward
IPv4

tnl1: 100.1.1.2tnl1: 100.1.1.1

Fig. 11. IPv4-in-IPv4 tunneling testbed

(1) Behavior test of packet filtering without our proposed filtering mechanism
In figure 12, we can also see that the filtering functions for inner header of tunneled
packets do not work properly in the absence of our filtering mechanism like as figure 9.

a) terminal window of out-host b) terminal window of net-fw

Fig. 12. Filtering test for IPv4-in-IPv4 tunneled packets without our filtering mechanism

(2) Behavior test of packet filtering with our proposed filtering mechanism
IPv4-in-IPv4 packet filtering tests in figure 13 show the same result as figure 10.
These test results verify that filtering functions of our implementation are applied to
inner header of tunneled packets, drop packets that match to filtering rules.

650 W.-J. Lee et al.

a) terminal window of out-host b) terminal window of net-fw

Fig. 13. Results of filtering test for IPv4-in-IPv4 tunneled packets with our filtering mechanism

Besides above tests, we test many filtering rules for inner header in tunneled
packets, also test for IPv6-in-IPv6, IPv4-in-IPv6 tunneled packets with Libnet[20] and
ethereal tools which provide packet generation and packet capturing. In addition, we
check functions of our implementation with these tests.

4.2 Experimental Evaluation

We simply evaluate experimental performance of our filtering mechanism by using
ping6 program. In the IPv6-in-IPv4 environment such as figure 8, we measure ping6
packet latencies from out-host to in-host with varying packet size 100 bytes to 1000
bytes. The number of ping6 packets per packet size is 500 and we average latencies of
500 packets per packet size.

0

100

200

300

400

500

600

700

Packet Size (bytes)

D
e
la
y

(
u
s
)

w/ tnl w/o tnl

100 200 300 400 500 600 700 800 900 1000

Fig. 14. Ping6 latencies with our filtering mechanism and without our filtering mechanism (no
filtering rules in the firewall)

Figure 14 shows two curves of ping6 latencies on the IPv6-in-IPv4 tunneling
environment, the one is ping6 latencies while our filtering mechanism is enabled and
the other is that of ping6 latencies while our filtering mechanism is disabled. Label “w/
tnl” in figure 14 means that our filtering mechanism is enabled, on the other hand, label
“w/o tnl” indicates our filtering mechanism is disabled. When we compare with

 A Secure Packet Filtering Mechanism for Tunneling over Internet 651

0

100

200

300

400

500

600

700

Packet Size (bytes)

D
e
la
y
 (
u
s
)

w/ tnl w/o tnl

100 200 300 400 500 600 700 800 900 1000

Fig. 15. Ping6 latencies with our filtering mechanism and without our filtering mechanism (20
filtering rules for IPv4 packets and 20 filtering rules for IPv6 packets in the firewall)

two curves, the difference is caused to additional operations that consist of inner header
decision, packet’s structure modification and filtering hooking function call. Average
value of difference is about 30 micro-second, which is not a large value, so it’s
negligible. This justify that adoption of our mechanism does not severely affect system
performance for packet filtering and improve the security against network threat.

Figure 15 shows ping6 packet latencies on the same condition as Figure 14 except
for setting 20 filtering rules for IPv4 packet and 20 filtering rules for IPv6 packet in
firewall. In case of our filtering mechanism enabled, total of 40 filtering rules are
applied to tunneled packets, however, only 20 filtering rules are applied to tunneled
packets in case of our filtering mechanism disabled. Comparing with figure 14, we
know that latencies in figure 15 increase a little due to matching operations for
additional filtering rules.

5 Conclusions

Many firewall systems used in present provide filtering capabilities to only outer
header of incoming tunneled packets, but these systems have a drawback of not
providing filtering to inner header of the packet. As the use of tunneling over Internet
increases, a drawback of not supporting filtering functions to inner header of tunneled
packets will be a great threat to network security.

To solve this problem, we proposed a new packet filtering mechanism which disting-
uishes various types of inner packet in tunneled packet, and performs packet filtering to
inner header of the packet. Also, we implemented our proposed packet filtering
mechanism on basis of Linux Netfilter, showed correct behavior of packet filtering over
various tunneling environments including IPv6-in-IPv4 and IPv4-in-IPv4.

We expect that our proposed mechanism, in this paper, can be contributed to
improve security of firewall system for dealing with tunneled packets that would be
frequently used in the future. Especially, our implementation based on Netfilter can
be easily portable to software-based firewall system, router and NATs running over
embedded Linux.

652 W.-J. Lee et al.

References

1. Rusty Russell, “Linux 2.4 Packet Filtering HOWTO,” www.netfilter.org
2. Rusty Russell, “Linux Netfilter Hacking HOWTO,” www.netfilter.org
3. The 6NET Consortium, “6net: An IPv6 Deployment Guide,” September 2005
4. R. Gilligan and E. Nordmark, “Transition Mechanisms for IPv6 Hosts and Routers,” RFC

2893, August 2000
5. B. Carpenter and K. Moore, “Connection of IPv6 Domains via IPv4 Clouds,” RFC 3056,

February 2001
6. F. Templin et al., “Intra-Site Automatic Tunnel Addressing Protocol (ISATAP),” draft-

ietf-ngtrans-isatap-24.txt(work in progress), January 2005
7. C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network Address Translation

(NATs),” RFC 4380, February 2006
8. J. Bound, L. Toutain and H. Affifi, “Dual Stack Transition Mechanism (DSTM),” Internet

Draft, August 2003, work in progress
9. Christian Benvenuti, “Understanding LINUX Networking Internals,” O’REILLY Press,

pp. 466-473, 2006
10. E. Davies and et al., “IPv6 Transition/Co-existence Security Considerations,” draft-ietf-

v6ops-security-overview-06.txt, May 2005, work in progress
11. P. Savola, “Firewalling Considerations for IPv6,” draft-savola-v6ops-firewalling-01.txt,

March 2003, work in progress
12. Seok-Yeol Heo and et al., “Design and Implementation of Packet Filtering Systems for

IPv4/IPv6 Tunneling Environment,” Journal of KISS: Information Networking, Vol. 33,
December 2006

13. R. Finlayson, “IP Multicast and Firewalls,” RFC 2588, May 1999
14. Tsunemass Hayashi and et al., “Requirements for Accounting, Authentication and

Authorization in Well Managed IP Multicasting Services,” draft-ietf-mboned-maccnt-req-
04.txt, February 2006, work in progress

15. P. Savola, “Security of IPv6 Routing Header and Home Address Options,”draft-savola-
ipv6-rh-ha-security-03.txt, December 2002, work in progress

16. E. Davies and J. Mohacsi, “Recommendations for Filtering ICMPv6 Messages in
Firewalls,” draft-ietf-v6ops-icmpv6-filtering-recs-02.txt, January 2007, work in progress

17. P. Savola, “Security Considerations for 6to4,” RFC 3964, December 2004
18. R. Graveman and et al., “Using IPsec to Secure IPv6-in-IPv4 Tunnels,” draft-ietf-v6ops-

ipsec-tunnels-02.txt, March 2006, work in progress
19. IANA, “Special-Use IPv4 Addresses,” RFC 3330, September 2002
20. Libnet Homepage, http://libnet.sourceforge.net

An End-to-End Packet Delay Optimization for

QoS in a MANET

Sang-Chul Kim

School of Computer Science, Kookmin University,
861-1, Chongnung-dong, Songbuk-gu, Seoul, 136-702 Korea

sckim7@kookmin.ac.kr

Abstract. This paper1 focuses on calculating an end-to-end packet de-
lay optimization for Quality of Service (QoS) in a mobile ad hoc network
(MANET). Each intermediate node in an active path can achieve the
optimized data rate which is obtained by using Lagrangian function and
the end-to-end packet delay constraint. It is shown that the amount of
data rate compared to the one which is not optimized can be saved in
the proposed algorithm.

1 Introduction

Wireless communications systems continue to use exponentially expand band-
width with the recent fast growth in wireless communication technologies as
a result of advances in digital communications, commercial laptop computers
and semiconductor technologies. The most popular networks of the traditional
wireless model are cellular and mobile IP networks, which have been configured
with a wired backbone and one last wireless hop, which is a point-to-point chan-
nel between the base station and the mobile user. In the wireless cell domain,
the base station provides centralized control for the mobile users to access the
medium. IS-54 (The first generation of the digital standard with TDMA tech-
nology), IS-95 (The standard for CDMA), cdma2000, W-CDMA, and IMT-2000
are currently standardized in cellular communication systems.

For the past few years, MANETs have been emphasized as an emerging re-
search area due to the growing demands for mobile computing, where the dy-
namic topology for the rapid deployment of independent mobile users becomes a
new considering factor. For instance, mobile users across a campus can transmit
data files to each other, group members of a search and disaster rescue and recov-
ery team or military solders in automated battlefield can communicate in order to
coordinate their actions, without using a base station. These example networks
are called ad hoc wireless networks where centralized and organized connectiv-
ity may not be possible. The examples show that MANETs need to have the
abilities to provide for establishing survivable, efficient, dynamic communication
for emergency/ search-and-rescue operations, disaster relief efforts, law enforce-
ment in crowd control and military networks. One of the outstanding features
1 This research was supported by the Seoul R&BD program of Korea.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 653–663, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

654 S.-C. Kim

of MANETs could be the self-creating, self-administrating, self-organizing and
self-configuring multihop wireless network characteristic.

Addressing the QoS in MANETs has recently gained increased attention. Fu-
ture high speed wireless packet-switching networks are expected to provide traffic
engineering (TE), guaranteed QoS and differentiated services (DS) for a variety
of different traffic. The QoS is a broadly used term, which is the guarantee by the
network to satisfy a set of predetermined service performance constraints for the
user traffic flows in terms of an available bandwidth, end-to-end delay statistics,
a jitter, a probability of packet loss rate, a received bit-energy-to-noise-density,
etc. The QoS in a wired network is well specified in Integrated Service (InteServ)
and Differentiated Service (DiffServ). IntServ focuses on per-flow resource reser-
vation. DiffServ is the mechanism to ensure per-class service differentiation. The
application requiring fixed delay bound service and the application requiring re-
liable and enhanced best effort service are provided by the Guaranteed Service
and the Controlled Load Service in IntServ respectively. The Type Of Service
(TOS) bits in the IP header, which is called the DS field and a set of packet
forwarding rules, which is called Per-Hop-behavior (PHB) are the main compo-
nents to implement DiffServ. QoS in a MANET has been widely recognized as
a challenging problem. Due to the node mobility, dynamic topology and time-
varying link capacity, the provisioning of QoS guarantees is one of the difficult
issues to be implemented in MANET. The performance metrics for evaluating
the MANET QoS can be adaptively defined based on one of the wired networks
or newly defined according to the MANET properties.

2 Related Work

This paper studies a situation that when a node asks an end-to-end packet delay
towards a destination in MANET networks, each intermediate node needs to
select the optimized data rate so as to meet some delay constraint while mini-
mizing costs of network resources. In IEEE 802.11a and 802.11g, multiple data
payload transfer rate capabilities such as 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, and
54 Mbps are allowed. However, the algorithm to perform rate switching is be-
yond the scope of the IEEE 802.11a and 802.11g standards [1], [2], [3]. Toumpis
proposed the capacity regions for wireless ad hoc networks, which describes the
set of achievable rate at intermediate nodes between all source destination pairs
under various transmission strategies. Changing algorithm of the transmission
rate at a node has not been studied in [4] and it is assumed that the transmitter
node varies the transmission rate based on the value of SINR to satisfy a given
performance metric [4]. Gupta [5] calculates the capacity of wireless networks.
When each node uses a fixed power and each node sends data to a randomly
chosen destination, each node can get a throughput of Θ2

(
W/

√
nlogn

)
bit/s in

the protocol model, and c1W/
√

nlogn and c2W/
√

n bit/s are lower and upper
bounds of the throughput in the physical model. While each node uses an op-
timally chosen power and an optimally distributed traffic, then each node can
get a transport capacity of Θ

(
W

√
n
)

bit − meters/s in the protocol model,

An End-to-End Packet Delay Optimization for QoS in a MANET 655

and c3W
√

n and c4Wn
α−1

α bit − meters/s are lower and upper bounds of the
transport capacity in the physical model. To calculate the wireless network ca-
pacity at each node, it is essential for nodes to know the total number of nodes
represented by n in the MANET area with mechanisms of exchanging control
messages or data packets which piggyback control messages. [5] does not give
any mechanism for each node to choose an optimized data rate. As compared
to [1], [4] and [5], the benefit of our approach shows a mechanism to choose an
optimal data rate in an on-demand MANET networks. Ju used an discrete time
M/M/1 queueing traffic model to evaluate the average packet delay in multi-hop
packet radio TDMA network [6]. In [7], throughput-delay analysis is studied in
ad-hoc network with Kleinrock independence approximation by using TDMA.
A disadvantage of [5] and [7] which use contention-free multiple access protocol
is that the increasing complexity of TDMA or dynamic assignment of frequency
bands of FDMA due to the non-centralized control in MANETs could not be
the best solution. As a contention-based protocol, Carrier Sensing Multiple Ac-
cess with Collision Avoidance (CSMA/CA) has been standardized in the IEEE
802.11 (IEEE stands for Institute of Electronics and Electrical Engineering) and
can be one of the possible MAC protocols for MANETs. Kleinrock calculated
the throughput-delay characteristics in ALOHA and CSMA protocols. In [8],
the traffic source is also modeled as an independent Poisson source with an av-
erage mean packet generation rate of λ packets/sec. As a one of the application
of Little’s theorem, the end-to-end network delay for a packet described in [9]
can be used to network topology design in order to minimize network costs, ca-
pacity planning so as to guarantee the required traffic performance, and delay
minimization by choosing a path which gives minimum end-to-end delay. IEEE
802.11 wireless local area network (LAN) is called a cut-through routing-free
(CTRF) network where each medium access control (MAC) packet is transmit-
ted completely over one link before starting transmission to the next compared
to the concept of a cut-through routing (CTR) kind of network [3], [9]. Therefore,
a long packet in the first queue gives more processing time to the second queue
in a tandem queue [9] can not be applied in the MANET due to the property
of the wireless channel where only one node can send or receive a packet among
its neighbor nodes during a certain time. In a wired network, a link can permit
several packet streams, however, in a wireless network, a link permits only a
single packet stream during a given time interval. Since the traffic processing
time in the first queue does not affect to the arrival of traffic of the second
queue in an on-demand MANET network, it is appropriate to adopt an M/M/1
queueing model for each on-demand link regardless of traffic on this link with
traffic on other links. It implies that packet arrivals to each link are independent
from the delay and queue process over the previous relaying wireless link [7].
Therefore, Kleinrock independence approximation can be used to analysis the
average packet delay time in on-demand MANET networks.

2 Based on Knuth’s notation, f(x) = Θ(g(x)) denotes that f(x) = O(g(x)) and g(x) =

O(f(x)), where f(x) = O(g(x)) denotes that f(x)
g(x) ≤ c for some constant c and for

all sufficiently large x.

656 S.-C. Kim

The remainder of this paper is organized as follows: Chapters 3 and 4 define
the system model and an optimization procedure for the end-to-end packet delay
respectively. Chapter 5 introduces a mechanism to implement the optimization
in on-demand MANET networks. Chapter 6 contains simulation results and
performance analysis. Chapter 7 presents the conclusions.

3 System Model

In a MANET with N nodes, each node has a transmitter, a receiver and an
infinite buffer, and communicates with the other nodes by multi-hop routing.
Node tj transmits at a fixed power Ptj and all transmissions occupy a system
bandwidth (W [Hz]) in a wireless channel. When tj transmits, rj which com-
poses a pair of nodes with tj receives the signal with power Gtj ,rj Ptj where
Gtj ,rj is a channel gain between the transmitter node tj and the receiver node
rj . A transmission scheme S is a complete description of the information flow
between different nodes in the network at a given time instant and it consists of
all transmit-receive node pairs at that time, the transmission rate and the orig-
inal source node of the transmitted information [4]. For a specific transmission
scheme, which can be described as a triple Sρ = {T ρ, Rρ,Pρ}, a set of trans-
mitting nodes is represented as T ρ = {t1, . . . , tn} ∈ {1, . . . , N} and a set of their
intended receivers is Rρ = {r1, . . . , rn} ∈ {1, . . . , N}. Let transmit powers of the
nodes be Pρ = {Pt1 , . . . , Ptn}, (Pti = 0 for ti /∈ T). Together with channel gain
values, this determines achievable rates between the transmitter and receiver
pairs. For a specific transmission scheme Sρ, a signal to interference and noise
ratio (SINR) between the active pair of nodes (tj , rj) is given by

ξ ρ
tj ,rj

=
P ρ

tj
Gρ

tj ,rj

ηrj W +
∑

k:tk∈Tρ,tk �=tj
P ρ

tk
Gρ

tk,rj

(1)

where ηrj is a thermal noise and a background noise power spectral density
specified at node rj . It is assumed that nodes cannot transmit and receive data
packet at the same time and nodes have a perfect knowledge of the channel gain
matrix (G), the noise (η) and the power (P) vectors. Nodes tj and rj can have
a maximum data rate Rρ

j , which can be represented as a function of ξ ρ
tj ,rj

. For
example, based on Shannon capacity, the maximum data rate under a specific
digital modulation at a BER requirement can be calculated as [4]

f(ξ ρ
tj ,rj

) =

{
W log2

(
1 + ξ ρ

tj ,rj

)
, (tj , rj) ∈ (T ρ, Rρ)

0 , otherwise.
(2)

f(·) is a function that reflects the quality of the receiver. The data rate vector
Rρ =

[
Rρ

1 · · · Rρ
n

]T represents simultaneously achievable data rates between the
active transmitter and receiver pairs at the transmission scheme Sρ.

An End-to-End Packet Delay Optimization for QoS in a MANET 657

4 End to End Packet Delay Optimization

The problem is to choose a data rate at the node tj for its wireless link of a path
α so as to minimize a linear cost function of the path α [9]

n∑

tρ
j=1

p ρ
j R ρ

j (3)

where p ρ
j is a known positive price per unit data rate, subject to the constraint

that the average delay per packet at the path α should not exceed a given
constant T which is the QoS end-to-end packet delay requirement. The imple-
mentation of the T is described in Section V. An arrival rate on the node tj for
the path α during a time interval

(
Sσ , Sρ

]
, where a time difference between Sρ

and Sσ is always greater than zero, can be denoted λρ
j and is expressed in the

same unit as the departure rate (Rρ
j) which is serviced at the node tj as the max-

imum achievable data rate at the Sρ. The M/M/1 queueing model is adopted
based on the Kleinrock independence approximation for serial wireless links in
tandem to form a path, where serial wireless links through the network make a
virtual wireless packet stream in the MANET, therefore the average end-to-end
packet delay constraint for the path α can be expressed as

1
γρ

n∑

tρ
j=1

λρ
j

Rρ
j − λρ

j

≤ T (4)

where γρ is the total arrival rate, which is the summed arrival rate at active nodes
in the tagged path α during the time interval

(
Sσ, Sρ

]
. The arrival rate vector

Λρ =
[
λρ

1 · · · λρ
n

]T
during the interval

(
Sσ , Sρ

]
at the active nodes depends on

the known input arrival rates and the routing policy. It is assumed that routing
and the input arrival rates are known.

When an arrival rate (λρ
j) at the node tj is known, the problem is to minimize

the linear cost
∑n

tρ
j=1

p ρ
j R ρ

j over the maximum data rate Rρ
j , which is subject

to the above end-to-end packet delay constraint. In addition, it is clear that the
constraint will be satisfied as an equality of the optimum. A Lagrange multiplier
δ is introduced and the Lagrangian function can be formed as

L =
n∑

tρ
j=1

(
p ρ

j R ρ
j +

δ

γρ

λρ
j

Rρ
j − λρ

j

)
(5)

The partial derivative ∂L/∂Rρ
j is set to zero in accordance with the Lagrange

multiplier technique:

∂L

∂Rρ
j

= pρ
j −

δλρ
j

γρ
(
Rρ

j − λρ
j

)2 = 0 (6)

658 S.-C. Kim

Solving for Rρ
j yields

R ρ
j = λρ

j +

√
δλρ

j

γρpρ
j

(7)

and substituting into the constraint equation, T is given as

T =
1
γρ

n∑

tρ
j=1

λρ
j

Rρ
j − λρ

j

=
n∑

tρ
j=1

√
λρ

jp
ρ
j

γρδ
(8)

From the above equation,

√
δ =

1
T

n∑

tρ
j=1

√
λρ

jp
ρ
j

γρ
(9)

which when substituted in Rρ,j gives the optimal solution

Rρ,∗
j = λρ

j +
1
T

√
λρ

j

γρpρ
j

n∑

tρ
l=1

√
λρ

l p
ρ
l

γρ
(10)

The solution can also be written as

Rρ,∗
j = λρ

j

(
1 +

1
γρT

∑n
tρ
l=1

√
pρ

l λ
ρ
l√

pρ
jλ

ρ
j

)
(11)

Finally, based on the cost function for the path α which is
∑n

tρ
j=1

p ρ
j R ρ

j , the
optimal cost can be expressed as

optimal cost =
n∑

tρ
j=1

p ρ
j R ρ,∗

j

=
n∑

tρ
j=1

pρ
jλ

ρ
j +

1
γρT

(
n∑

tρ
j=1

√
pρ

jλ
ρ
j

)2

(12)

5 Observation

In QoS applied MANET routing protocols, a node can require an end-to-end
packet delay (T) by issuing routing messages (or fields, which are included in
the messages) such as a resource request and a resource reply for the path
α. For example, in on-demand MANET routing protocols, when a source node
initiates the resource request field in the route discovery mechanism, which

An End-to-End Packet Delay Optimization for QoS in a MANET 659

transfers the required end-to-end packet delay (T) for the path α towards a
destination, traffic negotiation and resource reservation are accomplished at each
intermediate node. For responding the resource request, the destination needs
to reply the resource reply field back to the source. While each intermediate
node backwards the resource reply, the end-to-end packet delay constraint (T)
at each intermediate node, which, for example, can be confirmed as

f(T, n) = Θ
(
g(T, n)

)
(13)

where n is the number of the MANET nodes in the path α and Θ(·) is used
to compensate the variable number of MANET node in the path α. From the
equations (1) and (2), each intermediate node can calculate its maximum data
rate at the transmission scheme Sρ. In the case when the Rρ

j , which is the max-
imum data rate for the node tj at the transmission scheme Sρ is less than the
minimum QoS optimized data rate (Rρ,∗

j) calculated from the equation (11) for
the required QoS end-to-end delay, the QoS mode of the node tj turns into best
effort where the maximum data rate Rρ

j is serviced for the required QoS data
rate. Since the best effort cannot guarantee the QoS end-to-end packet delay
requirement, it is counted as a violation of the QoS service. As another case,
when the Rρ

j is higher than the optimized QoS data rate Rρ,∗
j at the transmis-

sion scheme Sρ, instead of using the maximum Rρ
j , the node tj can select the

optimized QoS data rate Rρ,∗
j , and save the cost of using node and network

resources whose amount can be represented by pρ
jR

ρ
j − pρ

jR
ρ,∗
j . The selection of

the data rate of the node tj for the required QoS end-to-end packet delay at the
transmission scheme Sρ can be represented as

Rq,∗
j =min

(
Rρ

j , R
ρ,∗
j

)

=
{

Rρ
j , use Rρ

j for best effort
Rρ,∗

j , use optimized Rρ,∗
j

(14)

The optimal cost for the path α for the required QoS end-to-end packet delay
at the transmission scheme Sρ can be represented as

optimal cost =
n∑

tρ
j=1

pρ
jR

q,∗
j (15)

Therefore, the total cost saved at the path α can be representedby
∑n

tρ
j=1

pρ
jR

ρ
j −

∑n
tρ
j=1

pρ
jR

q,∗
j .

6 Numerical Results

To provide multi-hop routing, a MANET operates different transmission schemes
at different times. It is assumed that the MANET operation is organized in a
frame of a given fixed duration. To service each frame, the network operates
using successive schemes S1, · · · , Sk, with scheme Si operating during a fraction

660 S.-C. Kim

of wi, where
∑k

i=1 wi = 1. Therefore, the network uses the time-division routing
schedule for a path α which can be represented as Hα =

∑k
i=1 wiSi, where wi is

referred as weights of the time-division routing schedule [4]. Based on successive
transmission scheme, nodes in an active path send data frames to their neighbors
and data frames are delivered toward a randomly selected destination. Monte
Carlo computer simulations are performed to evaluate the transmission schemes
and to calculate the optimal data rate for the tagged path. It is assumed that
relay nodes have infinite queue capacity, the channel is an ideal channel without
errors at any transmission cycle of distributed coordination function (DCF) [10],
there is no packet error while data packet is transmitted and the maximum
achievable data rate is used in the case of no-optimization.

Table 1. Parameters for IEEE 802.11 A [**:bytes]

Parameter Value Parameter Value Parameter Value

CWmin 15μsec Tslot 9μsec Tdifs 34μsec

Tsifs 16μsec Tsym 4μsec τ 1μsec

Tp 16μsec Tsig 4μsec Lmax
data 2312B**

Lh
data 34B Lack 14B Ndbps 216bits

In the simulation, thirty nodes are movable in the network area 1000m×1000m
and IEEE 802.11a technology [1] is considered where some of the parameters are
defined in Table I. To calculate the achievable maximum data rate (Rρ

j) for 54
Mbps in IEEE 802.11a, a transmission cycle of DCF is composed of distributed
inter-frame space (DIFS) deferral, backoff, data transmission, short inter-frame
space (SIFS) deferral and ACK transmission [11]. Therefore, Rρ

j is calculated as

Rρ
j =

8Lρ
data,j

Tdata + Tack + 2τ + Tdifs + Tsifs + CW
(16)

where τ is a propagation delay, the average backoff time, CW =
(
CWmin/2

)
×

Tslot, is used to model the packet error-free channel. The equation of Rρ
j is used

to simulate the arrival rate (λρ
j) and to simulate the maximum departure data

rate (Rρ
j) which is not optimized data rate in a transmission scheme Sρ at the

node tj . The data transmission delay Tdata and the transmission delay ACK Tack

are expressed as follows:

Tdata = Tp + Tsig + Tsym ·
⌈

16 + 6 + 8Lh
data + 8Lρ

data,j

Ndbps

⌉

Tack = Tp + Tsig + Tsym ·
⌈

16 + 6 + 8Lack

Ndbps

⌉
(17)

An End-to-End Packet Delay Optimization for QoS in a MANET 661

where Tp is physical layer convergence procedure (PLCP) preamble duration,
Tsig is duration of the signal BPSK-OFDM symbol, Tsym is symbol interval,
Ndbps is the number of data bits per OFDM symbol. When PHY layer bit rate
goes to infinity, Ndbps goes to infinity as well. The throughput upper limit (TUL)
[10] is existed as TUL = 8Lρ

data,j/
(
2Tp + 2Tsig + 2τ + Tdifs + Tsifs + CW

)
.

Fig. 1 shows the cumulative distribution function (CDF) of the simulated data
rate. The end-to-end packet delay constraints are selected as 10, 000ms, 800ms,
100ms, 70ms, and 50ms for the tagged path [11]. To show the case of a loose (a
tight) end-to-end packet delay constraint, 10, 000ms (50ms) is selected.

Lemma 1. When active MANET nodes do not have any constraint on end-to-
end packet delay for a path α, the nodes turn into a mode of not-optimized which
only services arrival data rate at a specific transmission scheme Sρ of the nodes.

Proof. The numerical expression of no-constraint situation can be extracted
from the equation (11) by letting T go to infinity. Therefore, Rρ,∗

j converges to
λρ

j , which can be represented as

lim
T→∞

Rρ,∗
j = lim

T→∞

[
λρ

j

(
1 +

1
γρT

∑n
tρ
l=1

√
pρ

l λ
ρ
l√

pρ
jλ

ρ
j

)]

= λρ
j . (18)

Lemma 2. When active MANET nodes do not permit any end-to-end packet
delay for a path α, the nodes should have a data rate of infinity.

Proof. The numerical representation of this situation can be seen from the
equation (11) when the T goes to zero, Rρ,∗

j converges to ∞, which can be
represented as

lim
T→0

Rρ,∗
j = lim

T→0

[
λρ

j

(
1 +

1
γρT

∑n
tρ
l=1

√
pρ

l λ
ρ
l√

pρ
jλ

ρ
j

)]

= ∞. (19)

When the end-to-end packet delay time constraint is restricted in the optimized
cases illustrated in Fig. 1, the probability required to use higher data rate in
MANET nodes is increased to satisfy the end-to-end packet delay time con-
straint. To compare the required data rate used at different end-to-end packet
delay constraints in a MANET node, 100ms and 50ms are chosen as an example.
At a probability of 10% of 50ms, the MANET node used more 5Mbps data rate
than a probability of 10% of 100ms. Therefore, the optimal data rate at each
MANET node strongly depends on the end-to-end packet delay constraint.

In addition, it is shown that MANET nodes can select the optimized data rate
at each transmission scheme and save the amount of data rate compared to the
one which is not optimized. For example, in the case of not-optimized, a usage
probability using 25 Mbps data rate is around 45%. However, in the optimized

662 S.-C. Kim

5 10 15 20 25 30 35

10
−1

10
0

Data Rate [Mbps]

P
ro

b
a

b
ili

ty
 (

M
b

p
s

<
 x

)
The CDF of Optimized Data Rate [Mbps]

Not Optimized
T=10,000ms
T=800ms
T=100ms
T=70ms
T=50ms

Not
Optimized

Optimized at
T=10,000ms

Optimized at
T=800ms

Optimized at
T=100ms

Optimized at
T=70ms

Optimized at
T=50ms

36.16

Fig. 1. Effect of optimized data rate

case of 100ms, the usage probability using 25 Mbps data rate is around 23%.
Therefore, the MANET nodes optimized at 100ms can save 22% amount of data
rate at 25 Mbps compared to the not-optimized MANET nodes.

7 Conclusion

This paper introduces a novel method to obtain an optimized data rate subject
to an end-to-end packet delay constraint in a MANET. By using Lagrangian
function and the end-to-end packet delay constraint, each intermediate node in
an active path can achieve the optimized data rate. When the required QoS data
rate is higher than the maximum achievable data rate at each intermediate node,
the maximum achievable data rate is used, which is counted as the violation of
the guaranteed QoS service. Due to the use of the optimized QoS data rate when
the achievable maximum data rate is higher than the optimized QoS data rate,
each intermediate node in the path can save the cost of using node and network
resources. Moreover, this paper proposes several metrics for measuring the QoS
performance of the end-to-end packet delay. The total degraded QoS throughput
shows the result of the QoS throughput not having any QoS service on the path.

An End-to-End Packet Delay Optimization for QoS in a MANET 663

References

1. Wireless LAN medium access control (MAC) and physical layer (PHY) specifica-
tions: High-Speed Physical Layer in the 5GHz Band, IEEE Standard 802.11a-1999,
IEEE Computer Society LAN MAN Standards Committee, 1999.

2. Wireless LAN medium access control (MAC) and physical layer (PHY) specifica-
tions: Amendment 4: Further Higher Data Rate Extension in 2.4GHz Band, IEEE
Standard 802.11g-2003, IEEE Computer Society LAN MAN Standards Committee,
2003.

3. V. Mitlin, “Optimal MAC packet size in netwroks without cut-throuth routing,”,
IEEE Trans. Commun., vol 2, pp. 901-910, Nov. 2003.

4. S. Toumpis and A. J. Goldsmith, “Capacity regions for wireless ad hoc networks,”
IEEE Trans. Commun., vol. 2, no.4, pp. 736- 748, July. 2003.

5. P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE Transaction
on information theory, vol. IT-46, No. 2, pp. 388-404, March 2000.

6. J-H. Ju and V. O. K. Li, “TDMA scheduling design of multihop packet radio
networks based on Latin Squares,” IEEE Journal on Selected Areas in Communi-
cations, vol.17, no.8, August 1999, pp.1345-1352.

7. B. Shrader, M. Sánchez, and T.C. Giles, “Throughput-delay Analysis of Conflict-
free Scheduling in Multihop Ad-hoc Networks,” Proceedings of the 3rd Swedish
Workshop on Wireless Ad-hoc Networks, Stockholm, Johannesbergs Slott,6-7 May
2003.

8. L. Kleinrock and F. A. Tobagi, “Packet switching in radio channels: Part I - carrier
sense multiple access modes and their throughput-delay characteristics,” IEEE
Transactions on Communications, COM-23, pp. 1400-1416, December 1975.

9. D. Bertsekas and R. Gallager, Data Networks, Upper Saddle River. Englewood
Cliffs, NJ: Prentice-Hall, 1992.

10. Y. Xiao and J. Rosdahl, “Throughput and Delay Limits of IEEE 802.11,” IEEE
Commun. Lett., vol. 6, no. 8, Aug. 2002, pp. 355-357.

11. M. Baldi and Y. Ofek, “End-to-end delay analysis of videoconferencing over packet-
switched networks,” IEEE Transactions on Networking., vol 8, no. 4, pp. 479-492,
August 2003.

Power Efficient Relaying MAC Protocol

for Rate Adaptive Wireless LANs�

Jaeeun Na, Yeonkwon Jeong, and Joongsoo Ma

School of Engineering, Information and Communications University
Daejeon, 305-732, Korea

{davini02,ykwjeong,jsma}@icu.ac.kr

Abstract. To exploit multi-rate capability as well as improve perfor-
mance in wireless networks, many relaying mechanisms are proposed on
IEEE 802.11 media access control (MAC) layer. However, no effort has
been invested to exploit the multi-rate capability for power saving mech-
anism in MAC. In this paper, we propose a Power Efficient Relaying
MAC Protocol, called PERP, to achieve both performance improvement
and power saving by leveraging the multi-rate capability. In proposed
relaying scheme, if a node can support low rate node’s packet at higher
rate and has sufficient power, after voluntarily helping data transmis-
sion at higher rate, all nodes go into sleep mode as quickly as possible
to reduce power consumption. Simulation results show that the PERP
improves throughput by 30∼50% as well as reduces power consumption
and transmission delay by 10∼55% than the legacy mechanism.

Keywords: Multi-rate Adaptation, Relaying, IEEE 802.11 MAC, Power
Saving Mechanism, Wireless Networks.

1 Introduction

As the portable devices exponentially increase in wireless networks, the devel-
opment of power efficient and fast transmission mechanisms become more im-
portant recently. In the last few years, there have been many researches about
efficient power conserving mechanisms at various layers. Among them, [5] sug-
gested that power saving mechanism of medium access control (MAC) layer could
significantly reduce the power consumption by putting the wireless interface in
the doze mode. Hence, this paper focuses on power conserving of MAC protocol.
In [6, 7], they proposed the adaptive power saving MAC protocols that allow
mobile nodes to keep doze mode as much as possible to reduce unnecessary idle
power consumption. However, those protocols only consider power consumption
of nodes and do not improve overall network throughput. Therefore, this paper

� This research was supported by MIC (Ministry of Information and Communication),
Korea, under the ITRC (Information Technology Research Center) support program
supervised by the IITA (Institute of Information Technology Assessment). (IITA-
2006-C1090-0603-0015).

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 664–675, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Power Efficient Relaying MAC Protocol 665

proposes the power efficient MAC protocol with multi-rate capability to improve
performance as well as save power for wireless local area networks (WLANs).

IEEE 802.11 standard for WLAN [1] provides a multi-rate capability on phys-
ical layer (PHY) to support higher bandwidth by using different modulation
schemes. For example, IEEE 802.11b supports data rates of 1, 2, 5.5, 11Mbps,
which are inversely proportional with the transmission distance between sender
and receiver. To further exploit multi-rate capability and improve performance,
several relaying protocols [3,4] have been proposed on MAC layer. This approach
makes that low rate transmission is replaced with two higher rate transmissions
by using intermediate node as relay node. When sender transmits data at low
data rate due to long distance between sender and receiver, it selects a suitable
relay node of neighbor nodes that supports higher data rate. Instead of direct
transmission at low rate, sender transmits indirectly data packet to a selected
relay node and then a relay node just transmits it to receiver at higher rate
without additional contention.

By using this relaying approach and power saving mechanism of MAC layer,
we propose a Power Efficient Relaying MAC Protocol (PERP). The purpose of
this protocol is to achieve both performance improvement and power saving by
leveraging the multi-rate capability. During only fixed period, called ATIM (An-
nouncement Traffic Indication Message) window, a node decides direct transmis-
sion rate and announces it to neighbor nodes by piggybacking rate information
into legacy ATIM frames. If a node can relay low rate node’s packet at higher
rate and has sufficient power, it records low rate transmission in table. After
ATIM window, nodes that have records of low rate nodes in table help relevant
nodes to transmit data at higher rate through voluntary notification prior to
their low rate data transmission. Moreover, nodes can go into sleep mode as
quickly as possible through cooperatively sending data packet at higher rate.

The remaining of this paper is organized as follows. In section 2, we present
the details of PERP and analyze the performance. Section 3 evaluates the per-
formance of PERP by means of simulations. Section 4 concludes the paper.

2 The Power Efficient Relaying MAC Protocol

2.1 PERP Operation

In this section, we propose the Power Efficient Relaying MAC protocol that is
based on power saving mechanism (PSM) of DCF (Distributed Coordination
Function). The basic concept of PERP is that every awake node quickly enters
doze mode through cooperatively helping transmit data at higher rate. By us-
ing control packets, nodes can decide suitable data rate without additional rate
adaptation procedure during ATIM window. All control packets are transmitted
at base rate (2Mbps) and can be overheard by other nodes. In our proposed
scheme, the period following ATIM window in beacon interval is called DATA
window. To save unnecessary idle power during DATA window of legacy PSM,
sender or receiver can go into doze mode when they have no more sending or

666 J. Na, Y. Jeong, and J. Ma

DATA (Rd)

Candidate
Sender (CNs)

Voluntary
Node (VNs)

Candidate
Receiver (CNr)

DATA
(Rsv)

DATA
(Rvr)

VRTS

Fig. 1. Voluntary Relaying Procedure of PERP (solid line: relaying transmission, dot-
ted line: direct transmission)

receiving data, including other node’s relaying data. Receivers can know whether
receiving packets are remaining or not through the ‘more data bit’ field in MAC
header of data packet [1]. Each node also maintains the candidate table only
for current beacon interval to assist low rate transmission of other node. And
we restrict that a node can assist only one neighbor node to avoid much power
consumption by relaying many other packets.

The PERP operation is illustrated in Figure 1 and 2, and is explained in detail
by the following steps:

1) In ATIM window, sender having data packet transmits ATIM frame to
receiver. On receiving ATIM frame, receiver measures received signal strength
(RSS) to decide direct data rate (Rd, as shown Figure 1). And then, receiver no-
tifies Rd to sender and neighbor nodes via ACK (Acknowledgement) frame with
piggybacked rate information. Every nodes overhears all ongoing ATIM/ACK
frames and determines two indirect data rates (Rsv, Rvr) between sender (or
receiver) and itself respectively through measurement of RSS. In addition, by
extracting the piggybacked rate information in ACK frame, they can also find
out Rd. If Rd is lower than 2Mbps, nodes compare it with Rsv and Rvr. If a
node supports higher rate than direct data rate (L/Rsv + L/Rvr < L/Rd, L :
packet length), it add the new candidate node (CNs) information in candidate
table. This table is consisted of sender (CNs) address of low rate transmission,
Rsv, Rvr , and total RSS of ATIM/ACK frames.

The senders, which can transmit its data at high rate (5.5 or 11 Mbps) and
have more than one CNs in table, have high priority for data transmission with
smaller contention window size. Since these nodes have to notify their CNs that
they will relay low rate packet at higher rate, before CNs sends out its data
packet at low rate. Moreover, they will consume more transmission power as a
result of relaying other packets, so priority scheme makes their power consump-
tion be reduced by shorter contention time.

Power Efficient Relaying MAC Protocol 667

Priority
backoff

Relaying data packet of CNs

Send VRTS Send VCTS

Legacy
backoff

Turn back to doze mode

Data transmission

Send CTS

VNs VNr Sender Receiver

Sufficient power & Candidate nodes

Not receive
VRTS

Overhearing its
VRTS/VCTS

Data transmission

Receiving data
packet

No more sending/receiving data packets

Yes

Yes

Yes Yes No No

No

No

Yes

No

Yes

No
Exchange ATIM-ACK frame in ATIM window

Fig. 2. The Flow Diagram of PERP Algorithm During One Beacon Interval

2) After ATIM window is over, awake nodes follow DCF scheme to send data
packet with priority backoff scheme.
a) Sender first senses the idle channel for a DIFS time and its backoff time.
b) Sender checks whether it has sufficient power and any CNs in candidate

table.
c) In case two conditions of (b) are not satisfied, sender transmits RTS (Request

To Send) frame to receiver. Otherwise, sender enables to relay other node’s
packets in table, which is called the voluntary sender (V Ns). V Ns selects an
optimal CNs which has the highest total Rsr and Rvr in candidate table.
If there are several optimal candidate nodes, they select CNs having the
highest total RSS. After that, V Ns transmits the Voluntary RTS (VRTS)
that piggybacks CNs’s address and supporting Rsv and Rvr in RTS frame.

3) When receiver receives VRTS, it just sends out CTS to sender after SIFS
time to avoid collision with sender’s relaying data transmission. On the other
hands, if receiver receive RTS, then it repeats (2.b) and (2.c) procedures; check-
ing status, selection of CNs, sending CTS (Clear To Send) or VCTS (Voluntary
CTS) frame after SIFS time. Receiver sending VCTS is called the voluntary re-
ceiver (V Nr). At this time, neighbor nodes having same CNs’s information of
VRTS or VCTS in own candidate table deletes the relevant CNs’s information.

668 J. Na, Y. Jeong, and J. Ma

Table 1. Duration of Control Frames for NAV

Control Frames Duration (NAV)

RTS 3 × SIFS + TCTS + L/Rd + TACK

RTSCNs 4 × SIFS + TCTS + L/Rsv + L/Rvr + TACK

VRTS NAVRTS + 2 × SIFS

CTS NAVRTS(V RTS) − SIFS − TCTS

VCTS NAVCTS + 2 × SIFS

4) Once receiving CTS or VCTS, sender transmits data packet at Rd. If
receiver receives data successfully, it replies by sending ACK frame. At this
time, nodes that have current sender’s information in candidate table delete it.
After data transmission is completed, sender and receiver go into sleep mode,
except for V Ns or V Nr, if there is no remaining data transmission or reception.
However, if remaining DATA window time is shorter than transition time from
doze state to awake state, they maintains awake mode to avoid more power
consumption by frequent transitions. V Ns and V Nr continuously keep awake
mode until relaying data transmission is finished.

5) If selected CNs overhears VRTS or VCTS, it prepares data transmission
regardless of its remaining backoff time. After data transmission of voluntary
node (V Ns or V Nr) is completed, CNs starts immediately relaying transmission
of own data via voluntary node just after SIFS time without contention.

When CNs and its receiver (CNr) sends out RTS/CTS, they repeats from
(2.b) to (3) procedures because they can also relay other low rate node’s data at
higher rate according to location. After that, CNs transmits data to voluntary
node at dedicated rate Rsv. If voluntary node receives data of CNs, it sends
data to CNr at rate Rvr. Finally, CNr sends ACK frame to CNs directly and
voluntary node goes into doze mode. (If CNs or CNr has no relaying data packet,
they also enter doze mode.)

At this time, to maintain backward compatibility with IEEE 802.11 MAC
protocol, we adopt the data relaying scheme that uses Address 4 field of MAC
header in [3]. Subtype denotes the relaying data packet as the specific value
and Address 4 field stores the address of voluntary node. In addition, CNs and
voluntary node enable to set exact duration for NAV because they know indirect
data rates of relaying packet as shown Table 1. Note that the voluntary nodes
set the additional duration for relaying data to only 2 × SIFS time in case CNs

moves to another place or does not overhear VRTS (or VCTS) due to worse
channel status. If CNs does not send RTS within 2 × SIFS time, voluntary node
turns back to sleep mode promptly and other nodes restart their backoff timer.

2.2 Throughput Analysis

In this section, we will derive the throughput of legacy PSM and PERPwithin bea-
con interval. We assume that all nodes are uniformly distributed in the coverage
area. Let the distance thresholds for data rate 11, 5.5, 2 Mbps (R11, R5.5, Rbase)

Power Efficient Relaying MAC Protocol 669

d

Relaying
Range

CNs CNr

VN

Base rate range
(dbase)

5.5Mbps range
(d5.5)

Fig. 3. The Probability of Finding Relay Node

are d11, d5.5, dbase meters respectively. (Assume that a node transmits only one
fixed size data packet at least 2Mbps.)

First of all, we express the number of nodes sending ATIM frame when N cont
node

nodes contend in ATIM window (ThATIM).

NATIM
node = min(N cont

node, N
nego
node) (1)

Nnego
node =

⌊
ThATIM

Ttx + Trx + Tover + T
Ncont

node
cont

⌋

where Nnego
node is the maximum number of nodes that can negotiate by send-

ing ATIM/ACK frames until ATIM window is saturated. Ttx, Trx, Tover, Tcont

are ATIM/ACK transmission, reception, overhead (SIFS, DIFS) and contention
time. If multiple nodes attempt to send packet at the same time, packet will col-
lide and be retransmitted. As the number of nodes (N) increases, the contention
time increases. Here we use a simple approximation proposed in [2]:

T N
cont = Tslot · CWmin

2
· 1 + ProN

coll

2 · N
(2)

where collision probability is ProN
coll = 1 − (1 − 1/ CWmin)N−1 and one slot

time is Tslot.
Next, in case of legacy PSM, we can express the number of sending data

packet in DATA window (ThDATA) when data packet is transmitted at 2Mbps.

Nlegacy = min(N legacy
tx , NATIM)

N legacy
tx =

⌊
ThDATA

L/Rbase + Tover + T
NATIM

node
cont

⌋
(3)

where NATIM is the total number of data packets that NATIM
node nodes will trans-

mit, L is data packet length and N legacy
tx is the maximum number of sending

data packets until DATA window is saturated.
In case of PERP, we must consider different transmission time based on data

rate and voluntary relaying procedure. When voluntary node relays data packet

670 J. Na, Y. Jeong, and J. Ma

of CNs at higher rate, it has to locate within at least common d5.5 range of CNs

and CNr, that is Relaying Range as depicted Figure 3. Thus, voluntary relaying
probability for CNs can be defined following equation:

x =
√

d2
5.5 − (d/2)2, (d5.5 ≤ d ≤ 2 · d5.5) (4)

angle = arcsin(x/d5.5)

Provol =
4 · {angle/(2 · π) · d2

5.5 · π − (d/2) · x · 0.5}
d2

base · π
where d is the distance between CNs and CNr.

Let us denote the fraction of nodes of direct data rate iMbps among awake
nodes by Fi and the fraction of selected CNs among low rate nodes by Frelay .

F11 = d11/dbase (5)
F5.5 = (d5.5 − d11)/dbase

Fbase = (dbase − d5.5)/dbase

Frelay = Provol · Fbase

Finally, we may express the maximum number of sending data packets in
DATA window similar to equation (3).

NPERP = min(NPERP
tx , NATIM) (6)

Tdir = L ·
{ F11

R11
+

F5.5

R5.5
+

(Fbase − Frelay)
Rbase

}

Trelay = L · Frelay · 2/R5.5

T avg
data = (Tdir + Trelay)/(F11 + F5.5 + Fbase)

NPERP
tx =

⌊
ThDATA

T avg
data + Tover + T

NATIM
node ·(1−Frelay)

cont

⌋
(7)

where Tdir and Trelay and T avg
data are direct data transmission time, voluntary

relaying time, and average data transmission time.
Therefore, the throughput of two protocols (legacy PSM and PERP) during

beacon interval (Thbeacon) is given by the following equation:

Throughput =
Nprotocol · L

Thbeacon
(8)

2.3 Power Consumption Analysis

In this subsection, we analyze mathematically the average power consumption
of a node within one beacon interval based on the aggregate throughput analysis
in previous subsection.

First of all, the average power consumed by a node is expressed as following
equation:

Powernode =
EATIM

node + EDATA
node

Thbeacon
(9)

Power Efficient Relaying MAC Protocol 671

where EATIM and EDATA is the energy consumption of a node during ATIM
window and DATA window period.

In ATIM window, the operations for both PERP and legacy PSM are the
same. Hence, equation(10) shows the average energy consumption during the
ATIM window in more detail. In this equation, EATIM is divided two part;
one for total energy consumption of the NATIM nodes exchanging ATIM/ACK
frames successfully within ATIM window (Esucc

ATIM) and the other for that of the
remaining nodes (Efail

ATIM) when N cont
node nodes contend for channel access.

EATIM
node =

Esucc
ATIM + Efail

ATIM

N cont
node

(10)

Esucc
ATIM = NATIM

node · {Ptx · Ttx + Prx · Trx + Pidle · (ThATIM − Ttx − Trx)}
Efail

ATIM = (N cont
node − NATIM

node) · (Pidle · ThATIM)

where Ttx and Trx are the transmission and reception time of ATIM/ACK
frames. Ptx, Prx and Pidle are transmission, receiving, and idle power consumed
by MAC layer respectively.

Esucc
ATIM is a combination of the transmitted and received power for exchanging

ATIM/ACK frames. During the remaining ATIM window time, except for Ttx

and Trx, a node stays in idle mode. The nodes that does not exchange ATIM-
ACK frames waste the unnecessary idle power for entire ATIM window (Efail

ATIM).
In addition, these nodes turn back into doze mode until DATA window is over,
whose energy consumption is expressed as equation (11).

Esleepnode
DATA = (N cont

node − NATIM
node) · (Pdoze · ThDATA) (11)

In next DATA window, both schemes have different operations and accord-
ingly different energy consumption. Legacy PSM’s average energy consumption
is given by (12). In this equation, the energy consumption during DATA win-
dow is also classified into three parts; one for successful data transmission nodes
(Nlegacy), second one for not transmitting nodes, last one for sleep nodes.

EDATA−legacy
node =

Esucc
l−DATA + Efail

l−DATA + Esleepnode
DATA

N cont
node

(12)

Esucc
l−DATA = Nlegacy · {Ptx · Ttx−data + Prx · Trx−data

+Pidle · (ThDATA − Ttx−data − Trx−data)}
Efail

l−DATA = (NATIM − Nlegacy) · (Pidle · ThDATA)

where Ttx−data and Trx−data are data transmission and reception time. In case
successful transmission nodes, they consume idle power during the remaining
time except for transmission and receiving time. On the other hand, failure
nodes deeps the idle state until the end of DATA window.

In case of PERP, the nodes that its all data transmission and reception is over
go into sleep mode. Hence, successful transmitting nodes have idle time until
own data transmission starts and enter into sleep mode after all transmission is

672 J. Na, Y. Jeong, and J. Ma

finished. The idle time is computed by T DATA
end that all NPERP nodes transmit

their data packets. These nodes have the half of T DATA
end averagely, except for

data transmission time. Therefore, the average energy consumption is expressed
as following equation :

EDATA−PERP
node =

Esucc
p−DATA + Efail

p−DATA + Esleepnode
DATA

N cont
node

(13)

Esucc
p−DATA = NPERP · {Ptx · Ttx−data + Prx · Trx−data

+Pidle · Tidle + Pdoze · Tsleep}
Efail

p−DATA = (NATIM − NPERP) · (Pidle · ThDATA)

T DATA
end = NPERP · {T avg

data + Tover + T
NATIM

node ·(1−Frelay)
cont }

Tidle =
T DATA

end − (T avg
data + Tover)
2

Tsleep = ThDATA − (Tidle + T avg
data + Tover)

where the Ttx−data and Trx−data are data transmission and reception time ac-
cording to various data rate which can be calculated by T avg

data.

3 Performance Evaluation

In this section, we evaluate the performance of PERP through simulation. Sim-
ilar to [4], the distance threshold for 11, 5.5, 2Mbps are 100m, 200m, and 250m
respectively. The data packet length is fixed at 512 bytes. Other basic parame-
ters follows IEEE 802.11b MAC standard. The nodes are randomly distributed
in 250m × 250m. The number of nodes chosen to be from 10 to 60 and the
step is 10. In each case, half of the nodes are senders and the rest are receivers.
For calculating power consumption, we use 1.65W, 1.4W, 1.15W and 0.045W as
value of power consumed by MAC layer in transmit, receive, and idle modes and
doze state respectively. We have 4 performance metrics, i.e. aggregate through-
put (Kbps), average power consumption (mW), energy efficiency (Bytes/Joule),
and transmission delay (ms).

One of the important issues in our scheme is to decide the optimal ATIM
window size. If ATIM window size is too large, many nodes cannot send data
during short DATA window time. In addition, it leads to unnecessary idle power
consumption and longer transmission delay. Otherwise, if ATIM window is too
small, nodes sending packet cannot negotiate sufficiently and remaining DATA
window time is wasted. Hence, we first simulate aggregate throughput according
to ATIM window size. As you can see Figure 4, legacy PSM shows the maximum
throughput when ATIM window is 20ms. On the contrary, PERP has maximum
throughput when ATIM window is 30ms. In other words, utilization of DATA
window is maximized without unnecessary idle time when ATIM window is 30ms.
Thus, we will compare legacy PSM with 20ms, PERP with 20 and 30ms ATIM
window.

Power Efficient Relaying MAC Protocol 673

10 20 30 40 50
0

400

800

1200

1600

2000

2200

ATIM Window Size (ms)

A
g

g
re

g
at

e
T

h
ro

u
g

h
p

u
t

(K
b

p
s)

PERP : 40 nodes
PERP : 60 nodes
Legacy : 40 nodes
Legacy : 60 nodes

Fig. 4. ATIM Window size vs Aggregate Throughput

10 20 30 40 50 60
0

400

800

1200

1600

2000

2200

The Number of Stations

A
g

g
re

g
at

e
T

h
ro

u
g

h
p

u
t

(K
b

p
s)

PERP : 20ms
PERP : 30ms
Optimal−PERP : 30ms
Legacy : 20ms
PERP (Analysis) : 20ms
Legacy (Analysis) : 20ms

Fig. 5. Aggregate Throughput

10 20 30 40 50 60
0

200

400

600

800

1000

1200

The Number of Stations

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

m
W

)

PERP (Sim) : 20ms
PERP (Sim) : 30ms
Legacy (Sim) : 20ms
PERP (Anal) : 20ms
PERP (Anal) : 30ms
Legacy (Anal) : 20ms

Fig. 6. Power Consumption

Figure 5 shows the aggregate throughput during one beacon interval when
using legacy PSM, PERP and Optimal-PERP. First of all, we can see that our
throughput analysis is similar to simulation results. In PERP, sometimes there
are several potential relay nodes that want to help data packet of a low rate
node. Among them, the optimal node is defined by a potential relay node sup-
porting the highest indirect data rates. Due to using the priority backoff scheme
and the existence of multiple candidate nodes, PERP is hard to guarantee that
the voluntary node actually helping a low rate node always will be selected as
the optimal relay node. Hence, we compare PERP with Optimal-PERP using
the optimal relay node. The simulation result shows that there is a little differ-
ence of the aggregate throughput between them. It means that voluntary node
provides the nearly optimal data rate to low rate nodes and that our priority
based backoff scheme can well retrieve the small throughput gap of two proto-
cols. Next, comparing PERP with legacy PSM, they have same throughput due
to enough DATA window time to transmit all data of senders when the number
of nodes is small. Otherwise, PERP outperforms legacy PSM (30% ∼ 60%) when

674 J. Na, Y. Jeong, and J. Ma

10 20 30 40 50 60
0

20

40

60

80

100

The Number of Stations

A
ve

ra
g

e
T

ra
n

sm
is

si
o

n
 D

el
ay

 (
m

s)

PERP : 20ms
PERP : 30ms
Legacy : 20ms
Legacy : 30ms

Fig. 7. Average Transmission Delay

10 20 30 40 50 60
0.7

0.75

0.8

0.85

0.9

0.95

1

The Number of Stations

F
ai

rn
es

s
In

d
ex

PERP : 20ms
PERP : 30ms
Legacy : 20ms
Legacy : 30ms

Fig. 8. Fairness Index

the number of nodes is more than 30 due to higher data rate transmission and
voluntary relaying procedure.

Figure 6 compares the average power consumption of a node by using sim-
ulation (Sim) and analysis (Anal). The analysis results is similar to simulation
results. In case of PERP, the small gap between simulation and analysis is due to
no consideration of priority backoff scheme in analysis. Next, PERP saves power
at almost 10% ∼ 55% than PSM because nodes enter into sleep mode rapidly
once they transmit or receive all packets and relaying packet. On the contrary,
in PSM, all nodes must awake to transmit data during entire beacon interval.
At PERP with 20ms, power consumption is reduced when there is more than 50
nodes. Since many nodes cannot send ATIM frame during short ATIM window,
so most of them go to sleep mode until next beacon interval. However, it may
lead to longer transmission delay. In case of PERP with 30ms, it results the
higher power consumption than 20ms because all nodes must maintain awake
state for longer duration of ATIM window.

Figure 7 shows the average packet transmission delay. The delay is the time
interval from the packet entering the sender’s queue to the time being delivered
to receiver. As you can see, the multi-rate capability and relaying data trans-
mission of PERP reduce significantly average transmission delay than legacy
PSM. Comparing with the cases of different ATIM window size, transmission
delay increases as approximately the difference ATIM window size (10ms) due
to waiting time of longer ATIM window. However, when the number of nodes
is 60, the transmission delay is more increase than 10ms because many awake
nodes cannot sends out data packet within shorter DATA window.

Figure 8 shows the fairness index [8] of two mechanisms. The purpose of this
figure is to prove fairness of PERP as comparison with PSM. PERP use priority
based backoff scheme and slow node transmits data packet quickly regardless
of its remaining backoff time by negotiation procedure. Hence, other nodes may
suffer from starvation by unfair backoff scheme. However, as you can see this
figure, the fairness index of PERP is rather higher than legacy PSM. This is due
to the fact that more nodes can acquire the channel access opportunity through

Power Efficient Relaying MAC Protocol 675

faster data transmission. Thus, PERP also has additional advantages to give
the fair medium access to all nodes rrespective of transmission rate and relaying
procedure.

4 Conclusions

In this paper, we propose the PERP that exploits the multi-rate capability with
power saving mechanism for WLANs. In multi-rate wireless network, low data
rate nodes consume proportionally more channel access time and transmission
power than high rate nodes, resulting in degradation of performance and power
efficiency.

However, in PERP, the neighbor nodes help voluntarily low rate node to be
delivered data faster through indirect transmission. It also makes that all nodes
can enter quickly into doze mode through voluntarily helping transmit data
packet. Simulation results show that the proposed scheme outperforms the legacy
PSM in terms of throughput, transmission delay, fairness, and power efficiency.
The proposed mechanism does not need a complex procedure for relaying data
transmission and can be applied to mobile environments and 802.11 a/b/g.

References

1. “IEEE Std. 802.11b-1999, Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications: High-Speed Physical Layer Extension in
the 2.4GHz Band,” 1999.

2. M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Performance anomaly
of 802.11b,” in Proc. of IEEE INFOCOM, San Francisco, USA, March 2003.

3. P. Liu, Z. Tao, and S. S. Panwar, “A Cooperative MAC Protocol for Wireless Lo-
cal Area Networks,” in Proceedings of the 2005 IEEE International Conference on
Communications (ICC), Seoul, Korea, May 2005.

4. H. Zhu and G. Cao, “rDCF: A relay-enabled medium access control protocol for
wireless ad hoc networks,” in Proc. of IEEE INFOCOM, Miami, FL, Mar. 2005.

5. H. Woesner, J. P. Ebert, M. Schlager, and A. Wolisz, “Power-saving mechanisms in
emerging standards for wireless LANs: The MAC level perspective,” IEEE Personal
Communications, Jun 1998.

6. E. S. Jung and N. H. Vaidya, “An Energy Efficient MAC Protocol for Wireless
LANs,” IEEE INFOCOM02, New York, June 2002.

7. S.-L. Wu and P.-C. Tseng, “An Energy Efficient MAC Protocol for IEEE 802.11
WLANs,” IEEE CNSR04, Canada, May 2004.

8. Z. Fang, B. Bensaou, and YuWang, “Performance evaluation of a fair backoff al-
gorithm for IEEE 802.11 DFWMAC,” In Mobile Computing and Networking, pp.
48-57, Atlanta, Georgia, USA, September 2002.

PHY-MAC Cross-Layer Design

of Reliable Wireless Multicast Protocol
with a Case Study of MB-OFDM WPAN�

Jaeeun Na, Cheolgi Kim, and Joongsoo Ma

School of Engineering, Information and Communications University
Daejeon, 305-732, Korea

{davini02,cheolgi,jsma}@icu.ac.kr

Abstract. Wireless Multimedia Broadcastings have been being promis-
ing applications. Recently, the multimedia multicastings have started to
be embedded into the legacy wireless networks. To provide high quality
multimedia with multicast, wireless multicast ARQ (Automatic Repeat
reQuest) scheme is required. In multicast ARQ, multiple receivers may
return feedback control packets, such as ACK (Acknowledgement) or
NAK (Negative ACK), simultaneously to the transmitter. In this paper,
we show that the multiple feedback control packets can be successfully
decoded in transmitter without additional hardware cost. Based on the
proposition, we described a conceptual flow of wireless multicast algo-
rithm, and then proposed multimedia multicast protocol on Multiband-
OFDM Wireless Personal Area Network (MB-OFDM WPAN) specifica-
tions. In simulation, we showed that the proposed mechanism reduces
the power consumption and achieves improved performance.

Keywords: Multicast, ARQ, UWB, Multi-band OFDM (MB-OFDM),
WPAN, Wireless Communications.

1 Introduction

Media broadcasting services, such as radio and TV broadcastings have been
some of the most promising applications in wireless communications area. In
early years, its success is because of its entertainment provision with low initial
investment for a coverage, a hundred miles per TV station. As computing tech-
nology grows up, wireless media broadcasting services are moving to portable
entertainment devices. For example, DMB (Digital Multimedia Broadcasting)
and DVB-H (Digital Video Broadcasting for Handhelds), are being actively de-
veloped, these days.

Another potential movement related to wireless multimedia, is combining
broadcasting, in another word streaming, with legend wireless communications.
� This research was supported by MIC (Ministry of Information and Communication),

Korea, under the ITRC (Information Technology Research Center) support program
supervised by the IITA (Institute of Information Technology Assessment). (IITA-
2006-C1090-0603-0015).

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 676–685, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

PHY-MAC Cross-Layer Design of Reliable Wireless Multicast Protocol 677

Some cellular companies try to exploit their surplus bandwidth to extend the
coverage of DMB or DVB-H for the in-building and subway environments. In-
ternet broadcastings or cyber lectures are already being delivered via WLANs.
Moreover, WPAN protocols, such as MB-OFDM (Multi-Band Orthogonal Fre-
quency Division Modulation) [1, 2] by WiMedia Alliance or DS-UWB (Direct
Sequence Ultra-Wideband), mainly target multimedia communications with the
data communications as extra services. Embedded streaming enables plenty of
multimedia applications, such as cyber lectures, internet broadcastings, wire-
less private headphones in a transportation not to interfere other people, and
iPod music sharing with buddies in a cafe via multiple wireless headphones ded-
icated to each person, as well as extended coverage of legend media broadcasting
services.

Legacy wireless communications, such as cell phones and WLAN, do not have
clean communication environment like TV broadcasting, such that an ARQ (Au-
tomatic Repeat reQuest) kind of packet recovery scheme is required. Achieving
high SINR (Signal to Interference plus Noise Ratio) with low data rate is still
valid, but not appropriate because it consumes too much radio resources, which
could have been allocated to other communications. However, the dilemma is
that provision of ARQ in multicast is not easy and straight forward like unicast.
Feedback packets, such as CTSs (Clear To Send) and ACKs (Acknowledgement),
from multiple receivers have been supposed hard to maintain because of a colli-
sion with each other. Thus, most communication standards do not allow multi-
cast ARQ in their specifications.

There have been several approaches to adapt ARQ mechanism proposing mul-
ticast ARQ. [3] and [4] allow receivers to send NAK (Negative ACK) packets at
the same instance to the same channel altogether, and regard any collisions or bro-
ken packets as a NAK at that instance to handle multiple ARQ packets. As they
rely on the communication model based on MAC perspective, their model is not
well matched with the real radio environment. They are covered in Section 2.

In Section 3, we show a proposition that the feedback packets from multiple
receivers can be decoded not making a collision without any additional circuits
by multi-path fading resolution scheme. Based on this proposition, we propose
a simple conceptual protocol of wireless multicast algorithm with ARQ in order
to how it works.

We designed wireless multicast protocol for MB-OFDM, which is described in
Section 4. We adapt Hybrid ARQ (HARQ) for energy efficiency and reliability.
The performance of our protocol is described in Section 5. Section 6 concludes
this paper.

2 Related Work

To go around the inherent difficulty of multicast ARQ, so called, layering ap-
proaches have been proposed for multimedia multicast. They divide the content
into several layers by gradations of importance, and cope with the layers in a se-
lective manner [5,6,7]. Nodes with bad channel quality subscribe the only layers

678 J. Na, C. Kim, and J. Ma

with high priority, while ones with good channel quality deserve the whole lay-
ers. As a result, the only nodes with high channel quality can enjoy high quality
media and others must suffer from the low quality.

One of the approaches adapting feedback in multicast is the rate control mech-
anism. SNR-based Auto Rate for Multicast [8], which is influenced by Rate-
Adaptive Multicast for wired networks [9], adapts transmission rate based on
the SNR (Signal to Noise Ratio) values given by receivers through beacon pack-
ets. Since SNR values are embedded in beacons, it cannot handle individual
errors occurred in each packet. Thus the rate must be conservatively controlled
for robust communication.

In wired network area, some works have proposed feedback aggregation pro-
tocols [10, 11] to relieve the feedback overhead. The ACK/NAK messages are
combined by receiver nodes in a distributed manner making a tree aggregation
graph. Even it reduces the overhead of transmitter node in a wired network, it
is hardly useful in wireless environment because of its common shared channel
property rather than individual wires between nodes.

J. Kuri et al. proposed wireless multicast ARQ mechanism using RTS/CTS/
NCTS and ACK/NAK together [3]. Suppose that multiple receivers send feed-
back packets (CTS/ACK) simultaneously to the transmitter. The packets may
collide with each other such that neither CTS nor ACK from each receiver will
properly delivered to the transmitter. To handle this problem in [3], only one
node is allowed to send positive feedbacks (CTS/ACK) not to make collisions,
while no restriction is given to the negative feedbacks (NCTS/NAK). Thus,
there may be multiple NCTS/NACK, while only one CTS/ACK is permitted at
a given instance. If CTS/ACK is safely delivered to the transmitter, the transmit-
ter regards the former process succeeded. Otherwise, for example NCTS/NAK
delivery or any kind of collisions of packets, it stops the procedure and retries
the transmission if needed. The authors assumed any simultaneous transmissions
of packets make collisions. To avoid collision incurred by simultaneous positive
feedbacks, they have proposed three alternatives of policies, expecting single
positive feedback reception on the successful occasions.

However, simultaneous packet transmissions may not make a collision in the
real world. Here is an example. Assume that the receiver having sent ACK is very
close to the transmitter with distance d1 and the receiver having failed to receive
a packet so having sent NAK is fairly far from the transmitter with distance d2
eventually. It is likely to happen because closer nodes commonly have higher
SINR. The SINR of the signal from the node at d1 against interference by the
node at d2 is given by

SINR =
(

d2

d1

)α

(1)

where pathloss exponent is α. If d1 = 1m, d2 = 10m, and α = 4, SINR is 40 dB,
high enough for successful communication without making collision.

Gupta et al. proposed multicast protocol with only negative feedbacks based
on tones, instead of conventional packets for feedbacks [4]. Since the tones
are assumed to be sinusoidal wave out of communication band, their protocol

PHY-MAC Cross-Layer Design of Reliable Wireless Multicast Protocol 679

requires additional tone detector circuits and bandwidth. Moreover, the channel
environment of communication and tones will be different with each other.

3 Proposition of Wireless Multicast with Collision-Proof
Feedbacks

Previous work is developed based on the assumption that multiple simultaneous
packet transmissions make a collision. However, as long as the packets convey the
same signature of signal, they can be added in a constructive manner similar to
multi-path fading. Let’s assume that all feedback packets from multiple receivers
for each multicast packet are identical. As long as the receivers are synchronized
with the transmitter altogether, their transmissions will be delivered in an iden-
tical manner with multipath reflections of a single signal, which can be decoded
with multi-path fading resolution scheme without any additional circuit!

Our conceptual protocol is as follows:

1. Transmitter senses carrier and waits for quiet enough to transmit a packet.
2. Transmitter transmits packet after a certain random backoff delay if chan-

nel is idle.
3. Receiver listens to and decodes the packet.
4. Receiver returns NAK after a certain time, for example SIFS (Short Inter

Frame Space) in 802.11, if the decoding has failed. Otherwise, it stays silent.
5. Transmitter listens to NAK and decodes it with the multi-path fading res-

olution circuit. If NAK is recognized, transmitter retransmits the packet for
conventional ARQ or additional FEC (Forward Error Correction) of HARQ.

6. Step 4, 5 are repeated for the nodes that have not succeeded their reception
as long as there are the nodes, and the number of trials has not exceeded a
certain limit.

The first step of protocol is carrier sense. Although there have been arguments
whether carrier sense without RTS/CTS is enough to avoid the hidden terminal
problem, some work has shown that CSMA wholly relying on carrier sense level
has quite competitive performance or outperforms RTS/CTS scheme [12,13,14].
It can be easily extended to multicast environment without modifications.

After transmission, the transmitter needs to decode the NAK from multiple
receivers. Since the receivers are all synchronized to the transmitter for commu-
nication, they will transmit NAK at the same time after some specified interval
such as SIFS. The time difference of NAK transmissions between receivers are
about the difference between their propagation delays. Therefore, the time dif-
ference between NAK arrival time at the transmitter will be about twice longer
than the difference between the propagation delays if we assume that the delays
incurred by the internal circuits of receivers are negligible. It is quite acceptable
assumption. Note that we can measure the distance between devices by UWB
turn-around time [15]. Its accuracy is a several centimeters.

Let’s assume that there is a communication system whose modulation is
OFDM. A transmitter has transmitted multicast packet to several receivers and

680 J. Na, C. Kim, and J. Ma

N of them have failed decoding the packet. ai denotes i-th node among those
N receivers that need to transmit NAK. A single frame of NAK signal can be
denoted as X(k) in frequency domain, where k denotes each carrier. Then, the
expected received signal function of a single NAK from ai to the transmitter is
given by

Yi(k) = X(k)Hi(k) + ωi(k) (2)

where Hi(k) is a complex channel function due to the fading and ωi is white
gaussian noise. The channel estimator is to estimate Hi(k). In multiple NAK
situation from N failed receivers, the total receiving signal is given as

Y (k) = X(k)

[
N∑

i=1

Hi(k)

]
+ ω(k) (3)

where ω(k) is white gaussian noise. Finally, we have

Y (k) = X(k)H(k) + ω(k) (4)

where H(k) =
∑

i Hi(k). Therefore, the NAK from multiple receivers can be
decoded with multi-path fading resolution scheme at the transmitter as long as
the time synchronization error among receivers are negligible.

4 Multicast Protocol for MB-OFDM

In this section, we introduce the multicast protocol for MB-OFDM based on
the proposition discussed in Section 3. To accomplish both reliability and power
efficiency, proposed protocol uses the punctured convolutional code and packet
aggregation scheme.

In conventional approaches, transmitter sends multicast data at lowest data
rate out of supported rates. It allows that all receivers decode data successfully,
since data with lower rate has more redundancy bits and longer transmission
time. However, this approach is inefficient in point of power and delay. Although
several receivers are able to decode data without redundancy bits, all receivers
have to decode the longer data stream with many redundancy bits. Consequently,
transmitter and several receivers waste power due to lowest data rate. Hence,
we use the punctured convolutional code to meet suitable rate of each receivers.
Recall that the puncturing scheme supports higher data rate by omitting trans-
mitted data [1]. It leads to reduce transmission time, receiving time, and power
consumption. On the other hand, puncturing scheme leads to the higher bit er-
ror rate (BER). To improve reliability of punctured multicast data and reduce
overhead caused by many retransmission, transmitter sends the aggregated data
and only several receivers send NAK if the decoding is failed.

4.1 Multicast Transmission Frame

Transmitter does not send full data packet at a time, only sends a partial packet
selectively. The our proposed multicast packet is divided into four parts by using

PHY-MAC Cross-Layer Design of Reliable Wireless Multicast Protocol 681

F(t) F’(t-1) F’’(t-2) F’’’(t-3)
F
C
S

F
C
S

F
C
S

Aggregation
Header

P
a
d

Sequence
of F(t)

Sequence
of F’(t-1)

Sequence
of F’’(t-2)

Frame
Count

MAC
Header

F
C
S

Sequence
of F’’’(t-3)

Fig. 1. Proposed Aggregated Multicast frame format

F(t) F’(t-1)

Error Error

F(t+1) F’(t) F’’
(t-1)

N
A
K

Error

Error

ErrorError

Receiver

Receiver

Sender F(t+2) F’(t+1) F’’(t)

SIFS

N
A
K

N
A
K

Error

Error

MAC header &
Aggregation header

Transmission Packet Receiving Packet

Receiver

N
A
K

N
A
K

N
A
K

N
A
K

Fig. 2. Proposed Multicast Procedure

punctured convolutional code; one mandatory data frame and three optional
retransmission frames. These four frames are encoded at different coding rate [1].
The first part is transmitting data frame that is encoded at 3/4 coding rate. The
remaining three parts are retransmission frames that are encoded by 5/8, 1/2,
1/3 coding rate respectively, however, excludes the redundant bits with previous
part. In actuality, the number of retransmitted bits become gradually decrease
than one of previous part. Since retransmitted bits is much small, the attached
header is big overhead and repetitive retransmission brings long transmission
delay. Hence, the retransmission frame is aggregated to next transmitting packet
without additional overhead. As you see Figure 1, F (t) is data frame which
transmitted at time t and F ′(t − 1) is first retransmission frame of F (t − 1).
F ′′(t − 2) is second retransmission frame of F (t − 2) and F ′′′(t − 3) is third
retransmission frame of F (t−3). In addition, aggregation header is attached with
a common MAC header holding the sequence information of each aggregated
frames. The FCS (Frame Check Sequence) field is also inserted between two
different frames to distinguish them respectively.

4.2 Multicast Protocol Description

The proposed multicast procedure is described in Figure 2. We assume that
power proportionates directly to receiving and transmission time. To reduce
unnecessary power consumption and receiving time of receivers, transmitter has
to decide the optimal data rate before it send out the multicast packet. The

682 J. Na, C. Kim, and J. Ma

data rate of each transmission is based on estimated BER through distance
to receivers and the history of previous successful transmission through NAK
information. With equation (5), transmitter is able to change the data rate of
each frames in order to adapt optimally the condition of receivers.

min
r

RRT (5)

subject to RRT =
n∑

i=1

RTr(i)

RTr(i) =
l∑

j=1

PERr(j − 1) · Lenr(j) · r

PERr(j) ≥ Thresholdj

RTr(i) ≤ t

When receivers receive multicast packet, they become aware of sequence num-
bers of aggregated frames through aggregation header. At this time, they decide
which retransmission frames must be received. If receiver decodes earlier receiv-
ing data frame or retransmission frame successfully, it doesn’t receive relevant
retransmission frame to reduce power consumption. Otherwise, it decodes re-
transmission frame in combination with earlier receiving frame. In different way
of conventional approach, although decoding has failed, receiver stores error
frame instead of dropping it. And then, receiver transmits NAK at relevant slot
time that delayed based on consisted frame order in multicast packet. Although
multiple receivers simultaneously transmit NAK, collision is not occurred by
proof in Section 3. If transmitter receive NAK, it retransmits selectively the
only relevant frame.

Table 1. Symbol and definition of equation (5)

Symbol Definition

RRT Total receiving time of all receivers when packet is
transmitted at data rate r including retransmission

RTr(i) Receiving time of ith receiver when packet is
transmitted at data rate r

Lenr Encoded packet length at data rate r
PERr(j − 1) Packet error ratio of earlier transmission

or retransmission at data rate r
Thresholdj Threshold of PER when counts of retransmission is j

r Data rate : It depends on coding rate

n The number of receivers

l The number of retransmissions, l = 0, 1, 2, 3

t The limited transmission time of a packet
including retransmission

PHY-MAC Cross-Layer Design of Reliable Wireless Multicast Protocol 683

5 Simulation Results

In this section, we provide simulation results demonstrating performance en-
hancement of the proposed multicast protocol.

The estimated value of power consumption is referred to IEEE 802.11b at
11 Mbps [16]; sleep mode is 47mW, idle mode is 739mW, receive mode is
900mW and transmit mode is 1346mW. (Because we have not referenced power
value of MB-OFDM.) The simulation settings are as follows: the network size is
10m*10m; maximum 20 nodes are randomly deployed into this area; the lowest
data rate is 53.3 Mbps; all the points in our performance figures are computed
from 10 trials and each trial transmits 1000 packets.

0 5 10 15 20
0

100

200

300

400

500

600

700

800

900

The number of receivers

T
ra

n
sm

is
si

o
n

 P
o

w
er

 (
m

W
)

Conventional Strategy
Ideal Model with MBOA
Ideal Model with RCPC
LOS Model with MBOA
LOS Model with RCPC

Fig. 3. Transmission Power

0 5 10 15 20
0

100

200

300

400

500

600

The number of receivers

R
ec

ei
vi

n
g

 P
o

w
er

 (
m

W
)

Conventional Strategy
Ideal Model with MBOA
Ideal Model with RCPC
LOS Model with MBOA
LOS Model with RCPC

Fig. 4. Receiving Power

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

The number of receivers

R
at

io
 o

f
T

ra
n

sm
is

si
o

n
 T

im
e

(u
se

c)

Conventional Strategy
Ideal Model with MBOA
Ideal Model with RCPC
LOS Model with MBOA
LOS Model with RCPC

Fig. 5. The Ratio of the Transmission
Time

0 5 10 15 20
0

20

40

60

80

100

120

The number of receivers

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Conventional Strategy
Ideal Model with MBOA
Ideal Model with RCPC
LOS Model with MBOA
LOS Model with RCPC

Fig. 6. Throughput

We use the following three metrics to evaluate the performance of proposed
protocol: 1) Power consumption at transmitter and receivers. 2) The ratio of
transmission delay. 3) Aggregate throughput. Furthermore, we compare the 5
models for performance evaluation; The first model is conventional strategy,

684 J. Na, C. Kim, and J. Ma

which multicast data is transmitted at lowest data rate without retransmission
and acknowledgement. The remaining four models are based on our proposed
scheme. They use different punctured coding scheme and UWB models. The
coding schemes use punctured patterns of MB-OFDM code (MBOA) [1] or rate-
compatible punctured code (RCPC code) [17] which is the optimal punctured
convolutional code. The RCPC code requires that lower rate codes use the same
coded bits as the higher rate codes plus one or more additional bits. To compare
with similar coding rates of MB-OFDM, we choice RCPC code with 4/5, 2/3,
1/2, and 1/3 coding rate. In addition, UWB models are Ideal model or LOS
(Line of Sight) model whose SNR is calculated by equations in [18].

Figure 3 and 4 show transmission power of transmitter and average receiv-
ing power of one receiver as the number of receivers increase, when transmitter
sends 1000 packets. As illustrated in the figure, transmission power of proposed
protocol is much lower than conventional strategy from 25% to 50% according
to punctured code and UWB model. The RCPC code has lower power con-
sumption than MB-OFDM code because it has the optimal pattern to decode
successfully packet. In addition, the LOS model is higher power consumption
than Ideal model because it has higher BER. As the number of receivers in-
crease, transmission power become gradually higher due to increment of the
number of distant receiver from transmitter. Moreover, the receiving power is
also reduced from 37% to 55% through selective reception of aggregated frames
based on previous failed frame reception.

Figure 5 shows the ratio of average transmission delay of different schemes.
The proposed scheme reduces transmission delay as compared with conventional
strategy from 25% to 50%. The main reason is that, data transmits at higher data
rate and retransmission also transmits much higher data rate without additional
overhead. Further, Figure 6 illustrates the the aggregated throughput, which also
improves from 10% to 50% according to puncturing and UWB models.

6 Conclusion

In this paper, we show that the multiple feedback control packets can be suc-
cessfully decoded in transmitter without additional hardware cost. Based on the
proposition, we described a conceptual flow of wireless multicast algorithm.

Moreover, we proposed multimedia multicast scheme on MB-OFDM WPAN
specifications. We addressed the topic of optimizing power consumption and
delay of multicast traffic in WPAN. We presented a new approach for power
efficient multicast protocol. It uses the punctured convolutional coding to re-
duce power consumption and aggregation scheme to retransmit without over-
head for reliability. Moreover, proposed protocol use NAK mechanism to get
feedback information. From the simulation study, we verify that the proposed
scheme reduces power consumption as well as delay, and achieves the improved
performance.

PHY-MAC Cross-Layer Design of Reliable Wireless Multicast Protocol 685

References

1. anonymous, Ed., MBOA - PHY Layer Technical Specification, MBOA PHY Spec-
ification. WiMedia Alliance PHY Subcommittee, Jan. 2005, vol. Final Draft 1.0.

2. J. O’Conor and R. Brown, Eds., MBOA - Distributed Medium Access Control
(MAC) for Wireless Networks. WiMedia Alliance MAC Subcommittee, Jan. 2005,
vol. Draft 0.93.

3. J. Kuri and S. K. Kasera, “Reliable multicast in multi-access wireless lans,” Wire-
less Networks, vol. 7, no. 4, pp. 359–369, July 2001.

4. S. Gupta, V. Shankar, and S. Lalwani, “Reliable Multicast MAC Protocol for
Wireless LANs,” in Proc. of IEEE ICC ’03, May 2003.

5. S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven Layered Multicast,”
in Proc. of ACM SIGCOMM ’96, Aug. 1996, pp. 117–130.

6. P. A. Chou, A. E. Mour, A. Wang, and S. Mehrotra, “FEC and pseudo-ARQ
for receiver-driven layered multicast of audio and video,” in Proc. of IEEE Data
Compression Conference 2000, Mar. 2000, pp. 440–449.

7. W. Tan and A. Zakhor, “Video multicast using layered FEC and scalable compres-
sion,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 11, no. 3,
pp. 373–387, Mar. 2001.

8. Y. Park, Y. Seok, N. Choi, Y. Choi, and J.-M. Bonnin, “Rate-Adaptive Multime-
dia Multicasting over IEEE 802.11 Wireless LANs,” in IEEE CCNC ’06 Special
Sessions on Multimedia and QoS in Wireless Networks, Jan. 2006.

9. U. Nguyen and X. Xiong, “Rate-adaptive multicast in mobile ad-hoc networks,”
in Proc. of IEEE Int’l Conf. on WiMob ’05, Aug. 2005.

10. W. T. Strayer and B. J. Dempsey, XTP–The Xpress Transfer Protocol. Addison-
Wesley Pub. Co., 1992.

11. S. Floyd, V. Jacobsen, S. McCanne, C.-G. Liu, and L. Zhang, “A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing,” in Proc. of
ACM SIGCOMM ’95, vol. 25, Oct. 1995, pp. 342–356.

12. T.-S. Kim, H. Lim, and J. C. Hou, “Improving Spatial Reuse through Tuning
Transmit Power, Carrier Sense Threshold and Data Rate in Multihop Wireless
Networks,” in ACM MobiCom ’06, Sept. 2006.

13. J. Zhu, X. Guo, L. L. Yang, W. S. Conner, S. Roy, and M. M. Hazra, “Adapt-
ing physical carrier sensing to maximize spatial reuse in 802.11 mesh networks,”
Wireless Communications and Mobile Computing, vol. 4, no. 8, pp. 933–946, Nov.
2004.

14. H. Zhai and Y. Fang, “Physical Carrier Sensing and Spatial Reuse in Multirate
and Multihop Wireless Ad Hoc Networks,” in Proc. of IEEE INFOCOM ’06, 2006.

15. J.-Y. Lee and R. A. Scholtz, “Ranging in a Dense Multipath Environment Using an
UWB Radio Link,” IEEE Journal on Selected Areas in Communications, vol. 20,
no. 9, pp. 1677–1683, Dec. 2002.

16. L. Feeney and M. Nilsson, “Investigating the Energy Consumption of a Wireless
Network Interface in an Ad Hoc Networking Environment,” in Proc. of IEEE IN-
FOCOM 2001, Apr. 2001.

17. J. Hagenauer, “Rate-Compatible Punctured Convolutional Codes (RCPC Codes)
and their Applications,” IEEE Trans. on Communications, vol. 36, no. 4, Apr.
1998.

18. L. Williams, D. Wu, E. Staggs, and A. Yen, “Ultra-wideband radio design for
multi-band ofdm 480 mb/s wireless usb,” in Proc. of DesignCon 2005, 2005.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 686–698, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Adaptive Multi-paths Algorithm for Wireless
Sensor Networks*

Zhendong Wu and Shanping Li

College of Computer Science, Zhejiang University, Hangzhou, China
zhendongwu@hotmail.com, shan@cs.zju.edu.cn

Abstract. Multi-path strategy is one of the favorable choices to transmit data
efficiently and flexibly in sensor networks. Due to various applications, it is hard
to devise a generic WSN routing strategy to meet all requirements of various
applications and environments at the same time. Therefore, a novel routing
strategy should provide flexible schemes which adjusts forwarding schemes
dynamically according to the different requirements. In this paper, we proposed
an adaptive multi-path routing algorithm (AMPRA), which could provide
convenient client-interface for flexible switching between various routing
strategies. Through studying the local minimum phenomenon, a new method
Clockwise-Rule is proposed to overcome the local minimum phenomenon. Based
on the Clockwise-Rule, AMPRA provides flexible transmission schemes.
Simulations show that AMPRA can significantly improve the performance of
networks.

Keywords: Sensor Networks, Adaptive Multi-paths, Local Minimum
Phenomenon, Right hand rule.

1 Introduction

Recent advanced in micro electromechanical systems (MEMS) has fostered the
development of low-power, inexpensive, data relaying micro-sensors. Thousands of
sensors can be quickly deployed to monitor different environments, capture various
physical properties and react with all sorts of users. Many applications emerged with
the development of sensor networks. Due to application diversity, it is hard to devise a
generic WSN routing strategy to meet all requirements of various applications and
environments at the same time. Therefore, a novel routing strategy should provide
flexible schemes which adjusts forwarding schemes dynamically according to the
different requirements. Multi-paths is one of the choices to provide flexible forwarding
schemes for various applications.

Recent empirical studies ([1] [2] [3]) have shown that wireless links in real sensor
networks may be unreliable. In order to overcome the unreliable links in network layer,
some new metrics over unreliable links are proposed by ([4] [5] [6]). These forwarding
schemes all focus on single path optimization. Multi-paths have the potential to provide

* This paper is supported by National Natural Science Foundation of China (No. 60473052).

 An Adaptive Multi-paths Algorithm for Wireless Sensor Networks 687

robust and high-throughput data transmitting over unreliable links in sensor networks.
Swades et al [7], Ye et al [8] proposed different multi-path routing algorithms
respectively. Swades et al [7] don’t consider the local minimum phenomenon. Ye et al
[8] use flooding mechanism to get each node’s “cost” value which indicates the
distance from local node to destination node. However flooding mechanism is not
suitable for large-scale sensor networks. Obviously, suitable forwarding schemes over
unreliable and reliable links are different. In this paper, we focus on how to choose
adaptive multi-paths without flooding mechanism and provide flexible forwarding
schemes.

The physical nature of sensor network’s deployment makes geographically scoped
queries natural ([9] [10]). If nodes know their locations, geographic queries can reduce
control overhead evidently. Many geographic routing protocols including single-path
([11] [12]) and multi-paths ([13] [14]) have been proposed. The multi-path algorithms
that have been proposed need flooding mechanism and require central processing at the
source or destination node in normal. Geographic forwarding has to face a fundamental
difficulty: the local minimum phenomenon ([11] [15]). Specifically, a packet could get
stuck at the closest 1-hop neighborhood to the destination. Message will be sent
reiteratively between two nodes. To help packets get out of the local minima, strategies
proposed previously use the long-known right-hand rule which requires the graph
planar (no crossing edges). But, planarizing graph may make the graph lost many links
which could be used in multi-path and increase the overhead of routing protocols. It
seems that right-hand rule is not suitable for multi-path in sensor networks. Qing Fang et
al [15] studied the local minimum phenomenon and introduced a distributed algorithm,
BOUNDHOLE, to forward around holes which local minimum phenomenon occurs. In
this paper, we think of restricting greedy forwarding in one region which makes the
reiteration-sending not occur. Based on the assumption that the boundary is a Convex
Polygon, we proposed a new method Clockwise-Rule that helping packets get out of the
local minima instead of using the right-hand rule. Using Clockwise-Rule and an
overhearing mechanism, a multi-path routing algorithm (AMPRA) is proposed, which
can get multi-paths in parallel while eliminate flooding mechanism completely.

The paper is organized as follows. In section 2, Clockwise-Rule is described.
Adaptive multi-paths algorithm AMPRA is proposed in section 3. Simulations and
conclusions are presented in section 4, 5.

2 The Clockwise-Rule Algorithm

In this section, based on Convex Polygon assumption, a new method Clockwise-Rule to
deal with the local minimum phenomenon is proposed. First the Convex Polygon
assumption is described and justified. And then the Clockwise-Rule is proposed.

As introduced above, geographic greed forwarding suffers from so-called local
minimum phenomenon. To help packets get out of the local minima, strategies
proposed previously use the long-known right hand rule which requires the graph
planar (a graph in which no two edges cross is known as planar, see [11]). But,
according to ([11] [16] [17]), each neighborhood change will affect the result of the

688 Z. Wu and S. Li

graph planarizing. It is necessary to replanarize the graph as soon as the neighborhood
varied. It result in one node can not choose two or more next-hop nodes simultaneously.
So right hand rule is not suitable for adaptive multi-path choosing.

Moreover, planarizing graph will make the graph lost many links which could be
used in multi-path. Fig.1, for example, shows two planar graphs well-known in varied
disciplines ([16] [17]): Relative Neighborhood Graph (RNG) and Gabriel Graph (GG).
It can be concluded that planarized graphs lost many links, which could be used in
multi-paths.

Fig. 1. Left: the full graph of a radio network. 200 nodes, uniformly randomly placed on a 2000 x
2000 meter region, with a radio range of 250 m. Center: the GG subset of the full graph. Right:
the RNG subset of the full and GG graphs.

As discussion above, it is required to propose a new method to deal with the local
minimum phenomenon in multi-path environment. Clockwise-Rule is proposed to help
packets to get out of the local minima without using the right-hand rule based on the
assumption that the boundary is a Convex Polygon.

2.1 The Convex Polygon Assumption

It is proved by Qing Fang et al [15] that when a node encounters the local minima, it
must be on the boundary of a hole. The whole boundary can be divided into two or more
partitions by the beeline defined by local node and destination node. Here, the Convex
Polygon assumption means that the beeline divides whole boundary into two Convex

Fig. 2. Convex Polygon Assumption

Fig. 3. Convert to Convex Polygon

 An Adaptive Multi-paths Algorithm for Wireless Sensor Networks 689

Polygon partitions. For example, as Fig.2 shows, local node encounters the local
minima when it using geographic greed forwarding strategy. Then, it faces to a hole
which is enclosed by a closed boundary, as shown in Fig.2. The beeline defined by local
node and destination node divides the boundary into two partitions A and B. The
Convex Polygon assumption means that A and B are both Convex Polygons. Convex
Polygon has such a property that any beeline through its boundary divides it into two
independent partitions.

First, it is simple that convert the graphs which do not accord with the Convex
Polygon assumption to the graphs that the Convex Polygon assumption always holds.
If the neighborhoods of one node C are all in its half communication region, it should
inform its neighborhoods (if we assume one node’s communication region is a disk,
then half communication region is half-disk). The neighborhoods received this
information will mark this node C and continue checking whether itself belongs to half
communication region after it omitted node C. After all nodes inform their
neighborhoods, the convex polygon assumption can hold. When encountering local
minima, the marked nodes should be avoided to be chosen as the next-hop nodes,
doing like this, the convex polygon assumption is hold. For example, as Fig.3 shows,
the neighborhoods of node a, c are all in its half communication region; and omit node
a c; then b is in half communication region, omit b; the Convex Polygon assumption is
hold.

Second, we studied 40 stochastic scenarios produced by ns2 where 200 nodes are
randomly distributed in a 2000×2000 meter region. The boundaries in all scenarios
accord with the Convex Polygon assumption. Specifically, in ([11] [15]), there are some
scenarios for sensor networks, which are all accord with the Convex Polygon
assumption. It seems that the Convex Polygon assumption is reasonable. In fact, in real
sensor networks environment, holes usually happen when there are some obstacles in
the way. If using some sensor nodes enclosing the obstacle, the boundary comprised by
these sensor nodes could be thought a Convex Polygon in normal.

From above discussion, it can be concluded that the Convex Polygon assumption
always holds in generally, and if the assumption does not hold, the graph can be
converted simply to accord with the assumption.

2.2 Clockwise-Rule

The Clockwise-Rule is based on the following assumptions.

·The Convex Polygon assumption.
·All nodes in communication range are reachable.

A. CLOCKWISE_REGION and ANTICLOCKWISE_REGION

The beeline defined by local node and destination node divides the communication
region of local node into two parts, as shown in Fig.4. The region that is passed by local
node clockwise forwarding is called CLOCKWISE_REGION, and the other region is
called ANTICLOCKWISE_REGION. Neither of them includes the beeline.

690 Z. Wu and S. Li

Fig. 4. CLOCKWISE_REGION and ANTICLOCKWISE_REGION

B. Clockwise-Rule: Using greedy forwarding in CLOCKWISE_REGION (or
ANTICLOCKWISE_REGION).

At the beginning of the forwarding, the CLOCKWISE_REGION or
ANTICLOCKWISE_REGION forwarding is chosen. If the rule is chosen, it can’t be
changed until the forwarding get out of the local minima. For example, it is not allowed
to apply CLOCKWISE_REGION in the first node and ANTICLOCKWISE_REGION in the
second node.

Theorem 1. If the boundary accords with the Convex Polygon assumption, forwarding
can get out of the local minima using Clockwise-Rule. Here, the boundary encloses a
hole where local minimum phenomenon occurs.

Proof. It is proved by Q. Fang et al [13] that wherever local minimum phenomenon
occurs, it will be enclosed by a close boundary. According to Convex Polygon
assumption, any beeline through the boundary divides it into two partitions. If the
beeline gets through the hold, the CLOCKWISE_REGION or ANTICLOCKWISE_REGION will
not be empty; otherwise, local node is not in the local minima. Because all nodes in
communication range are reachable, choosing a new node will always be successful
using greedy forwarding in CLOCKWISE_REGION or ANTICLOCKWISE_REGION. It can
be deduced from the definition of CLOCKWISE_REGION and ANTICLOCKWISE_REGION
that if one node is in local node CLOCKWISE_REGION or ANTICLOCKWISE_REGION, the
node CLOCKWISE_REGION or ANTICLOCKWISE_REGION will not cover the local node.
This property guarantees that the reiteration will not occur in Clockwise-Rule. In
addition, loop (the next hop has been chosen before) will not occur unless the chosen
nodes compose a close curve around the hole. But that case will not happen since there
must be a node that is not in the local minima around the hole. Finally, loop will not
occur. Clockwise-Rule will forward the packet to a new node that hasn’t been visited.
This process will continue until packets reach the node that is not in the local minima
(nodes around the hole is limited), namely getting out of the local minima.

According to theorem.1 and the definition of Clockwise-Rule, Clockwise-Rule can
hold many links for multi-paths and change the choosing-numbers flexibly since it does
not need planarizing graphs. So Clockwise-Rule is more suitable for adaptive
multi-paths than right-hand rule.

 An Adaptive Multi-paths Algorithm for Wireless Sensor Networks 691

3 Adaptive Multi-Path Routing Algorithm: AMPRA

3.1 The AMPRA Algorithm

The AMPRA algorithm consists of three steps: neighbors set adjusting, route discovery
and route confirm.

Neighbors set adjusting: Once deployed and localized, each active node will acquire its
neighbor’s location and link quality information through exchanging information with
its neighbors. According to link quality information, each node could blacklist some
neighbors which link’s reliability is too low. According to researches ([1] [2] [3] [18]),
the longer the distance between two nodes is, the higher the probability of unreliable
links is. Since greed forwarding strategy intends to choose longer links, blacklisting
mechanism can make greed forwarding avoid choosing too bad links.

Route discovery: This step starts from the source node and stops at the destination node.
First, if source node does not encounter local minimum phenomenon, it chooses m
nodes as next-hop pending nodes using greedy forwarding strategy, otherwise, it
chooses m nodes using Clockwise-Rule. After choosing m next-hop pending nodes,
source node sends ROUTE_REQUEST packets to these nodes. Each node that receives the
ROUTE_REQUEST packet will repeat the same actions as source node does until the
ROUTE_REQUEST packet arrives at the destination node. Here the m can be adjusted
according to the environment parameters, 2 or 3 is enough in normal.

switch(Forward_State)
{

case NORMAL_STATE:
 forwarding using greedy forward;
 if(encounter the local minimum)
 Forward_State = CLOCKWISE_STATE;
 else break;
case CLOCKWISE_STATE:
 forwarding using Clockwise-Rule;
 if(get out of the local minimum)
 Forward_State = NORMAL_STATE;

}

Route confirm: There is a simple but useful observation on communications in sensor
networks: the broadcast nature of the wireless medium allows sensor nodes detecting
their neighbor’s transmission. It means that one node can determine whether the
packets are relayed by next-hop nodes through detecting the next-hop node’s
transmission. After sending ROUTE_REQUEST packets to next-hop pending nodes, one
node detects whether these nodes relaying the same ROUTE_REQUEST packets. If the
packet is relayed successfully, the pending node will be confirmed as one next-hop
node. Those pending nodes that don’t be detected will be deleted from the set of
next-hop nodes.

Fig.5 shows a multi-path using AMPRA algorithm with m = 2. The width of the
routing network can be adjusted through increasing or decreasing the m value.
Furthermore different relaying nodes can use different m values.

692 Z. Wu and S. Li

Fig. 5. Pictorial views of multi-path, m=2

3.2 Adaptive Routing with AMPRA

AMPRA allows various forwarding schemes realized over multi-paths according to
different applications and environments. Moreover, different forwarding schemes can
switch each other at any relaying-node. It is useful for providing adaptive routing
scheme in a large sensor network with changed environments. Table.1 is an adaptive
routing-function class, which provides function interface to adjust routing-schemes
flexibly.

Table 1. Adaptive Routing Interface

class RouteInterface {
public:

status_t get_Status();
 /* the node_info includes: link-quality, node-location, and so on*/
int get_NeighborsInfo(node_t **node_info);
/*route_strategy =Auto, Disjoint Routing, Select Routing, Direct Routing*/
int get_RouteStrategy();
int set_AutoAction(status_t local_status, node_t **node_info);
/* this function can be rewritten by users*/
virtual int compute_RouteStrategy(node_t **node_info) { return Auto; }

 /* m_ is used to adjust the width of the route*/
int appoint_RouteStrategy(int route_strategy, int m_);
/* there are two tables nodes_info_tab and route_tab in **node_info */

 int adjust_RouteTab(node_t **node_info, int route_strategy);
private:

status_t local_status;
node_t **node_info;
int route_strategy;
int m_;

};

 An Adaptive Multi-paths Algorithm for Wireless Sensor Networks 693

Depend on this interface, we could conveniently change routing-strategy
(appoint_RouteStrategy()), or adjust routing-tab (adjust_RouteTab()) at any nodes.
Here three forwarding schemes are proposed for adaptive routing-function class.

Disjoint parallel: multi-path forwarding: In order to realize disjoint forwarding,
AMPRA algorithm need do some improvement in Route discovery and Route confirm.
In Route discovery, source node chooses m next-hop nodes as m disjoint paths starting
nodes (each node is assigned a serial number 1~m). Then each relaying node has its
own serial number. It chooses a main node from m next-hop nodes and assigns its own
serial number to it. If the main node has been occupied by other path, it sends
PATH_OCCUPIED packet to upstream node. In route confirm step, if one node receives
the PATH_OCCUPIED packet, it chooses another node as the main node from m next-hop
nodes. From above improvement, AMPRA can provide a disjoint multi-path net in
which each relaying node has a main next-hop node and m-1 assistant next-hop nodes.
If the wireless links are fairly reliable and disjoint multi-paths can use efficient multiple
access control protocol, etc. CDMA system, disjoint forwarding will improve the
network’s throughput and load balance significantly. It is difficult for some multi-path
algorithms, such as GRAB [8], to switch meshed multi-paths to disjoint multi-paths at
any routing-node since flooding mechanism and centralized process are needed.

Selective forwarding: Each relaying node just chooses one next-hop node to forward
the packets based on local conditions (e.g. health of the next-hop nodes). If the wireless
links in sensor networks are not so reliable, selective forwarding can improve the
transmission’s reliability fairly.

Direct forwarding: Omitted route confirm, the data packets can be delivered directly
through replacing ROUTE_REQUEST packets appeared in the step of route discovery.
Using direct forwarding, a packet from a source is copied along some possible paths to
its destination. Although consuming more energy than other two forwarding schemes,
it guarantees and speeds up the arrival of data packets. If there are some emergency data
packets need to be transferred, direct forwarding is a suitable choice.

If one relaying-node detects that environments has changed and another forwarding
scheme is more suitable for the packets forwarding, it can switch to the new forwarding
scheme using routing interface immediately. The function compute_RouteStrategy()
can be used to judge which forwarding scheme should be used.

4 Simulations and Comparisons

The algorithm AMPRA is simulated on a variety of static network topologies. With
disjoint parallel multi-path forwarding scheme, the network’s load balance, energy
consumption and traffic efficiency are measured. With selective forwarding scheme,
the probability of successful arrival of a packet to the destination is studied. A high
probability of successful transmission could result in good energy efficiency and
throughput. With direct forwarding scheme, the average delay time is measured
because it is the main parameter when transmitting emergency data in networks if the

694 Z. Wu and S. Li

correct transmission can be guaranteed. We evaluate how AMPRA through comparing
with GPSR [11], ETX metric [6], Lazy loss detection [4], GRAB [8] and M-MPR-SF
[7]. It can be concluded from these measurements that AMPRA is a good choice for
efficient and reliable transmission.

4.1 Simulation Environment

We use ns2.28 to simulate AMPRA algorithm. A route agent is installed to ns2. In ns2
simulations, Shared Media interface is initialized with parameters to make it work like
the 914MHz Lucent WaveLAN DSSS radio interface. Simulations are for networks of
50 nodes with 802.11 WaveLAN radios, with a nominal 250-meter range, 2Mbps
bandwidth. The nodes are initially placed at random in a rectangular region. Through
adjusting the size of the region, different node density got.

Numerical experiments are used to evaluate the probability of successful arrival of a
packet to the destination.

To evaluate the load balance of a network, the metric Energy Variance (Evar) is
used. When the value is lower, the load balance is better. If the value is very high, it
means some nodes will exhaust their energy soon, and result in useful system lifetime
decline. N is the sum of nodes.

Evar =
N

1 [(E1 - Emean)2+(E2 - Emean)2+…+(EN - Emean)2] (1)

Emean =
N

spentenergy theof sum the
 (2)

4.2 Simulation Results

A. Using disjoint parallel multi-path forwarding scheme
In this part, we assume the wireless links are reliable. Then the GPSR, ETX metric,
Lazy loss detection can be seen the same in normal. Three disjoint multi-paths are
chosen using AMPRA, and its performance is compared with GPSR, GRAB using ns2
with 2 CBR flows in 1kByte/s. GRAB is a multi-path routing algorithm which needs a
flooding mechanism – cost field building to establish the multi-paths route table. The
energy overhead of GRAB consists of two parts, forwarding and cost field building.
Because the cost value of each node will change with the packets forwarding, cost field
building should be carried out periodically.

For evaluating the network’s Evar, we modify the energy consumption simulation
code of CMU slightly in wireless-phy.cc. Fig.6 shows the Energy Variance (Evar) at
different densities (Neighbors/Range). Obviously, AMPRA has better load balance
than GPSR and GRAB. It is mainly because AMPRA can provide parallel disjoint
multi-paths. Although GRAB also provides multi-paths, it forwards the packets along
with one route not parallel routes selected from the routes. In fact, GRAB is not suitable
for reliable links because it is designed to forward packets over unreliable links. It can

 An Adaptive Multi-paths Algorithm for Wireless Sensor Networks 695

be found out from Fig.6 that lower density has higher Energy Variance. It mainly
because the lower density means fewer neighborhood’s interference, namely, more
energy could be conserved by those not-routing nodes.

0

2

4

6

8

10

12

14

6.5 9 14 19
Density (Neighbors/Range)

E
n
e
r
g
y

V
a
r
i
a
n
c
e

GRAB

GPSR

AMPRA

Fig. 6. Energy Variance (Evar)

0

1

2

3

4

5

6

6.5 9 14 19
Density (Neighbors/Range)

A
v
e
r
a
g
e

C
o
n
s
u
m
e
d

E
n
e
r
g
y

GRAB

GPSR

AMPRA

Fig. 7. Average Consumed Energy (Emean)

Fig.7 shows the Average Consumed Energy (Emean) at different densities
(Neighbors/Range). GRAB consumes more energy than GPSR and AMPRA because
of the periodical flooding mechanism. It can be concluded that AMPRA in general has
the same average consumed energy as GPSR. It does not increase much amount of
overhead traffic due to multiple paths. Moreover, it consumes energy more smoothly
(See Fig.7, Density 9). In density 9, the forwarding encounters some local minimum
phenomenon. GPSR lost some “good” links and need more hops, so it consumes more
energy than AMPRA. It’s evidence that Clockwise-Rule consumes lower energy than
right hand rule. The highest Evar in Fig.6 Density 9 also based on this reason.

The metric Average Delay Time is used to evaluate the network’s traffic efficiency.
As shown in Table.2, the Average Delay Time (point to point) of AMPRA is lower than
GPSR and GRAB. Before forwarding packets, GRAB need establish the route table
first through flooding mechanism, which consumes much time. AMPRA can provide
2*3Mbps bandwidth in-between source and destination, but GPSR and GRAB have
only 2Mbps bandwidth. Although GRAB has multi-path, it only chooses one next-hop
node from multi next-hop nodes to forward the packets in one transmission. AMPRA
can carry large data through 3 routes in parallel. The traffic efficiency is improved
significantly. Low density means large rectangular region which result in large hops, so
the Average Delay Time decreases with the increase of the density.

Table 2. Average Delay Time (point to point)

Density 6.5 9 14 19

GRAB 91ms 79ms 63ms 49ms

GPSR 43ms 37ms 30ms 25ms

AMPRA 24ms 19ms 13ms 12ms

696 Z. Wu and S. Li

B. using Selective forwarding scheme
In this part, we assume the wireless links are not so reliable, and the packet receive rate
of each link is distributed in 0.85~0.99 randomly. Using AMPRA algorithm (m = 2),
ETX metric and Lazy loss detection, the probability of successful arrival of a packet to
the destination is evaluated using numerical experiments.

Fig.8 shows the change of the successful arrival probability with different distance
between source and destination. Because multi-paths can choose more reliable links at
each relaying node according to current conditions, as Fig.8 shows, it (e.g. AMPRA)
gets more reliable transmission than single path strategy (e.g. ETX metric, Lazy loss
detection). Due to enhance the reliability of reverse links, Lazy loss detection gets some
better performance than ETX metric. As proved by [4] (section II.B), no ACK
transmission will decrease the packet receive rate to 0 as the hops increase. So
retransmission over unreliable wireless sensor links is needed. It implicates that high
probability of successful transmission will result in high energy efficiency and
throughput because of the retransmission’s decrease. Since AMPRA can provide more
reliable transmission, it has higher energy efficiency and throughput than ETX metric
and Lazy loss detection.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4 5 6 7 8
Source-to-destination distance (#hop)

P
r
o
b
a
b
i
l
i
t
y

o
f

S
u
c
c
e
s
s
f
u
l

T
r
a
n
s
m
i
s
s
i
o
n

ETX Metric

Lazy Loss Detection

AMPRA

Fig. 8. The packets arrival rate

0

10

20

30

40

50

60

70

80

90

100

1200×900 1000×800 800×600 600×500

Region Size (m × m)

A
v
e
r
a
g
e

D
e
l
a
y

T
i
m
e

(
m
s
) GRAB

M-MPR-SF

AMPRA

Fig. 9. The transmission speed of emergency data

C. using direct forwarding scheme
As mentioned in subsection 3.2, direct forwarding using all links in the multi-paths to
transfer the same packets sent from source node. It guarantees the correct of packets
transmission as high probability even if there are errors in some links. For emergency
data, rapid and correct transmission is the most important thing. In this part, the speed
of direct forwarding is studied using ns2 with 1kbyte data packet and 64byte route
packet.

GRAB and M-MPR-SF are two multi-paths routing algorithms which are all need
establish the multi-paths route table before transmitting data packets. During the
multi-paths establishment, GRAB use flooding and destination reply mechanisms and
M-MPR-SF use greedy forwarding and destination reply mechanisms. Fig.9 shows the
average delay time of AMPRA, GRAB and M-MPR-SF with different region size. As
mentioned above, large region size means large hops. The average delay time decreases
with the decrease of region size. Compared with GRAB and M-MPR-SF, AMPRA
decreases the average delay time of emergency data transmission evidently. It mainly
derives from that AMPRA do not need the process of multi-paths establishment which

 An Adaptive Multi-paths Algorithm for Wireless Sensor Networks 697

consumes much time. Due to flooding mechanism will bring interference, GRAB
consumes more time than M-MPR-SF in transmitting emergency data. It can be
concluded that AMPRA with direct forwarding has quick speed in emergency data
transmission. Direct forwarding is suitable for emergency data transmission.

5 Conclusions

Through adjusting the forwarding schemes, Multi-paths can provide more efficient
transmission in sensor networks. After deeply studying the local minima, we proposed
an adaptive multi-path algorithm (AMPRA) for sensor networks. AMPRA can provide
flexible forwarding schemes satisfying different transmission requirement. It can
balance energy load and extend network’s bandwidth through using disjoint parallel
multi-path forwarding scheme, or speed up the emergency data transmission through
using direct forwarding scheme, or improve the reliability of the transmission over
unreliable links through using selective forwarding scheme. Simulation results confirm
the effectiveness of the AMPRA.

References

1. Ganesan, D., Krishnamachari, B., Woo, A., Culler, D., Estrin D., Wicker, S., 2002.
Complex Behavior at Scale: An Experimental Study of Low-Power Wireless Sensor
Networks. UCLA CS Technical Report UCLA/CSD-TR 02-0013.

2. Zhao, J., Govindan, R., 2003. Understanding Packet Delivery Performance in Dense
Wireless Sensor Networks. Proceedings of the 1st international conference on Embedded
networked sensor systems (SenSys’03), p. 1 – 13.

3. Woo, A., Tong, T., Culler, D., 2003. Taming the Underlying Issues for Reliable Multhop
Routing in Sensor Networks. Proceedings of ACM Sensys 2003, Los Angeles, California,
2003.

4. Qing Cao, Tian He, Fang Lei, Abdelzaher, T., Stankovic, J., 2006. Efficiency Centric
Communication Model for Wireless Sensor Networks. IEEE INFOCOM’06.

5. Seada, K., Zuniga, M., Helmy, A., Krishnamachari, B., 2004. Energy Efficient Forwarding
Strategies for Geographic Routing in Lossy Wireless Sensor Networks. Proceedings of the
2nd international conference on Embedded networked sensor systems (SenSys’04), p.
108 - 121.

6. de Couto, D.S.J., Aguayo, D., Bicket, J., Morris, R., 2003. A High-Throughput Path Metric
for Multi-Hop Wireless Routing. Proc. ACM Ninth International Conference on Mobile
Computing and Networking (Mobicom’03).

7. Swades De, Chunming Qiao, Hongyi Wu, 2003. Meshed multipath routing with selective
forwarding: an efficient strategy in wireless sensor networks. Computer Networks 43 (2003)
481-497.

8. Ye, F., Zhong, G., Lu, S., Zhang, L., 2005. GRAdient Broadcast: A Robust Data Delivery
Protocol for Large Scale Sensor Networks. ACM Wireless Networks (WINET), Vol. 11,
No. 2, p. 285-298.

9. Savarese, C., Langendoen, K., Rabaey, J., 2002. Robust Positioning Algorithms for
Distributed Ad-Hoc Wireless Sensor Networks. Proc. Usenix Annual Technical
Conference, Monterey, CA, June 2002.

698 Z. Wu and S. Li

10. Chintalapudi, K., Govindan, R., Sukhatme, G., Dhariwal, A., 2004. Ad-Hoc Localization
Using Ranging and Sectoring. Proc. IEEE INFOCOM’04, Vol. 4, p. 2662 – 2672.

11. Karp, B., Kung, H., 2000. Greedy Perimeter Stateless Routing. Proceedings of the 6th
annual international conference on Mobile computing and networking (Mobicom 2000), p.
243 - 254.

12. Yan Yu, Govindan, R., Estrin, D., 2001. Geographical and energy aware routing: A
recursive data dissemination protocol for wireless sensor networks. UCLA Computer
Science Department Technical Report UCLA/CSD-TR-01-0023.

13. Nasipuri, A., Castaneda, R., DAS, S., 2001. Performance of Multipath Routing for
On-Demand Protocols in Mobile Ad Hoc Networks. ACM/Kluwer Mobile Networks and
Applications(MONET) Journal, 2001,6(4): 339-349.

14. Papadimitratos, P., Hass, Z. J., Sirer, E. G., 2002. Path set selection in mobile Ad hoc
networks. Proc. of the 3rd ACM Int'l Symp. on Mobile Ad Hoc Networking & Computing.
New York: ACM Press, p. 1~11.

15. Qing Fang, Jie Gao, Guibas, L., 2004. Locating and Bypassing Routing Holes in Sensor
Networks. Proc. The 23th Conference on Computer Communications (IEEE
INFOCOM’04). Vol. 4, p. 2458 – 2468.

16. Gabriel, K., Sokal, R., 1969. A new statistical approach to geographic variation analysis.
Systematic Zoology 18, p. 259–278.

17. Toussaint, G., 1980. The relative neighborhood graph of a finite planar set. Pattern
Recognition 12, 4 (1980), 261–268.

18. Zuniga, M., Krishnamachari, B., 2004. Analyzing the Transitional Region in Low Power
Wireless Links. Proceedings of IEEE SECON 2004, p. 517-526.

Distributed Self-Pruning(DSP) Algorithm for

Bridges in Clustered Ad Hoc Networks�

Seok Yeol Yun1 and Hoon Oh2,��

1 Kangwon National University, Chuncheon, Kangwon-do, Korea
kw477@hanmail.net

2 University of Ulsan, Ulsan, Korea

Abstract. In clustered ad hoc networks, it is often required that a clus-
terhead, a leader of cluster, send a message to all its neighbor cluster-
heads. One simple approach is to use a flooding scheme in which every
bridge node receiving a message simply relays it only if it receives the
message for the first time. However, the flooding tends to degrade net-
work efficiency severely because many bridges relay the message unnec-
essarily, causing neighbor clusterheads to receive multiple copies of the
same message along different paths. A distributed self-pruning algorithm
proposed in this paper attacks this problem.

1 Introduction

In a variety of applications, nodes are often required to send a message to all
other nodes of a mobile ad hoc network. The brute-force approach to this problem
has been known as flooding, in which every node relays a message only if the
message has been received for the first time. Flooding causes nodes to receive
multiple copies of the same message along different paths, degrading network
efficiency severely. In this paper, assuming that nodes in ad hoc network forms
a number of disjoint clusters, we devise an efficient algorithm to handle the case
that a clusterhead, the leader of a particular cluster, sends a message to all of
its neighboring clusterheads.

Some previous researches have been performed as part of the proposed rout-
ing protocols [2] [3] or independent protocols aimed at improving efficiency
[1] [7] [9] [10]. Key broadcasting protocols are discussed for their advantages and
disadvantages.

SBA [7], a self pruning protocol, uses a neighbor elimination scheme to re-
duce the number of retransmissions. A node sends a broadcast message (BMSG)
after piggybacking a set consisting of its one-hop neighbors. The receiving node
retransmits the BMSG only if it has at least one neighbor node not covered by
the forwarding node. However, the effectiveness of SBA is often limited because
� This research was supported by the MIC(Ministry of Information and Communi-

cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Assessment).

�� corresponding author.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 699–707, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

700 S.Y. Yun and H. Oh

a receiving node usually has a node in the opposite side of the forwarding node,
except for the nodes positioned at the edges of a network.

In OLSR [2], every node selects a Multipoint Relay (MPR) set that is a
minimal subset of neighboring nodes such that their combined radio range covers
all nodes located within 2-hops. Thus, only the nodes that belong to the MPR
set are allowed to retransmit a received BMSG. It reduces a lot of overhead,
but suffers from a high level of computational complexity required to select the
minimal subset. Their proposed heuristic algorithm still takes on a high degree
of computation in relatively dense networks.

The FNSB [10] protocol was devised for use in clustered networks to promote
efficient message exchange among the clusterheads of neighboring clusters (here-
after referred to as neighbor clusterhead). In this protocol, every clusterhead selects
a minimum number of bridges, known as the forward set, such that it can cover all
neighboring clusterheads; the forward set is relayed separately to its neighbors.
FNSB is similar to the OLSR protocol in that only the nodes that belong to the
forward set retransmit the BMSG. Unlike OLSR, however, FNSB does not suf-
fer from a computational overhead as the number of neighboring clusterheads are
typically not very large. In addition, this algorithm is also not a distributed type.

In the Neighbor Dependent Cluster (NDC) [1], a source node forms a cluster
prior to the initiation of route discovery. A route is explored by a limited flooding,
rather than a simple flooding, by exploiting the cluster structure, in which initial
nodes (nodes before a cluster is formed), clusterheads, and selected bridges take
part in forwarding. A clusterhead selects a set of forwarding bridges such that
the more clusterheads a bridge passes through, the higher the chance of selection
becomes. A tie is broken by the number of non-clusterheads connected by a
particular bridge. However, the problem with NDC is that the bridge selection
is done by a clusterhead. Furthermore, the set of bridges selected according to
the proposed algorithm may not cover all neighboring clusterheads.

In Passive Clustering(PC) [3], each bridge declares its connecting pair of clus-
terheads by sending a declaration message if it has not yet received such a
message. The receiving bridge subsequently gives up its forwarding role unless
it does not have another distinct connecting pair of clusterheads. If two bridges
declare the same connecting pair of clusterheads, the bridge with the lowest ID
is given priority. In this protocol, an extra message is needed to claim the for-
warding role. Moreover, even though a given bridge is capable of covering more
than one clusterhead, it is forbidden to do so. The end result of PC is a reduction
of superfluous forwardings, especially in dense networks.

The approach used in this paper does not determine the forwarding bridge
set a priori. Instead, all the bridges that receive a BMSG make an independent
judgment regarding whether or not to forward or relay by parsing some tiny
information piggybacked in the message. Accordingly, the additional overhead
required to perform this algorithm is almost negligible. The computational com-
plexity for judgment is O(n) where n is the number of neighboring clusterheads.

In Section 2, we identify the problem and overview our approach. Section
3 gives the detailed description of the proposed algorithm. We evaluate the

Distributed Self-Pruning(DSP) Algorithm 701

algorithm by applying it to the existing protocols PCDV (Proactive Cluster-
based Distance Vector) [5] and GDSR (Group Dynamic Source Routing) [4] in
Section 4. Lastly, the contributions of the new algorithm and future research
directions are discussed in Section 5.

2 Problem Identification

In clustered ad hoc networks it is common for a clusterhead to send messages
to its neighboring clusterheads (the clusterheads of its neighboring clusters).
Such examples are shown in the PCDV routing protocol or in a protocol where
a node broadcasts a network-wide message [4] [6]. In this case, a message is
delivered via some intermediate bridges to the sender’s neighbor clusterheads
by flooding. However, in a mesh network with multiple routes between a pair of
neighboring clusterheads, flooding causes multiple copies of the identical message
to be delivered to the neighboring clusterheads. This overhead is a serious factor
in the degradation of network performance.

Fig. 1. On-the-fly route optimization

For example, Fig. 1 shows a small wireless network consisting of two clusters,
each of which is encircled by a dashed line. The clusterheads are denoted by
rectangles, which are connected to each other by four bridges (circles 3, 4, 5, and
6). We do not discuss the clustering method here since it is beyond the scope
of the paper. To demonstrate how flooding works, one can envision a message
transmitted by clusterhead 1 toward its neighboring clusterhead 2 that is first
delivered to bridges 4, 5, and 6. The receiving node adjacent to a bridge relays
the message immediately. However, bridge 3, which receives the message from
bridge 4, will also forward the message. In the end, clusterhead 2 receives four
identical messages. This is far from the optimal case in which only one bridge
would relay the received message.

702 S.Y. Yun and H. Oh

One method to solve the problem discussed above would be to have a bridge
detect that one of its neighboring bridges has already sent the identical message,
and to abort sending the message if that is the case. For instance, referring again
to Fig. 1, if one assumes that node 5 sent the message prior to two neighboring
bridges and bridges 4 and 6 were able to overhear the transmission, if bridge 5 can
mark the fact that the message was delivered to clusterhead 2 within the message,
bridges 4 and 6 (which overheard the message) can give up sending the message.

3 Algorithm Description

Consider the case of an arbitrary clusterhead that sends a message to all the
neighboring clusterheads that are at most three hops away (if the considered
network is not partitioned). In a dense network, numerous identical messages
can be delivered to each neighboring clusterhead along the different paths, which
is due to the fact that a bridge does not know that its neighboring bridges have
already relayed a message to the clusterheads to which it is about to send the
same message.

Let C(b) be a set of clusterheads that bridge b can cover directly (by one
hop) or indirectly (by two hops) by forwarding the message. Let N(b) be a set
of b’ neighbor bridges. Let N(b-) be a set of bridges that belongs to N(b), but
sent the message prior to bridge b. Bridge b need not relay the message if the
following condition holds: C(b)⊆ {x| x ∈ C(v), v ∈ N(b-)}.

If bridge b can maintain the covered set information C(b) for the clusterheads
that it can cover directly or indirectly against node mobility, each node becomes
capable of making a judgment regarding the sending of a message according to
the Relay Rule, which hereby is denoted as the Distributed Self-Pruning (DSP)
algorithm. Fortunately, we can maintain the covered set of each bridge easily by
resorting to the Hello messages without using additional control messages. In
this paper, the Hello messages are utilized for exchanging the cluster structure
information, detecting link connectivity, and building the covered sets. Conse-
quently, a node relays a received message only if the following two conditions
are satisfied simultaneously:

(1) The receiving node is a bridge; and

(2) Not(C(b)⊆ {x| x ∈ C(v), v ∈ N(b-)}).

Let BMSGi denote a broadcast message initiated by clusterhead i. We define
two notations - coverableSeti and BMSGi.coveredSet. coverableSeti is the set
of bridge i ’s neighboring clusterheads and the clusterheads of bridge i ’s neigh-
boring bridges that belong to another cluster. The element of the set (cluster-
head, distance) that consists of clusterhead and distance to the corresponding
clusterhead.

Note that all the clusterheads in the set are at the most within two hops,
and therefore such information can be generated with ease by exchanging Hello
messages. BMSGi. coveredSet is a set of clusterheads to which BMSGi has been

Distributed Self-Pruning(DSP) Algorithm 703

delivered directly before or at the same time the message arrives at a certain
bridge. Every bridge piggybacks the coveredSet upon relaying a received mes-
sage. The result is that all of the receiving bridges know which neighboring
clusterheads have already received the message. A detailed description of the
DSP algorithm is given in Fig. 2.

//BMSGi = (msg, coveredSet).
//BMSGi.msg: a message initiated by clusterhead i.
//BMSGi.coveredSet: a set of clusterheads to which
//BMSGi has been delivered directly before or at
//the same time the message arrives at a certain bridge.
//coverableSeti : the set of bridge i’s neighbor
//clusterheads and the clusterheads of bridge i’s
//neighbor bridges that belong to bridge another cluster.
o sending clusterhead i:

send BMSGi = (msg, coveredSet);
o clusterhead j that receives BMSGi:

Process BMSGi;
free(BMSGi);

o ordinary node l that receives BMSGi:
free(BMSGi);

o bridge k that receives a BMSGi

S = coverableSeti - {(src, d)| d = 1 or 2};
// α is delay coefficient
// randomDelay is a random delay
delay-jitter = α * (|S| - |S|d=1) * randomDelay;
set BMSGi’s transmission delay to delay-jitter;
put the BMSGi into the queue and execute the timer;

o bridge k whose timer expires
// S includes all covered sets received along different
//routes
for each coveredSet v in the queue that belongs to BMSGi do

S = S ∪ v ;
endfor;
// i is the source node that initiated BMSG
S = coverableSetk − {(i,d)} − {(x,1), (x,2) | (x,d)∈ S};
if (S != ∅) then

S′ = {(x, d)| (x, d) ∈ S, d = 1};
resend BMSGi = (msg, S′);

elseif ;
delete all queued messages with respect to BMSGi;

Fig. 2. DSP Algorithm

Fig. 3 illustrates the application example of the DSP algorithm. Each bridge
maintains its coverableSet. For example, node 13 can cover 0 and 1 directly.
However, bridge 13 cannot cover clusterhead 6, even though it is two hops away,
since their respective clusters are not neighbor. Suppose that clusterhead 1 sends

704 S.Y. Yun and H. Oh

Fig. 3. Optimized Retransmission of Messages

a message BMSG1 to its neighbor clusterheads 0, 2, and 6. Because the source
clusterhead does not have any clusterhead to cover directly, it sends a message
with coveredSet = ∅, and bridges 4, 5, 7, 10, and 13 subsequently receive the
message with coveredSet = ∅. Assume that node 5 considers the judgment first
without loss of generality. Then, coverableSet5 = {(1, 1), (6, 1)}. Bridge 5 can
cover clusterheads 1 and 6 directly, and since node 1 is the originator, it is
neglected. Bridge 5 sends a message with coveredSet = {6} which is received by
bridges 4 and 7. Now, suppose that nodes 7 and 13 make a relay judgment (note
that nodes 4 and 13 cannot send a message at the same time because of collision).
Node 13 can cover clusterhead 0, and thus relays the message with coveredSet =
{0}. Bridge 4 knows that all clusterheads in its coverableSet4 have been covered
by both bridge 13 and bridge 5, and gives up relaying BMSG1. Bridge 7 relays
the message with coveredSet = {6} where clusterhead 6 can be directly covered.
Among the receiving bridges 10 and 11, suppose that bridge 11 makes a judgment
first. Bridge 11 sends the message with coveredSet = {2}. Upon receiving the
message, Bridge 10 knows that clusterhead 2 has already been covered by bridge
11. In this way, almost 50% of bridges give up relaying the message.

4 Performance Analysis

To analyze the effectiveness of the DSP algorithm, we applied the proposed DSP
algorithm to two cluster-based protocols, PCDV [5] and GDSR [4] to which the

Distributed Self-Pruning(DSP) Algorithm 705

algorithm can be easily adapted with a slight modification. GlomoSim 2.03 [8]
was used for simulation study. The parameter values are given in Table 1.

Table 1. Simulation parameters

Parameter value

Node mobility pattern Random WayPoint

Node Mobility 5 (m/sec)

Pause time 30 (sec)

Number of Nodes 50, 75, 100, 150, 200, 250

Dimension size 1500 x 300

Transmission Range 250 (m)

Bandwidth 2 (Mbps)

Traffic type CBR

Simulation Time 300 (sec)

Fig. 4. Comparison of Control Overhead between PCDV and PCDV-DSP

Fig. 4 shows the variation of control overhead (as measured in bytes) according
to varying number of nodes. The PCDV-DSP, which employs the DSP algorithm,
was able to reduce overhead by approximately 50% compared to the PCDV
alone, regardless of node density. Fig. 5 shows a gain of performance similar to
that observed in the application of DSP to PCDV. However, the overhead of the
GDSR employing DSP decreases with the higher node density, since nodes issue
RREQs less frequently due to the increased connectivity between groups. The
overall effect increased the stability of the group route.

Fig. 5 shows a gain of performance to that observed in the application of DSP
to GDSR. However, the overhead of the GDSR employing DSP decreases with
the higher node density, since nodes issue RREQs less frequently due to the
increased connectivity between groups. The overall effect increased the stability
of the group route.

706 S.Y. Yun and H. Oh

Fig. 5. Comparison of Control Overhead between GDSR and GDSR-DSP

Fig. 6. Avg. Ratio of Relaying BMSG in PCDV and PCDV-DSP

Fig. 7. Avg. Ratio of Relaying BMSG in GDSR and GDSR-DSP

Distributed Self-Pruning(DSP) Algorithm 707

Note that the DSP algorithm increases the size of a BMSG by piggybacking
a coveredSet. Here, we analyze how many nodes participate in relaying a BMSG
without considering the size of a BMSG. This analysis is meaningful, as multiple
transmissions of a message with a small payload are more harmful than a single
transmission of a message with a large payload. According to the simulation
results shown in Fig. 6 and Fig. 7, the performance gain obtained was up to 60%
or 80%, depending on which protocol was applied.

5 Conclusion

In this paper, we presented a new algorithm that reduces the number of bridges
required to participate in relay activity. Unlike other methods, this algorithm
does not set the bridges that need not relay the message a priori. Rather, each
bridge makes an on-the-fly relay judgment by checking small information pig-
gybacked in the received message. The high efficiency of this algorithm was
demonstrated by simulation.

References

1. Tzu-Chiang Chiiang, Po-Yi Wu, Yueh-Min Huang, “A limited flooding schmeme
for mobile ad hoc networks,” Wireless And Mobile Computing, Networking And
Communications, 2005. (WiMob’2005), IEEE International Conference, vol.3, Aug.
(2005) pp.473-478.

2. Philippe Jacquet, Paul Muhlethaler, Thomas Clausen, Anis Laouiti, Amir Qayyum,
Laurent Viennot: “Optimized link state routing protocol for ad hoc networks.” In
IEEE International Multi Topic Conference, (2001).

3. Taek Jin Kwon, Mario Gerla: “Efficient flooding with passive clustering(PC) in ad
hoc networks,” ACM Computer Communication Review, vol.32, no.1, Jan.(2002)
pp.44-56.

4. D. M. Ngoc, H. Oh,“A Group Dynamic Source Routing Protocol for Ad Hoc Net-
works,” Proc. 1st IFOST 2006, Oct. (2006) pp.134-137.

5. Hoon Oh, Seok-Yeol Yun: “Proactive cluster-based distance-vector(PCDV) routing
protocol in mobile ad hoc networks”, To be published, IEICE Trans. On Commu-
nications.

6. Hoon Oh, Hong Seong Park: “Communication architecture and protocols for
broadcast-type mobile multimedia ad hoc networks,” MILCOM 2002. Proceedings,
vol.1, 7-10, Oct. (2002) pp.442-447.

7. Wei Peng, Xi-Cheng Lu: “On the Reduction of Broadcast Redundancy in Mobile
Ad Hoc Networks,” Proc. First Ann. Workshop Mobile and Ad Hoc Networking
and Computing, Aug. (2000) pp.129-130.

8. UCLA Parallel Computing Laboratory and Wireless Adaptive Mobility Labora-
tory. GloMoSim: A Scalable Simulation Environment for Wireless and Wired Net-
work Systems, http://pcl.cs.ucla.edu/projects/glomosim

9. Ivan Stojmenovic, Mahtab Seddigh, Jovisa Zunic: “Dominating Sets and Neighbor
Elimination-Based Broadcasting Algorithms in Wireless Networks,” IEEE Trans-
actions on Parallel and Distributed Systems, vol.13, no.1, Jan. (2002) pp.14-25.

10. Jie Wu, Wei Lou: “Forward-Node-Set-Based Broadcast in Clustered Mobile Ad Hoc
Networks,” Wireless Networks and Mobile Computing, special issue on Algorith-
mic, Geometric, Graph, Combinational, and Vector, vol.3, no.2, (2003) pp.155-173.

Chaotic Communications in MIMO Systems

Karuna Thapaliya1, Qinghai Yang1, and Kyung Sup Kwak1

UWB Wireless Communications Research Center (INHA UWB-ITRC),
Inha University, 402-751, Incheon, Korea

karunaa2@yahoo.com

Abstract. In wireless communications, chaotic communications have
been a field of interest due to its low complexity in hardware implemen-
tation and low power consumption in chaotic signal generation. Among
the modulation schemes using the chaotic signal, Differential Chaos Shift
Keying (DCSK) is a robust noncoherent technique. Multiple-input
multiple-output (MIMO) system is a technology that uses multiple trans-
mit and/or multiple receive antennas in order to improve the system
performance in wireless systems. In our paper, we have proposed a new
scheme of MIMO-DCSK which utilizes the benefits of MIMO system into
the chaotic communication system by transmitting and receiving DCSK
modulated signals through multiple antennas. Our analysis and simula-
tion results show how the chaotic communications in the new MIMO-
DCSK benefits over the single input single output (SISO) system and the
BER performance of DCSK in additive white Gaussian noise (AWGN)
channels using Alamouti space-time code and the maximum likelihood
decoding is analyzed.1

1 Introduction

Chaotic communications have been a subject of major interest in the field of
wireless communications due to the wideband spectrum, random like signals,
non-repetition of the signals, easiness of generating the chaotic signals, low power
consumption property and less complex system. In chaotic communications, the
information is directly mapped to some property of a chaotic signal thus avoid-
ing the need of additional spectrum spreading. Other significant advantages of
chaotic communications are no use of carriers and the possibility of highly se-
cured communications.

Many chaos based communication systems have been proposed as chaos shift
keying (CSK), chaos frequency modulation (CFM), chaos pulse position modu-
lation (CPPM) [1].For our analysis, differential chaos shift keying (DCSK) mod-
ulation scheme has been considered.

Multiple-input multiple-output (MIMO) system is a technology using multiple
antennas for transmission and reception thus increasing the channel capacity and
1 This research was supported by the MIC (Ministry of Information and Communi-

cation), Korea, under the ITRC (Information Technology Research Center) support
program supervised by the IITA (Institute of Information Technology Advancement).
(IITA-2006-(C1090-0603-0019)).

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 708–717, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Chaotic Communications in MIMO Systems 709

reliability in wireless communications. Alamouti code is an ingenious transmit
diversity technique in MIMO technology. It is the first technique that utilizes
the space time block codes. Basically Alamouti space time is a simple scheme of
2x2 system that achieves a full diversity gain with a simple maximum likelihood
decoding algorithm.

To our best knowledge, DCSK in MIMO system has not been exploited yet.
In this paper, a novel MIMO-DCSK scheme is proposed for chaotic communica-
tions. Our simulations show how the MIMO system improves the system perfor-
mance as compared to SISO system. In addition to this advantage, the proposed
scheme reduces the signal generation complexity by the use of a smaller signal
spreading factor.

2 System Description

In DCSK two chaotic signals are sent for each symbol period which corresponds
to one bit of information. The first signal is used as a reference signal whereas the
second signal is the information bearing signal. The information bit is extracted
at the receiver by differentially coherent demodulation.

Transmission of reference chip via the same channel is generally considered
as loss in transmitted energy per bit. This may be valid for the AWGN channel
only. But real channels have linear or non-linear distortion and the modulated
carrier has to be correlated with a reference signal distorted in the same manner
as the modulated carrier to get the best system performance. And correlation
with original distortion free reference results in performance degradation. Since
in chaotic communication both the reference and information bearing signals
undergo the same channel distortion, it offers a better system performance. In
other words we can say that reference signal can be considered as a test signal
used to measure the channel characteristics.

In our proposed system of DCSK with Alamouti space time code, the infor-
mation bits are first DCSK modulated and then the encoder takes a block of
two modulated symbols s1 and s2 in each encoding operation and gives it to the
transmitting antennas according to the code matrix. At the receiver, combiner
combines the received signal and gives it to the maximum likelihood (ML) detec-
tor for signal detection and then to the DCSK demodulator for the information
bits recovery.

Fig.1 shows the structure of conventional DCSK transceiver [3]. Fig.3 and
Fig.4 show the block diagram of the Alamouti space-time encoder and the Alam-
outi’s two antenna transmit diversity scheme respectively.

2.1 DCSK Modulation

The discrete chaotic sequence si for one bit is represented as:

si =

{
xi 0<i≤M

blxi−m M<i≤2M,
(1)

710 K. Thapaliya, Q. Yang, and K.S. Kwak

si

-

i i M
M

r r d

Fig. 1. DCSK Transceiver

where bl = +1 for information bit=1 and bl=-1 for information bit=0. For bit 1
the modulator as shown in Fig.1(a) transmits the same chaotic signal twice in
succession, while for bit 0 the message signal, which is the chaotic signal delayed
by M time period as compared to the reference signal, is an inverted copy of the
reference signal.

The chaotic signal represented by (1) is shown in Fig.2 for both bit 1 and
bit 0 transmissions. A certain guard interval is also inserted between reference
and message signals so as to avoid the overlapping between these two signals as
shown in Fig.2.

2.2 DCSK Demodulation

Signal recovery is done in the receiver side by multiplying the received reference
and message signals, i.e., signal ri and the received signal delayed by M , ri+M

[3]. The output of the correlator is given as:

d =
∑

M

riri+M , (2)

Chaotic Communications in MIMO Systems 711

−1 0 1 2 3 4 5

x 10
−9

−0.5

0

0.5

1

time(sec)

am
pl

itu
de

when bit "1" is transmitted

reference signal
message signal

(a) DCSK modulation - when bit 1 is transmitted

−1 0 1 2 3 4 5

x 10
−9

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time(sec)

am
pl

itu
de

when bit "0" is transmitted

reference signal
message signal

(b) DCSK modulation - when bit 0 is transmitted

Fig. 2. DCSK Modulation

712 K. Thapaliya, Q. Yang, and K.S. Kwak

making assumptions as received signal ri = si +ξi, where ξi is a stationary
random process with ≺ ξi �= 0 such that for any i �= j, ξi and ξj are statistically
independent. Thus the output of the correlator becomes [1]:

d =
M∑

i=1

(si + ξi)(si+M + ξi+M)

=
M∑

i=1

(blx
2
i + xi(ξi+M + blξi) + ξiξi+M)

= bl

M∑

i=1

x2
i +

M∑

i=1

(xi(ξi+M + blξi) + ξiξi+M). (3)

In (3) the first term is the important signal for the correlator and the second
term is a zero mean random quantity.

The positive correlation output from equation (3) indicates that the receiving
bit is 1 else the negative result of correlation indicates bit 0. In a noise free case,
the magnitude of correlator output at the decision time instant is equal to the
transmitted energy per bit.

2.3 Alamouti Space Time Code

As mentioned earlier Alamouti code is the transmit diversity technique in MIMO
technology. Two DCSK modulated symbols s1 and s2 are taken by the encoder
and supplied to the transmit antennas according to the code matrix [7],

S =
[
s1 −s∗2
s2 s∗1

]
, (4)

where the first column represents the first transmission period and the second
column represents the second transmission period. The first row represents the

Fig. 3. Block diagram of Alamouti space-time encoder

Chaotic Communications in MIMO Systems 713

Fig. 4. Alamouti’s two-antenna transmit diversity

signal transmitted by the first antenna while the second row represents the sec-
ond antenna as:

S1 =
[
s1, −s∗2

]
,

S2 =
[
s2, s∗1

]
, (5)

where S1 is information transmitted by the first antenna and S2 is the informa-
tion transmitted by the second antenna. Thus from (5), it is observed that the
inner product of S1 and S2 equals to zero thus making the sequences orthogo-
nal. From (5), it is also observed that the transmission is done in space, i.e., two
antennas and in time with two transmission intervals.

Let H be the fading channel defined as:

H =
[
h11 h12
h21 h22

]
, (6)

where hij denotes the fading channel coefficients, and the subscripts i and j de-
notes the receiving antenna index and the transmitting antenna index
respectively.

Then the received signal R is,

R = H ∗ S + N,

R =
[
h11 h12
h21 h22

]
.

[
s1 −s∗2
s2 s∗1

]
+

[
n1 n2
n3 n4

]
,

R =
[
r11 r12
r21 r22

]
, (7)

where N , n1, n2, n3, and n4 represent the additive white Gaussian noise. Then
the combiner combines this received signal as follows:

S1
c = h∗

11r11 + h12r
∗
12 + h∗

21r21 + h22r
∗
22,

S2
c = h∗

12r11 − h11r
∗
12 + h∗

22r21 − h21r
∗
22. (8)

714 K. Thapaliya, Q. Yang, and K.S. Kwak

The combiner then sends these combined signals to the ML detector [7] wherein
the decision is made. From (7) we get,

r11 = h11s1 + h12s2 + n1, (9)

r12 = −h11s
∗
2 + h21s

∗
1 + n2, (10)

r21 = h21s1 + h22s2 + n3, (11)

r22 = −h21s
∗
2 + h22s

∗
1 + n4. (12)

And (10) and (12) can be also be modified as:

r∗12 = −h11s2 + h21s1 + n2, (13)

r∗22 = −h21s2 + h22s1 + n4. (14)
(9), (11), (13) and (14) can be represented in a simpler form as follows:

⎡

⎢⎢⎣

r11
r∗12
r21
r∗22

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

h11 h12
h21 −h11
h21 h22
h22 −h21

⎤

⎥⎥⎦ ·
[
s1
s2

]
+

[
n1 n2
n3 n4

]
,

R
′
= H

′
.S

′
+ N, (15)

The ML detector gives:

Ŝ = argmin
S′

∥∥R′ − H ′.S′∥∥
2 . (16)

Hence the decision is made by the ML detector.

3 Simulation Results

In this paper, we have evaluated the performance of DCSK in MIMO systems un-
der the additive white Gaussian noise (AWGN) channel. Simulations are done un-
der several conditions as different values of spreading factor, comparison of the
single input single output (SISO) and MIMO systems. The results of our simula-
tions are presented in terms of BER versus the ratio Eb/No expressed in dB, where
Eb is the energy per bit, and No is the single-sided spectral noise density.

3.1 Conventional DCSK Simulation

In this part DCSK modulation is performed under the AWGN channel for differ-
ent values of spreading factor M (3) to show the significance of M in the single
input single output (SISO) system.

Our simulation results in Fig.5 compare the system performance for different
values of M under the AWGN channel. And it is observed that the larger the
value of the spreading factor M, the better the system performance. As for
example, from Fig.5 we can see a gain of about 3.5 dB at BER= 10−2 with the
increase of M from 40 to 80.

Chaotic Communications in MIMO Systems 715

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
(dB)

B
E

R

M=80(1Tx,1RX)
M=40(1Tx,1RX)
M=20(1Tx,1RX)
M=16(1Tx,1Rx)
M=8(1Tx,1RX)
M=4(1Tx,1RX)

Fig. 5. BER performance of DCSK modulation for different values of M in SISO system
under the AWGN channel

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

E
b
/N

o
(dB)

B
E

R

M=4(2Tx,2Rx)
M=8(2Tx,2Rx)
M=16(2Tx,2Rx)

Fig. 6. BER performance of DCSK modulation for different values of M in a 2x2 MIMO
system under the AWGN channel

3.2 DCSK in MIMO System

In this part we analysed the MIMO-DCSK performance. As mentioned earlier
the MIMO system used in our simulations is Alamouti space time code. Fig.6
shows our simulation results for DCSK modulation in MIMO system with two
transmitting antennas and two receiving antennas for different values of spread-
ing factors. Comparing the results of Fig.5 and Fig.6, we can observe that for

716 K. Thapaliya, Q. Yang, and K.S. Kwak

0 2 4 6 8 10 12
10

−3

10
−2

10
−1

10
0

E
b
/N

o
(dB)

B
E

R

MIMO(2Tx,2Rx)
SISO(1Tx,1Rx)

Fig. 7. Comparison of BER performance of SISO (1x1) and MIMO (2x2) with DCSK
modulation for M=8

smaller values of spreading factor we can achieve a better performance in MIMO
system than in the SISO system. From our simulation results in Fig.6, it is ob-
served that the performance is much better giving the BER value of 10−3 at
about Eb/No = 2.25dB for the case of M=16. But in case of SISO, we get the
BER value of 10−3 at about Eb/No = 8.5dB even at M=80 as shown by our
simulation results in Fig.5. From Fig.5, it can also be observed that the system
performance is poor in SISO-DCSK for M=4, 8, 16 but for the same values of
M, a better performance is obtained for the MIMO-DCSK as in Fig.6.So, we
don’t have to consider the complex cases with higher values of M as 40, 80 for
the case of MIMO-DCSK. Our analysis illustrates that the MIMO-DCSK offers
the improved system performance along with the reduced complexity in chaotic
signal generation by the use of smaller values of spreading factor M thus proving
to be a new improved chaotic communication system.
Our simulation results in Fig.7 is a comparison between SISO-DCSK and MIMO-
DCSK under the AWGN channel for M=8 which shows a remarkably improved
performance in MIMO system than in the general SISO system.

4 Conclusions

In this paper, we analysed the system performance of the conventional DCSK
system under the AWGN. The analysis is done for different values of spreading
factor M. Our results show that the larger the value of the spreading factor M,
the better the system performance.

The major part of the paper is the analysis of a new scheme of combining
DCSK with MIMO system. As for the MIMO system, we considered the Alam-

Chaotic Communications in MIMO Systems 717

outi space time code for our simulation. Our simulation results show an improved
performance with MIMO-DCSK as compared to SISO-DCSK. Also with a rea-
sonable small value of spreading factor, we can obtain a much improved system
performance hence reducing the complexity in chaotic signal generation.

The new MIMO-DCSK makes chaotic communications more effective and
attractive along with the advantages of MIMO. For future analysis, MIMO-
DCSK under multipath environment should be studied.

References

1. Ben Farah, M.A., Kachouri, A., Samet, M.; ”Design of secure digital communication
systems using DCSK chaotic modulation”, Design and Test of Integrated Systems
in Nanoscale Technology, 2006. Publication Date: Sept. 5-7, 2006, pp. 200 - 204.

2. Galias, Z., Maggio, G.M., ”Quadrature chaos-shift keying: theory and performance
analysis”, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and
Applications, Vol. 48, NO. 12, Dec 2001, pp. 1510-1519.

3. Yungil Kim, Jaehwan Kim, Jae-Hyon Kim, Joonhyuk Kang, ”Comparison of DCSK
Receiver and Enhanced DCSK Receiver with Synchronization Error”, VTC 2006-
spring IEEE 63rd ,volume 5,2006, pp. 2261 - 2265.

4. Geza Kolumban, Tamas Krebesx, ”UWB Radio: A Real Chance for Application of
Chaotic Communications”, NOLTA 2006, 11-14 September, 2006, pp. 475-478.

5. A.S. Dmitriev, A.I. Panas, K.V. Zakharchenko, ”Basic Principles of Direct Chaotic
Communications”, Nonlinear Phenomena in Complex Systems. 2003. vol. 6. no. 1,
pp. 1-14.

6. Kennedy, M.P., Kolumban, G.; Kis, G., Jako, Z., ”Performance evaluation of FM-
DCSK modulation in multipath environments”, IEEE Transactions on Circuits and
Systems-I: Fundamental Theory and Applications, Vol. 47, NO. 12, Dec 2000, pp.
1702 - 1711.

7. Mohinder Jankiraman, ”Space-time codes and MIMO systems”, Artech house, 2004.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 718–727, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A QoS Provisioning MAC Protocol for
IEEE 802.11 WLANs

Hu Zhengbing1,2 and Han Xiaomin2

1 HuaZhong Normal University, Department of Information Technology
430073, Wuhan, China

kievpastor@yahoo.com
2 Wuhan Institute of Technology, College of Computer Science,

430073, Wuhan, China
 hanxmn@163.com

Abstract. In this paper we present extended age dependent backoff protocol
(EADB), an extension of the age dependent backoff (ADB) proposed to allevi-
ate the delay and jitter of real-time packets. The proposed retransmission
scheme considers not only the persistence factors but also the contention win-
dow (CW) to reduce collision rate. The persistence factor (PF) is based on the
ages of the real-time packets in the transmission queue and the lifetimes of real-
time packets. Moreover, we also consider the collision rate that stations experi-
ence to adjust the CW. The proposed scheme is able to prevent the degradation
the performance of the network caused by setting the CW as the minimum
value after successful transmission. Simulation results indicate that the EADB
provides the delay, jitter, and drop rate better than ADB.

1 Introduction

The wireless access network makes people enjoy the convenience of accessing the
network and supports the mobility for people getting the information in the moving.
Cellular network is the well-known wireless access network. However, the bandwidth
of the cellular network is the bottleneck to provide multimedia services that need a
great amount of bandwidth. In the early years, Cellular network provides only voice
transmissions, and now it can provide simple multimedia data, such as images. The
transmissions of multimedia data should be further worried about because of the
scarce bandwidth. Nowadays, the wireless local area network (WLAN) have become
popularity. In addition, the easy installation of the WLAN is an attractive reason to
use it. The main reason is that WLAN technologies have become mature and can
provide much larger bandwidth than cellular network.

With the growing popularity and acceptance of 802.11 WLANs, it is essential to
focus on service differentiation support at the 802.11 medium access control layer.
The current 802.11 MAC protocol does not support application with quality of ser-
vice (QoS) requirements. The QoS support is critical to multimedia applications.
Time-bounded services require some specified bandwidth, the delay, and the jitter
guarantee. The distributed coordination function (DCF) is the basic medium access
mechanism of 802.11 WLANs, which uses CSMA/CA (Carrier Sense Multiple

 A QoS Provisioning MAC Protocol for IEEE 802.11 WLANs 719

Access With Collision Avoidance) protocol. In DCF, all stations competes the re-
sources and channels with the same priority. The DCF does not have any mechanism
to guarantee packet delay and jitter to stations for differentiation services.

The IEEE 802.11 task group E is currently working on the support of QoS in a new
standard, called IEEE 802.11e. The 802.11e draft introduced enhanced distributed
coordination function (EDCF) and hybrid coordination function (HCF), which are
currently under discussion [1,2]. The EDCF is the contention-based channel access
mechanism. The goal of this scheme is to enhance the DCF access mechanism of
IEEE 802.11. The EDCF can provide a distributed access approach that can support
the service differentiation.

Recently, several schemes [3,4,7] are proposed to enhance the IEEE 802.11 MAC
protocol and to support service differentiation. These schemes proposed scaling the
backoff contention window, assigning different interframe spaces (IFS), and assigning
different frame sizes according to the traffic priorities. There are four major strategies
for IEEE 802.11 DCF, including the CW strategy, the priority strategy, the real time
strategy, and the handshaking mechanism. In this paper, the main factors considered
are consisting of collision number, packet delay, packet drop rate, and packet jitter.

The EDCF mechanism improves the QoS of real-time traffic, but the performance
obtained is not optimal since EDCF parameters (CWmin, PF) can not be adapted
according to the network conditions. Thus, the proposed scheme in advance considers
the collision rate and age of real-time packet to dynamic adjust EDCF parameters to
achieve the better performance of throughput, the low delay, and the low collisions.

In this paper, we present two schemes: One scheme updates the CW after each suc-
cessful transmission; the other scheme updates the persistence factor after each un-
successful transmission.

2 Age Dependent Backoff Scheme

The age dependent backoff scheme improves the QoS performance of EDCF in IEEE
802.11e WLANs. It proposes the ADB for high priority real-time packet. The ADB
dynamically adjusts PF according to the age of real-time packet and the lifetime of the
real-time packet [5]. After a collision, the new CW is redefined as:

1])[)1][((][−∗+= TCPFTColdCWTCnewCW (1)

where

)
][

1(2][
TCLT

AGE
TCPF −=

The newCW[TC] never exceeds the parameter CWmax[TC], but can be less than
CWmin [TC]. Packet with queuing delay longer than the lifetime (Age > LT[TC])
will be discarded. It can be seen in formula (1) and (2) that in the first half of the
packet lifetime, the new CW is expanded by a factor PF between 1 and 2. The first
half increase the backoff time to avoid high collision probability. In the second half of
the packet lifetime, PF is compressed by a factor between 0 to 1. The second half
decrease the backoff time to raise transmission probability preventing packets from
dropped due to Age > LT[TC].

720 Z. Hu and X. Han

3 The Proposed Scheme

The proposed scheme is based on the ADB scheme. The ADB always sends packet
starting with the minimum CW after each successful transmission. However, the pro-
posed scheme does not send the packet with the minimum CW, but adapts the Adap-
tive EDCF backoff algorithm to dynamic adjust its CW according to the network
condition [6]. Thus the performance of the network will not be degraded. In the fol-
lowing, we describe the propose scheme in detail. There are two update strategies.
One strategy is adapted after each successful transmission and the other is adapted
after each collision. The scheme is introduced in Fig. 1.

CW[i]=min[PF[i] OldCW[i],CW[i]max]on a collision
CW[i]=max[CW[i]min,MF[i] OldCW[i]]on a success

)
][

1(][
iLT

Age
siPF ,

Age is the real time packet’s age in the transmission queue.
LT is the lifetime of the real packet.
PF is S/2 and S in the first half of the packet’s lifetime,
PF is 0 and S/2 in the second half of the packet’s lifetime.

),(,
),(

),(
),(jiR

jiNp

jiNc
jiR is the estimated collision rate.

R(i,j) is always in the range [0,1].
),Re(),1,Re(),()1(),Re(jijijiRji is the average collision rate in

step j, is a smoothing factor.
)8.0),,Re())2(1min(((][jiiiMF .

]][][,]][max[min iOldCWiMFiCWCW on success.

Fig. 1. The proposed backoff scheme

3.1 Update Strategy After Each Successful Transmission

A dynamic procedure is adopted to change the CW value after each successful trans-
mission. This scheme will increase much more the total goodput of traffic than the
basic EDCF. In the basic EDCF scheme, after the transmission is successfully com-
plete, the CW[i] values are reset to CWmin[i]. The proposed scheme resets the CW[i]
values more slowly to adaptive values.

 A QoS Provisioning MAC Protocol for IEEE 802.11 WLANs 721

Since the EDCF mechanism reset the CW of the corresponding class to its mini-
mum CW, it does not take into account the network conditions. The proposed scheme
defines a new estimated collision rate R(i,j) for each queue in each station, which is
defined in formula (3).

),(

),(
),(

jiNp

jiNc
jiR = (2)

where
 Nc: Total number of collisions.
 Np: The total number of packets that has been sent.
 Nc(i, j): The number of collisions in the period j and in the queue i.
 Np(i, j): The number of packets sent in the period j and in the queue i.
 R(i,j): The collision rate in the period j and in the queue i.

Note the R(i,j) is always in the range of [0,1].
Next, the busty collisions are considered, in which Re(i,j-1) indicates the average

collision rate at each update period j. Re(i,j) is the average collision rate in the period
j and in the queue I, as defined in formula (4).

)1,Re(),()1(),Re(−∗+∗−= jijiRji αα (3)

where α is the weight and the smoothing factor. After the successful transmission, the
proposed scheme takes the average collision rate Re(i,j) to estimate the next CW,

][iNewCW .

)8.0),,Re())2(1min(((][jiiiMF ∗+= (4)

In order to keep the CW less than the previous CW, β should be less than 1.

]][][,]][max[min iOldCWiMFiCWCW ∗= (5)

The NewCW[i] is always greater than or equal to CWmin[i], and the priority rela-
tionship is always maintained.

3.2 Update Strategy After Each Collision

In the 802.11 DCF protocol, after a collision the CW will be doubled in order to re-
duce collision probability. But the doubing process will cause a large delay and jitter.
This is a big problem for time-sensitive application.

In the 802.11 EDCF protocol, after a collision the new size of CW is determined
by expanding the size of the old CW by a factor of a PF. The PF is dynamically ad-
justed according to the age of a real-time packet in the transmission queue and the
lifetime of the real-time packet. The relationship between the newCW[i], and the
oldCW[i] after a collision is shown in formula (7).

1])[)1][((][−∗+= iPFioldCWinewCW (6)

722 Z. Hu and X. Han

where PF[i] is given as:

)
][

1(][
iLT

Age
siPF −= (7)

Age: The age of packet in the transmission queue.
LT[i]: The lifetime time of the packet.
Then, we choose the minimum CW parameter from the NewCW[i] and the

maximum CW[i].

4 Simulation Results and Analyses

In this paper, to evaluate the performance of the proposed EADB scheme, we use the
SMPL to simulate EADB on a wireless network.

4.1 Simulation Environment

The proposed simulation model has n wireless stations. All mobile stations compete
to each other for accessing shared wireless medium. They are all active in an inde-
pendent Basic Service Set (BSS) and there are no hidden stations are present in the
independent BSS. Each wireless station transmits three kinds of different traffic, in-
cluding voice, video, and data. The parameters of the traffic used in the simulation is
provided in table 1.

Table 1. Parameters of the proposed simulation

Parameters Value
Channel rate 11Mbps
SIFS 10us
Slot time 20us
DIFS 10us+2 *20us=50 us
AIFS[1] (voice) 10us+2 *20us=50 us
AIFS[2] (video) 10us+3 *20us=70us
AIFS[3] (data) 10us+4 *20us=90us
[CWmin,CWmax](DCF) [31,1023]
[CWmin[1],CWmax[1]](voice) [7,31]
[CWmin[2],CWmax[2]](video) [15,63]
[CWmin[3],CWmax[3]](data) [15,255]

4.2 Traffic Sources

It is assumed that the voice frame rate is 12 frames/sec, and the voice frame length is
exponentially distributed with mean 500 bytes. The video frame rate is 16 frames/sec,
and the video frame length is exponentially distributed with mean 800 bytes. The
best-effort traffic frame rate is 28 frames/sec, and the video frame length is exponen-
tially distributed with mean 1024 bytes.

 A QoS Provisioning MAC Protocol for IEEE 802.11 WLANs 723

4.3 Performance Evaluation

The packet delay, jitter and loss for voice traffic are main performance parameters.
We conceived our network as an independent BSS with n voice stations, n video sta-
tions, and n FTP client and server stations. We define the jitter as the variance of the
delay and the drop rate as the percentage of packet with delay longer than their life-
time. For voice and video packet, the maximum acceptable value are assumed to be

Fig. 2. Illustrates the packet delay versus number of station for voice traffic. Evidently, the
packet delay increases with the number of station, which is due to more traffic volume will be
attended to contend the limited bandwidth. The results show that the proposed scheme is much
better than other two schemes, especially when the number of station become large. This is
because the proposed scheme takes into account the ages of voice packet as well as the collision
rate. Thus, it could more precisely estimate the suitable backoff time.

Fig. 3. Illustrates the packet jitter versus number of stations for voice traffic. The packet jitter
increases with the number of stations due to that more traffic volume will be attended to content
the limited bandwidth. The results show that the proposed scheme is much better than other two
schemes, especially when the number of station is from 15 to 25. The variation of jitter of the
proposed scheme is lower than other two schemes. When the traffic load is heavy, the proposed
scheme takes into account the collision rate. Thus, it could degrade the variation of the jitter.

724 Z. Hu and X. Han

25ms and 75ms. Namely, LT(Life Time) for voice and video are 25ms and 75ms.
Voice packet delay, jitter, drop, and throughput are shown in Fig. 2, 3, 4, and 5
respectively. The EADB not only adjust the value of the PF based on the ages of
voice packet but also consider the collision rate that stations experience to transmis-
sion new packet, rather than always adapt the minimum contention for the new
packet. Therefore, the voice packet delay, the jitter, the drop rate, and the throughput
are improved. Fig. 6, 7, 8, 9 and 10 show that the EADB provides the significant
improvement in video delay, jitter, drop, and throughput.

Fig. 4. Shows the packet drop rate versus number of stations for voice traffic. The voice packet
lifetime is 25ms. The packet drop rate increases with the number of stations, in which more
stations brings more traffic volume. The results show that the proposed scheme is much better
than other two schemes, especially when the number of station become larger. This is because
the proposed scheme takes into account the ages of voice packet as well as the collision rate.
Thus, it is able to decrease the delay of voice packets. As a result, the dropping rate of voice
packet will be reduced.

Fig. 5. Demonstrates packet throughput versus number of stations for voice traffic. Evidently, the
voice packet throughput increases with the number of stations. This is due to that the priority of
voice packet is the highest and so they will be transmitted at the largest opportunity. The results
show that the proposed scheme is much better than other two schemes, especially when the num-
ber of station become larger. This is because the proposed scheme decreases the delay time and
dropping rate of voice packet. Thus, it is capable of enhancing the throughput of voice packet.

 A QoS Provisioning MAC Protocol for IEEE 802.11 WLANs 725

Fig. 6. Illustrates the packet delay versus number of station for video traffic. Evidently, the
packet delay increases with the number of station, which is due to that more traffic volume will
be attended to contend the limited bandwidth. But the difference among these three schemes is
not distinguishable. That is because the proposed scheme is much better than other scheme for
voice traffic. For the video packets, the performance is similar to other schemes.

Fig. 7. Illustrates the packet jitter versus number of stations for video traffic. When the number
of station gets larger, the packet jitter will also increase since the total traffic volume contenting
the shared medium increases. The simulation results show that the proposed scheme is much
better than other two schemes, especially when the number of station is between 15 and 25.
The variation of jitter of the proposed scheme is lower than other two schemes. This is due to
the fact that the proposed scheme takes into account the collision rate when the traffic load
becomes heavy. Therefore, it could apparently degrade the variation of the jitter.

We simulate two different scheme EDCF, and ADB to compare with the proposed
scheme EADB, in which EDCF indicates the scheme with PF equal to 2, ADB 2 indi-
cates the age dependent backoff scheme with adaptive PF between 0 and 2, and
EADB indicates the proposed scheme that is the modified dependent backoff scheme.
Delay is the duration from queue to successful transmission. Jitter is the variation of
the Delay according to the statistics, as shown in formula (9). Drop rate is the

726 Z. Hu and X. Han

Fig. 8. Illustrates the packet drop rate versus the number of stations for video traffic. The video
packet lifetime is assumed to be 75ms. Evidently, the packet drop rate increases with the num-
ber of stations due to the increment of traffic volume. The simulation results show that the
proposed scheme is much better than other two schemes, especially when the number of station
become large. This is because the proposed scheme takes into account the ages of video packet
as well as the collision rate. Therefore, it could decrease video packets delay much more and
also reduce the dropping rate of video packet.

Fig. 9. Illustrates the throughput versus number of stations for video traffic. Evidently, the
video packet throughput increases with the number of stations. The simulation results show that
the differentiation between these three schemes seem little. This is due to that our proposed
scheme gives higher priority on voice traffic rather than video traffic. Therefores, the through-
put of video packet cannot be improved significantly.

percentage of packets with delay longer than their lifetime. Throughput is number of
packets successful transmission in total simulation time.

N

ux

Jitter

N

k
k∑

=

−

= 1

2)(

(8)

Xk: The packet delay.
u: The average packet delay.
N: Total number of the packets.

 A QoS Provisioning MAC Protocol for IEEE 802.11 WLANs 727

Fig. 10. Illustrates the packet throughput versus number of stations for data traffic.The data
packet throughput increases with the number of stations at the beginning.When the number of
stations higher than 20, the throughput will go down evidently due to the congestion and colli-
sion. Although the data packet priority is the lowest, the proposed scheme does not cause the
data packet starvations. The simulation results show that the proposed scheme offers the higher
priority to voice and video packet, but at the same time the data traffic do not suffer starvation.

5 Conclusions

The ADB scheme does not work well when the traffic load is heavy. That is because
when a packet is successfully transmitted, the CW is reset to the minimum value.
Thus, it leads to more collisions, more packet delay, and less throughput for real-time
packets. Moreover, the EDCF scheme generate the unnecessary delay when the traffic
load is light. That is because the longer backoff time is produced from the CW size
which is doubled after each unsuccessfully packet transmission. In this paper, the
proposed EADB scheme control the CW based on the ages in the transmission queue,
as well as the collision rate. The simulation results indicate that EADB has apparent
improvements in delay, jitter, drop rate, and throughput of real-time packets. Fur-
thermore, there is no starvation for the best effort traffic.

References

1. IEEE 802.11e/D4.0,"Draft Supplement to Part 11: Wireless Medium Access Control
(MAC) and Physical layer (PHY) specifications: Medium Access Control(MAC) Enhance-
ments for Quality of Service (QoS)", November 2002.

2. S. Mangold, S. Choi, P. May, O. Klein, G. Hiertz, L. Stibor," IEEE 802.11e Wireless LAN
for Quality of Service", In Proc. European Wireless '02,Florence,Italy,February 2002.

3. Aad and C. Castelluccia, "Differentiation mechanisms for IEEE 802.11 ", IEEE Procs.
INFOCOM 2001. Volume:1, 2001 Page(s): 209 -218

4. IEEE P802.11 TASK GROUP E, http://www.ieee802.org/11/
5. Wong, G.W, Donaldson, R.W.," Improving the QoS performance of EDCF in IEEE 802.11e

wireless LANs", IEEE 2003
6. Romdhani, L., Qiang Ni, Turletti, T.," Adaptive edcf: enhanced service differentiation for

IEEE 802.11 wireless ad-hoc networks", IEEE 2003
7. Su Jun, Hu Zhengbing, "A Bandwidth Degradation QoS Scheme for 4G Mobile Networks",

Proceedings of IEEE ICI' 2006, Tashkent, Uzbekistan, 19-21 September, 2006. IEEE.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 728–738, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Leader Election Algorithm Within Candidates on Ad
Hoc Mobile Networks*

SungSoo Lee, Rahman M. Muhammad, and ChongGun Kim**

Department of Computer Engineering, Yeungnam University, Korea
lssung@chol.com, rahman_742@hotmail.com, cgkim@yu.ac.kr

Abstract. Leader election is an extensively studied problem in Ad hoc
networks. In our study, an extended idea of leader election algorithms for
energy saving on arbitrary changing topological environment is derived. Our
focus is to reduce the number of leader election processes, to make it more
energy efficient. The proposed algorithm shows that each node maintains a list
of candidates to minimize the total number of leader elections. Simulation
results show that the leader election algorithm using candidates has less leader
elections process and generates less message than those of the existing leader
election algorithms.

1 Introduction

A mobile Ad hoc network (MANET) is a collection of mobile nodes that can
communicate via message passing over wireless links. The nodes communicate via
other nodes if they are not within a specified transmission range.

Leader election is a fundamental control problem in both wired and wireless
systems (e.g. MANET, Sensor networks) [1]. For example, in group-communication
protocols, a leader election is necessary when a group leader crashes or departs from
the system [1]. Leader election has a large number of applications such as key
distribution [4], routing coordination [5], sensor coordination [6] and general control
[3, 7]. It can serve for creating particular tree communication structures [2] and other
standard problems in distributed systems.

The algorithm of the leader election problem [8] elects a unique leader from a fixed
set of nodes. To accommodate frequent topology changes, leader election in MANET
have to be adaptive. The elected leader should be the most-valued-node among all the
nodes of the network. The value for the leader node selection is a performance-related
characteristic such as remaining battery life, minimum average distance from other
nodes or computation capabilities [1].

Many solutions are proposed for leader election, but most of them are not fit
perfectly to dynamic nature of mobile networks. Leader election algorithm provided
in [7], maintains a directed acyclic graph with a single sink, which is the leader.

* This research was supported by the Yeungnam University EmTEC and SAMSUNG research

grants in 2006.
** Corresponding Author.

 A Leader Election Algorithm Within Candidates on Ad Hoc Mobile Networks 729

However this algorithm [7] is proved correct for a completely synchronous system
with a single link change. The algorithms proposed in [9, 10] work only if the
topology remains static and hence cannot be used in mobile networks. Self-stabilizing
spanning tree algorithms [12, 13] assume a shared-memory model and are not suitable
for an Ad hoc mobile network. Besides, several clustering and hierarchy-construction
schemes [11, 14] may be adopted to perform leader election, but they cannot be used
in an asynchronous mobile system. Leader election algorithm presented in [1],
manage the election process very efficiently. But the method requires a large number
of leader elections, which is not very supportive to energy conservation. To solve this
problem, we implements an algorithm which is based on Leader election algorithm
presented in [1], but every node keeps a leader list instead of a single leader. This
algorithm is mainly emphasized for lower power consumption.

2 Existing Algorithms for Leader Election

We describe an existing leader election algorithm [1] that is based on diffusing
computations by Dijkstra and Scholten [15]. First we describe the algorithm for static
networks and then for mobile environments.

2.1 Leader Election in a Static Network

This algorithm acts under the assumption that nodes and links never fails. It uses three
types of messages, viz. Election, Ack and Leader. The algorithm works as follows:

Election: If a leader node doesn’t exist in the network, an initiator node transmits
Election message to immediate neighbor nodes. The neighbor nodes propagate the
messages to their neighbors (except the parent).This process is continued until all leaf
nodes get the Election messages. This phase is referred as the growing phase of the
spanning tree.

Ack: When any node receives an Election message from a neighbor (not parent), it
immediately responds with an Ack message. Instead of sending Ack message to its
parent, a node waits until it receives Acks from all its children. On receipt of the
Election message, every leaf node sends an Ack message along with its own ID, to its
parent. The parent node compares its own ID with these incoming IDs from all its
children. Then it selects the highest one and sends it through the Ack message to its
parent. This process is continued until the initiator node gets all Acks from all
children. This phase is referred as the shrinking phase of the spanning tree.

Leader: When the initiator node gets Ack messages from all its children, it selects the
highest ID as the leader node. It then broadcasts this ID in the Leader message to all
nodes of the network.

Figure 1 shows an example of leader election. In figure 1(a), node 3 is the initiator
that sends Election (E) message to its neighbor. In figure 1(b), nodes 2 and 5 set their
pointers to point to parent node 3. They get Election messages from each other and
immediately acknowledged. In figure 1(c), a complete spanning tree is created. In

730 S. Lee, R.M. Muhammad, and C. Kim

figure 1(d), nodes 7 and 9 send their Ack messages (A) to their parents with their own
IDs. In figure 1(e), nodes 2 and 5 compare their own IDs with the incoming ones and
send the higher IDs in Acks to node 3. In figure 1(f), node 3 selects 9 as the leader ID
and broadcasts it via the Leader message (L).

Fig. 1. An execution of leader election algorithm based on Dijkstra-Scholten termination
detection algorithm

2.2 Leader Election in Mobile Environment

In this section we briefly describe the leader election algorithm proposed in [1] for
mobile Ad hoc networks.

The leader node of a connected network periodically (after each 20 seconds) sends
heartbeat messages to other nodes. The absence of heartbeat messages from its leader
for a predefined timeout period (3 times) triggers a fresh leader election process at a
node. Then the election proceeds as mentioned in the previous section. But when node
mobility, node crashes, link failures, network partitions and merging of partitions are
introduced during the leader election process. To solve this problem, two extra
messages, Probe and Reply are used.

In the dynamic environment, the algorithm [1] applies the following techniques in
the leader election process.

Handling Multiple, Concurrent Computations: More than one node may
concurrently detect leader departure. These nodes initiate separate leader election
independently that leads to concurrent leader elections. To handle this situation, the
algorithm [1] requires each node participates in only one diffusing computation at a
time. To achieve each diffusing computation is identified by a computation-index.

 A Leader Election Algorithm Within Candidates on Ad Hoc Mobile Networks 731

This computation-index is a pair, viz. 〈num, ID〉, where ID represents the identifier of
the node that initiates this computation and num is an integer as described below.

〈num1, ID1〉 > 〈num2, ID2〉 ⇔ ((num1 > num2) ∨ ((num1 = num2) ∧ (ID1 > ID2)))

A leader election with higher computation-index has higher priority than another
leader election. When a node participates in a leader election, the node hears another
leader election with a higher computation-index. Eventually a node with highest
computation-index initiates the leader election process.

Handling Network Partition: Once a node joins in a leader election, it must receive
Ack messages from all of its children, before it send the Ack message to its parent.
However, during the shrinking phase of the spanning tree, some nodes may go out of
the network. To detect such events, each node sends periodic Probe messages to the
neighbors of the spanning tree. A node which receives the Probe message, responds
with a Reply message. If a node fails to get Reply message from a node for a certain
timeout period, removes that node from its neighbor list of the spanning tree. A node
must detect this event; otherwise it never reports an Ack to its parent.

Handling Networks Merge: Node mobility can merge network partitions, when at
least two nodes from different partitions, come in the communication range of each
other. Both nodes exchange each other’s leader information. The node having lower
leader ID accepts the other leader as the new leader of its partition and propagates the
message to other nodes of the partition.

Node Crashes and Restarts: If a node failure creates network partitions, appropriate
actions are taken as described earlier. When a node recovers from a crash, a node
without leader starts a new election to find its leader.

3 Leader Election Within Candidates

The proposed algorithm is based on the leader election algorithm [1]. In this
algorithm, we propose a list of leaders instead of just one leader to be maintained in
every node. Each node contains a leader list of five nodes (in descending order),
where the first node is considered as the active leader of the network. If the first one is
absent for a specified period, the second becomes the active leader and so on.

We follow the assumptions and constraints that are mentioned in [1]. We assume
MANET is an undirected graph. Here vertices represent the mobile node and an edge
represents the communication link between any two nodes within communication
range. Thin arrows represent the direction of flow of messages and thick arrows
indicate pointer of child node to parent. We apply the following constraints:

 All nodes have unique identifiers
 We consider the node’s ID (identifier) as the key value for leader election

(for simplicity to describe and simulate), i.e. the node having the highest ID
in a network is considered as the most-valued-node (leader).

 Links are bidirectional and FIFO (First in First out).

732 S. Lee, R.M. Muhammad, and C. Kim

 Node mobility can change topology arbitrarily, including network
portioning/merging. Furthermore, node can crash and come back to its
original network at any time.

 Each node has a large buffer to avoid buffer overflow at any point in its
lifetime.

3.1 Leader Election Algorithm Within Candidates

We implement candidates based leader election. Every node maintains leader list (L)
and set the size of L to 5. Empty ID is denoted by -1 in L.

Check the existence of the leader in the network during several heart-beats
interval.

1. If Leader doesn't exist in the network after the specified period (Six heart-beat
interval)
A. Select an initiator node
B. Initiator node sends the election message to all of its children. This

process is continued until these messages reach to all leaf nodes.
C. For the leaf nodes, l, in the network

i. Add l to its own leader list, L.
ii. Send L to its parent within Ack message.

iii. Parent node sorts (in descending order) its ID with the contents of L.
The node propagates L to its parent. Repeat this process until the
initiator node gets all the leader lists from each branch.

iv. In this shrinkage phase of the spanning tree, each node sends
periodic Probe message and waits for Reply message from the
neighbors, to maintain the connectivity among the nodes.

D. Initiator node selects the highest-valued-L from the collected Leader lists,
and broadcast it to the network, by Leader message.

2. If at least one leader exists in kth (position in L) level of the leader list
A. Send Require message to the corresponding candidate leader node and

receive Ack message.
B. Update leader list by setting the active kth level of L to the proper

position by shifting the invalid leaders of L for future rejoin operation.
C. Broadcast this to the network.

3. If several active leaders of different networks exist in the same network
A. Multiple leader lists are combined and new five candidate nodes are

selected by selecting the active leaders (in descending order) in the front
positions of the list. The first position node of the list becomes the active
leader node.

3.2 Leader Election in Mobile Environment

We now describe how this algorithm accommodates arbitrary changes in topology
induced by node mobility. Our algorithm shares the idea of multiple concurrent

 A Leader Election Algorithm Within Candidates on Ad Hoc Mobile Networks 733

computation, network partioning and merging, node crashes and restarts during the
leader election process [1].

Leader Election Process: Figure 2(a) to 2(c) show the growing phases of the
spanning tree. Every node maintains a Leader list. In our example we use the size of
the Leader list to 5. Figure 2(d) shows that the leaf nodes 7 and 9 add their IDs in the
list and send these to their parents in the Ack messages. Figure 2(e) shows that the
initiator receives two lists from its two branches and they are A (7, 2, -1, -1,-1) and A
(9, 5, -1, -1,-1). From these two lists the initiator node selects the Leader list L (9, 7,
5, 3, 2) and broadcasts to all nodes of the network. Like the previous algorithm [1],
here all nodes send periodic Probe messages and wait for the Reply from the
neighbors of the spanning tree, to maintain the connectivity.

Unlike the algorithm [1], this algorithm manages network partitions and merges.

Fig. 2. The leader election process within candidates

Handling Network Partitions: In figure 3, the advantage of having multiple
candidates are shown. In figure 3(a), all nodes of the network maintain the same
Leader list, where the active leader is 50. But as node 3 disappears, two networks are
created. In figure 3(b), on the right network, nodes 50, 20, 17 exist. This network does
not modify the Leader list. But on the left network, the first three candidate IDs are
absent in the leader list. So after the time out of three levels of leader nodes checking,
node 10 becomes initiator and sends the heartbeat message to all nodes of the
network. To reduce the waiting time, all nodes update their Leader lists by shifting the
invalid IDs to the end of the Leader lists. But we shouldn’t delete these nodes from
the Leader lists for a while, for future rejoin.

734 S. Lee, R.M. Muhammad, and C. Kim

Fig. 3. Handling network partitions by the Leader Election algorithm using candidates

Handling networks Merge: Network merging can be managed efficiently by this
method. In figure 4(a), there are three networks and they maintain the Leader lists L
(10, 7, 5, 2, and 1), L (25, -1, -1, -1, -1) and L (50, 20, 17, 1, -1). According to our
algorithm every node in the merged network has finally L (50, 25, 10, 20, 17), where
nodes 50, 25 and 10 were the active leaders. After the merging operation in figure
4(b) node 50 becomes the active leader.

Fig. 4. Handling networks merge by the Leader election algorithm using candidates

4 Simulation Results

We compare the performance between the existing [1] and the proposed leader
election algorithm through simulations. Both leader election algorithms are
implemented in C++. Here MANET size is 2000*2000 square meters. In the
simulation, nodes can move from 1 m/sec (Vmin) to maximum 19 m/sec (Vmax). To
see the effect of transmission range over the algorithms, we use transmission ranges

 A Leader Election Algorithm Within Candidates on Ad Hoc Mobile Networks 735

of 200, 250 and 300 meters. We set message traversal time between the two nodes to
0.03 second as default value. We allow the number of nodes (N) up to 200 in the
simulation area. Due to the node mobility, several nodes can go out of the simulation
area and can enter into the simulation area at any time. As the requirement of the
existing algorithm, each simulation is run for duration of 200 minutes. Finally the
simulation results are taken from the averaged values of 20 simulations run times.

Impact of Node Density: The graphs in figure 5 show the Election Rate for three
different values of Vmax viz. 3m/s, 9m/s and 19m/s. The election rate means 속
number of leader election process. In these graphs, we see the Election Rate of node
first increases with node density (N), and then start decreasing with any further
increase in N. This is because when N = 20, most of nodes are expected to be isolated.
But as N increases, there are few networks with few nodes. Node mobility causes
frequent leader departures and hence Election Rate increases. But after a certain
threshold, the node density becomes very high and most of the nodes belong to large
networks. As networks remain connected for long duration, Election Rate drops.

Vmax = 3m/s (Low speed)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 25 50 75 100 125 150 175 200 225

Node density

A
v
er

a
g

e
E

le
ct

io
n

 R
a

te
 (

p
er

 m
in

)

Existing algorithm Candidates based algorithm

Vmax = 9m/s (Average speed)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 25 50 75 100 125 150 175 200 225

Node Density

A
v

er
a

g
e

E
le

ct
io

n
 R

a
te

(p
er

 m
in

)

Exisiting algorithm Candidates based algorithm

Vmax = 19 m/s (High speed)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120 140 160 180 200 220

Node Density

A
v
e
r
a

g
e
 E

le
c
ti

o
n

 R
a

te
 (

p
e
r
 m

in
)

Existing algorithm Candidates based algorithm

(a) (b) (c)

Fig. 5. Average Election Rate Vs Vmax. Here Vmin = 1 m/sec and transmission range of each
node is 300 meter.

Numbe of nodes =100

0

100

200

300

400

500

600

700

0 3 6 9 12 15 18 21

Max Node Speed

T
ot

al
 E

le
ci

to
ns

Existing algorithm Candidates based algorithm

Fig. 6. Total Elections Vs moderate node density (100). Here Vmin = 1 m/sec and transmission
range of each node is 300 meter.

736 S. Lee, R.M. Muhammad, and C. Kim

Impact of Node Speed: Figure 6 shows the total number of Elections for moderate
node density (here it is 100). In this graph, we see the Leader election increases with
the increase of node speed. This is because in the low speed most of the nodes exists
in the large networks, and remain there for long. So leader election is also lower in
node’s low speed. But as node speed increases, there are many networks with few
nodes. Node mobility causes frequent leader departures and hence Election Rate
increases.

Impact of Transmission Range: We study the impact of Transmission range (Tx) on
Election Rate for three different choices of Tx, viz. 200m, 250m and 300m. From the
graphs of figure 7, we see increased transmission range of nodes leads to a higher
Election Rate when N is small (i.e. N = 20). This is because, for large value of Tx,
there are fewer isolated nodes, but each network has few nodes. But for large values
of N, the Election Rate becomes smaller with increase in Tx. The reason is the
network sizes are larger for large values of Tx and partition occurs less frequently.
For all values of Tx, Election Rate by the candidate based method is much smaller
than that of the existing method.

Existing algorithm

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160 180 200 220

Node density

T
o

ta
l

E
le

c
ti

o
n

s

Tx = 200 Tx = 250 Tx = 300

(a)

Candidates based algorithm

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180 200 220

Node Density

T
o

ta
l

E
le

ct
io

n
s

Tx = 200 Tx = 250 Tx = 300

(b)

Fig. 7. Average Election Rate Vs Tx. Here Vmin = 1 m/sec and Vmax = 3m/s.

Vmax= 3 m/s (Low speed)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120 140 160 180 200 220

Node Density

T
o
ta

l
m

es
sa

g
es

Existing algorithm Candidates based algorithm

Vmax = 9 m/s (Average speed)

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140 160 180 200 220

Node Density

T
o

ta
l

m
es

sa
g

es

Existing algorithm Candidates based algorithm

Vmax = 19 m/s (High speed)

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140 160 180 200 220

Node Density

T
o

ta
l

m
e
ss

a
g
e
s

Existing algorithm Candidates based algorithm

(a) (b) (c)

Fig. 8. Total generated messages Vs Vmax. Here Vmin = 1 m/sec and Tx = 300 meter.

 A Leader Election Algorithm Within Candidates on Ad Hoc Mobile Networks 737

Impact on Message Generation: The graphs of figure 8 show the total number of
messages that are generated for leader election. In every graph, we see the leader
election algorithm using candidates has significant performance advantages over that
of the existing algorithm. This leads to an assumption that the candidates based
algorithm has energy saving feature than that of the existing algorithm.

5 Conclusions and Future Work

Energy saving is an important research area for Ad hoc mobile and Sensor networks.
To achieve this purpose, we derive an efficient leader election algorithm, which
successfully guarantees that every node must have leader in every situation and save
energy in Ad hoc mobile networks. Our focus for saving energy is to reduce the
number of leader election processes. Because leader election needs three phases of
transmissions and receptions of messages that use a lot of energy. Our simulation
results show that the candidate-based algorithm has significant energy saving feature
than that of the other. Another good fact is that proposed candidate based algorithm is
particularly simple and straightforward. Our future plan is to implement the practical
protocols.

References

1. Vasudevan, S., Kurose, J, Towsley, D. Design and Analysis of a Leader Election
Algorithm for Mobile Ad Hoc Networks. Proceedings of the 12th IEEE International
Conference on Network Protocols (ICNP) (2004) 350-360

2. Y. Afek and A. Bremler. Self-stabilizing unidirectional network algorithms by power
supply. Chicago Journal of Theoretical Computer Science, December 1998.

3. Bayazit, J. Lien, and N. Amato. Better group behaviors in complex environments using
global roadmaps. 8th International Conference on the Simulation and Synthesis of living
systems (Alife ‘02), Sydney, NSW, Australia, pp. 362-370, December 2002.

4. DeCleene et al. Secure group communication for Wireless Networks. In proceedings of
MILCOM 2001, VA, October 2001

5. Perkins and E. Royer. Ad-hoc On-Demand Distance Vector Routing. In proceedings of the
2nd IEEE Workshop on Mobile Computing Systems and Applications, New Orleans, LA,
February 1999,pp. 90-100

6. W. Heinzelman, A. Chandrakasan and H. Balakrishnan. Energy-Efficient Communication
Protocol for Wireless Micro sensor networks. In proceedings of Hawaiian International
Conference on Systems Science, January 2000.

7. N. Malpani, J. Welch and N. Vaidya. Leader election Algorithms for Mobile Ad Hoc
Networks. In fourth International Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications, Boston, MA, August 2000.

8. N. Lynch. Distributed Algorithms. 1996, Morgan Kaufmann Publishers, Inc.
9. R. Gallager, P. Humblet and P. Humblet and P. Spira. A Distributed Algorithm for

Minimum Weight Spanning Trees. In ACM Transactions on Programming Languages and
Systems, vol.4, no.1, pages 66-77, January 1983.

10. Peleg. Time Optimal Leader Election in General Networks . In journal of Parallel and
Distributed Computing, vol.8, no.1, pages 96-99, January 1990.

738 S. Lee, R.M. Muhammad, and C. Kim

11. Coore, R. Nagpal and R. Weiss. Paradigms for Structure in an Amorphous Computer.
Technical report 1614, Massachussetts Institute of Technology Artificial Intelligence
Laboratory, October 1997.

12. Y. Afek, S. Kutten and M.Yung. Local Detection for Global Self Stabilization. In
Theoretical Computer Science, Vol 186, No. 1-2, 339 pp. 199-230, October 1997.

13. S. Dolev, A. Israeli and S. Moran. Uniform dynamic self-stabilizing leader election part 1:
Complete graph protocols. Preliminary version appeared in proceedings of 6th
International Workshop on Distributed Algorithms (S. Toueg et.al., eds.), LNCS 579, 167-
180,1992),1993.

14. C. Lin and M. Gerla. Adaptive Clustering for Mobile Wireless Networks. In IEEE journal
on selected areas in communications,15(7): 1265-75, Sep 1997.

15. E.W. Dijkstra and C.S. Scholten. Termination detection for diffusing computations. In
Information Processing Letters, vol. 11, no. 1, pp. 1-4, August 1980.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 739–746, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Improvement of TCP Downstream
Between Heterogeneous Terminals

in an Infrastructure Network

Yong-Hyun Kim, Ji-Hong Kim, Youn-Sik Hong, and Ki-Young Lee

University of Incheon,
177 Dowha-dong Nam-gu,
402-749, Incheon, Korea

{riot999,yh-kim,yshong,kylee}@incheon.ac.kr

Abstract. We measured a performance of data transmission between a desktop
PC and a PDA in an infrastructure network based on IEEE 802.11x wireless
LAN. Assuming that a PDA is mainly used for downloading data from its
stationary server, i.e., a desktop PC, a PC and a PDA acts as a fast sender and a
slow receiver, respectively, due to substantial differences in their computational
capabilities. With data transmission between these heterogeneous terminals a
transmission time during downstream is slower than that during upstream by
20% at maximum. To mitigate this, we present two distinct approaches. First,
by increasing the size of a receive buffer for a PDA the congestion window size
of TCP becomes more stable. Thus, an approximate 32% increase in throughput
can be obtained by increasing its size from 512 bytes to 32768 bytes. Second, a
pre-determined delay between packets to be transmitted at the sender should be
given. By assigning the inter-packet delay of 5 ms during downstream achieves
a best performance which improves by 7% compared to that without such a
delay. Besides, such a delay reduces the number of erroneous packets
remarkably.

Keywords: PDA, TCP downstream, wireless LAN, congestion window, inter-
packet delay.

1 Introduction

The transmission of multimedia over wireless networks using mobile devices is
becoming a research topic of growing interest. With the emergence of small wireless
handheld devices such as PDAs (Personal Digital Assistants), it is expected that
interactive multimedia will be a major source of traffic to these handheld devices
[5], [6].

Different types of terminals such as desktop PCs as fixed hosts (FHs) and PDAs as
mobile hosts (MHs) can be connected to an infrastructure network. Assuming that a
PDA is currently used for downloading data from its stationary server such as a
desktop PC, a desktop PC and a PDA acts as a fast sender and a slow receiver,
respectively, due to substantial differences in their computational capabilities.

740 Y.-H. Kim et al.

Actually, a PDA has a lower performance, less memories and poor user interfaces
compared to a desktop PC. Most of the works deal with measurements and analysis of
their performance with emphasis on laptop PCs [2], [3]. In that case, a desktop PC
and a laptop PC are considered as a fast sender and a fast receiver, respectively, or
vice versa.

This work provides a performance characterization of three types of transmissions:
upstream, downstream and wireless-to-wireless. Measures were carried out on a test-
bed which reproduces (on a small scale) a real prototype of an infrastructure network.
Particularly, during the downstream from a desktop PC as a FH to a PDA as a MH,
transmissions between these heterogeneous hosts may result in the degradation of an
overall performance. Experimental analysis of the traffic profiles during the
downstream has been done. In addition, we propose methods for improving the
performance of such multimedia downstream.

This paper consists of the following; we discuss the related works in Chapter 2. In
Chapter 3, we show experimental analysis of TCP downstream and then present our
proposed methods to improve performance. The experimental results are shown in
Chapter 4. Finally, we conclude our works in Chapter 5.

2 Related Works

Data transmission protocol adopted in this paper is TCP. TCP uses what it calls the
congestion window to determine how many packets can be sent at one time. The
larger the congestion window size becomes, the higher the throughput becomes [4].
Typically, the congestion window size in a wired network remains constant after short
delay. However, it over a WLAN oscillates too rapidly. If the congestion window size
increases rapidly, it can add to network traffic before the network has completely
recovered from congestion. If congestion is experienced again, the congestion
window size will shrink rapidly. This alternating increase and decrease in congestion
window size causes the performance of data transmission over a WLAN to reduce
remarkably [2]. Besides, we consider a manipulation of the send buffer and the
receive buffer at the transport layer as well as an application buffer at the application
layer to enhance the performance of a PDA by tuning TCP [7].

According to operating systems, the socket buffer size is different [7]. For each
socket, there is a default value for the buffer size, which can be changed by the
program using a system library call just before opening the socket. There is also a
kernel enforced maximum buffer size. The buffer size can be adjusted for both the
send and receive ends of the socket [4]. It varies with the operating systems. FreeBSD
gives 16384 bytes of default TCP socket buffer size, whereas Windows 2000 and XP
give 8192 bytes.

To achieve maximal throughput it is critical to use the optimal sizes of the TCP
send and receive socket buffer for the link we are using. If the buffers are too small,
the TCP congestion window will never fully open up. If the buffers are too large, the
sender can overrun the receiver, and the TCP window will shut down [4].

It is important to improve the TCP performance in wireless networks without any
modifications of TCP syntax. The Snoop protocol of Balakrishan et al. [2] modified
network-layer software at a base station to improved TCP performance in wireless

 An Improvement of TCP Downstream Between Heterogeneous Terminals 741

networks. It used a split mode that a base station connected a fixed host and a mobile
host. In split mode, a base station has to reveal data before it reaches the destination,
thus violating the end-to-end semantics of the original TCP.

3 Experimental Analysis of TCP Downstream

3.1 A Test-Bed Infrastructure Network

There are several simulation and analytical studies on a wired and wireless network,
whereas in this work, we test a real system to measure the performance of multimedia
transmission. Thus, we have designed and implemented VMS (Voice Messenger
Systems). VMS is an infrastructure network that integrates a wired LAN based on
Ethernet with a WLAN based on the IEEE 802.11 standard. In our test-bed network,
BS (Base Station) is simply AP (Access Point). A desktop PC and a PDA
represents FH and MH, respectively. The hardware specification of the hosts used in
the VMS is listed in Table 1.

VMS is a kind of file transfer system. It is similar to short message services (SMS)
available on digital mobile phones. Let us briefly explain how it works: a VMS client
records one's voice and then sends it to the VMS server after converting it into a wave
file format. The server receives this voice message and stores it in its hard disk. It
transfers the message to the authenticated client that requests it.

Table 1. The hardware specification of the hosts used in the VMS

Host type CPU RAM NIC

MH PDA
Samsung S3C2440

(400MHz)
128MB PCMCIA (11Mbps)

FH PC
Pentium 4

(2.4~3.0GHz)
1GB PCI (100Mbps)

Before we discuss about performance metrics, we should define the terminology to
be used: Upstream is a process of transmitting data from a PDA as a MH to its server
as a FH. On the contrary, we call downstream a process of receiving data for a PDA
from its server. It moves in an opposite direction to the upstream.

3.2 An Analysis of Three Types of Transmissions

We have analyzed three types of transmissions: upstream, downstream and wireless-
to-wireless (PDA-to-PDA). Notice that when measuring the performance of such
transmission, we located MH, i.e. PDA, within a 5-meter radius of an AP to maintain
both good signal quality and strength.

In the first traffic profile, we use a file size dimension up to 4688 Kbytes. These
files are generated by recording one’s voice for 60 to 600 seconds. In Fig. 1(a) the
behavior of the transmission time with respect to the file size is shown when the
packet size is 1460 bytes. The elapsed time to complete the downstream is slower
than that to complete the upstream by 20% at maximum. Such difference becomes

746 Y.-H. Kim et al.

bytes. Moreover, the results also demonstrate that the elapsed time to access its
internal files which resides in the memory of PDA is kept constant with varying sizes
for the receive buffer.

Second, the inter-packet delay (IPD) should be needed to give enough time to
complete its internal processing for the low-end device (PDA) during the
downstream. By setting the inter-packet delay of 5 ms only at the sender achieves a
best performance that improves by 7% compared to that with no such delay. From the
analysis of the empirical results the possible range of the IPD will be 1ms < IPD <
10ms.

References

1. Stevens, W. R.: TCP/IP Illustrated – Volume 1: The Protocols, Addison-Wesley (1994)
2. Balakrishnan, H., Seshan, S., Amir, E., Katz, H.: Improving TCP/IP Performance over

Wireless Networks, ACM MOBICOM (1995)
3. Nguyen, G. T., Katz, R. H., Noble, B., Satyanarayanan, M.: A Trace-Based Approach for

Modeling Wireless Channel Behavior, In Proceedings of the Winter Simulation
Conference (1996) 597-604

4. Tierney, B. L.: TCP tuning guide for distributed application on wide area networks, ;login:
The magazine of USENIX & SAGE, Vol. 26, No. 1 (2001) 33-39

5. Zheng, B. and Atiquzzaman, M.: A Novel Scheme for Streaming Multimedia to Personal
Wireless Handheld Devices, IEEE Transcations on Consumer Electronics, Vol. 49, No. 1
(2003)

6. G. Isannello, A. Pescape, G. Ventre, and L. Vollero, Experimental Analysis of
Heterogeneous Wireless Networks, WWIC 2004 (2004) 153-164

7. Karadia, D.: Understanding Tuning TCP, Sun Microsystems, Inc.,
http://www.sun.com/blueprints (2004)

8. Lachlan L. H. Andrew, et al, Buffer Sizing for Non-homogeneous TCP Sources, IEEE
Communication Letters, Vol. 9, No. 6 (2005) 567-569

9. Analyzer web site, http://analyzer.polito.it
10. Wildpackets web site, http://wildpackets.com

